5.3 Electric Cells Internal Resistance.notebookElectric+Cells... · 5.3 Electric Cells Internal...

13
5.3 Electric Cells Internal Resistance.notebook 1 March 15, 2016 5.3 Electric Cells

Transcript of 5.3 Electric Cells Internal Resistance.notebookElectric+Cells... · 5.3 Electric Cells Internal...

Page 1: 5.3 Electric Cells Internal Resistance.notebookElectric+Cells... · 5.3 Electric Cells Internal Resistance.notebook 6 March 15, 2016 Describing the discharge characteristic of a simple

5.3 Electric Cells Internal Resistance.notebook

1

March 15, 2016

5.3 Electric Cells

Page 2: 5.3 Electric Cells Internal Resistance.notebookElectric+Cells... · 5.3 Electric Cells Internal Resistance.notebook 6 March 15, 2016 Describing the discharge characteristic of a simple

5.3 Electric Cells Internal Resistance.notebook

2

March 15, 2016

5.3 Electric Cells

Are they cells or batteries?

People often refer to cells as batteries, however they are not the same.

A battery consists of two or more cells that are joined together. 

The potential difference across a battery is the sum of the potential differences across the cells.

Page 3: 5.3 Electric Cells Internal Resistance.notebookElectric+Cells... · 5.3 Electric Cells Internal Resistance.notebook 6 March 15, 2016 Describing the discharge characteristic of a simple

5.3 Electric Cells Internal Resistance.notebook

3

March 15, 2016

5.3 Electric Cells

Increasing battery voltage

Using more cells in a battery increases the voltage.

If several cells are connected in series, the total voltage across the battery can be found by adding the voltages of the cells. 

Page 4: 5.3 Electric Cells Internal Resistance.notebookElectric+Cells... · 5.3 Electric Cells Internal Resistance.notebook 6 March 15, 2016 Describing the discharge characteristic of a simple

5.3 Electric Cells Internal Resistance.notebook

4

March 15, 2016

5.3 Electric CellsSimple Electrolytic CellsComparing the life expectancy of various batteries 

Standard Potential of zinc                = –0.76Standard Potential of copper           =   0.34Cell potential with conducting path  =  1.10V

Elements with the greatest negative electrode potential are chosen for cathodes and elements with the highest positive potential for anodes. The difference between the electrodes provides the terminal voltage. For a rechargeable battery (secondary cell) to be practical, the chemical reactions between the elements must be reversible.

Page 5: 5.3 Electric Cells Internal Resistance.notebookElectric+Cells... · 5.3 Electric Cells Internal Resistance.notebook 6 March 15, 2016 Describing the discharge characteristic of a simple

5.3 Electric Cells Internal Resistance.notebook

5

March 15, 2016

TAP 105­ 2: Making electricityLemon batteryApparatusLemonscopper and zinc plates to act as electrodesLEDconnecting leads (crocodile clips can be used to connect to the electrodes)high resistance voltmeter or multimeters.Instructions:Wear safety spectaclesEnsure you wear safety spectacles throughout this experiment. Eye protection is necessary is the electrodes are pushed into a whole lemon – a jet of juice may enter an eye. If the electrodes are dipped into lemon juice in a test tube, the internal resistance is lower and the risk is so low that eye protection becomes unnecessary.A simple cell can be formed using two different metals (copper and zinc) embedded in an acidic electrolyte (the lemon juice). Copper coins and galvanised nails can be used. This demonstrates the simplicity of the apparatus required.However there are some pitfalls that need to be avoided. The internal resistance of the cell is high, so minimise it by having a large area of electrodes and a small separation. Since the emf is about a 1 V, you will need several cells in series to light the LED. Do not attempt to light even a small incandescent bulb, as its resistance will be far too low compared to the internal resistance of the lemon cell, and will short it out.Electronic watches and other very low power consumption devices can be powered by kits based on simple cells.

TAP 105­ 1: The human batteryApparatushigh resistance digital voltmeterzinc sheetcopper sheet.InstructionsPlace one hand on a copper sheet and the other on a zinc sheet and measure the potential difference between them. Voltages of about 0.7 V can be produced due to the electrochemical reaction between the two dissimilar metals and the moisture of the hand.Wash hands after touching the plates.External referencesThis activity is taken from Resourceful Physics http://resourcefulphysics.org/The Human Battery

5.3 Electric Cells

Page 6: 5.3 Electric Cells Internal Resistance.notebookElectric+Cells... · 5.3 Electric Cells Internal Resistance.notebook 6 March 15, 2016 Describing the discharge characteristic of a simple

5.3 Electric Cells Internal Resistance.notebook

6

March 15, 2016

Describing the discharge characteristic of a simple cell (variation of terminal potential difference with time) 

5.3 Electric Cells

Figure 1: Voltage and internal resistance of alkaline on discharge.

The voltage drops rapidly and causes the internal resistance to rise.

Figure 2: Voltage and internal resistance of Lithium on discharge.

The voltage curve is flat and the internal resistance stays low.

The terminal potential difference of a typical practical electric cell loses its initial value quickly, has a stable and constant value for most of its lifetime, followed by a rapid decrease to zero as the cell discharges completely.

Page 7: 5.3 Electric Cells Internal Resistance.notebookElectric+Cells... · 5.3 Electric Cells Internal Resistance.notebook 6 March 15, 2016 Describing the discharge characteristic of a simple

5.3 Electric Cells Internal Resistance.notebook

7

March 15, 2016

5.3 Electric CellsA secondary cell or battery is one that can be electrically recharged after use to their original pre­discharge condition, by passing current through the circuit in the opposite direction to the current during discharge. The following graphic evidences the recharging process.

Page 8: 5.3 Electric Cells Internal Resistance.notebookElectric+Cells... · 5.3 Electric Cells Internal Resistance.notebook 6 March 15, 2016 Describing the discharge characteristic of a simple

5.3 Electric Cells Internal Resistance.notebook

8

March 15, 2016

5.3 Electric CellsInternal Resistance

Terminal P.D.

EMF

internal resistance

The Emf of a cell is the total energy required to move each coulomb of charge around the complete circuit.

Page 9: 5.3 Electric Cells Internal Resistance.notebookElectric+Cells... · 5.3 Electric Cells Internal Resistance.notebook 6 March 15, 2016 Describing the discharge characteristic of a simple

5.3 Electric Cells Internal Resistance.notebook

9

March 15, 2016

5.3 Electric Cells

Measuring Emf and internal resistance

Apparatus required:Cell Two multimeters (or an ammeter and voltmeter)Rheostat (approx. 20 Ω)LeadsCircuit:

Procedure• Start with the rheostat on its maximum resistance. Record V and I. • Gradually reduce the rheostat to its lowest resistance (zero) 

measuring V and I a minimum of 7 times over the range. Don’t leave the circuit connected for long when the resistance is low (current high) because this will run the cell down quickly. 

• Plot a graph of V against I as you are taking the results. • Determine the Emf and r from the graph.

Page 10: 5.3 Electric Cells Internal Resistance.notebookElectric+Cells... · 5.3 Electric Cells Internal Resistance.notebook 6 March 15, 2016 Describing the discharge characteristic of a simple

5.3 Electric Cells Internal Resistance.notebook

10

March 15, 2016

5.3 Electric Cells

Page 11: 5.3 Electric Cells Internal Resistance.notebookElectric+Cells... · 5.3 Electric Cells Internal Resistance.notebook 6 March 15, 2016 Describing the discharge characteristic of a simple

5.3 Electric Cells Internal Resistance.notebook

11

March 15, 2016

5.3 Electric Cells

Page 12: 5.3 Electric Cells Internal Resistance.notebookElectric+Cells... · 5.3 Electric Cells Internal Resistance.notebook 6 March 15, 2016 Describing the discharge characteristic of a simple

5.3 Electric Cells Internal Resistance.notebook

12

March 15, 2016

5.3 Electric Cells

Solution

Example problem

Page 13: 5.3 Electric Cells Internal Resistance.notebookElectric+Cells... · 5.3 Electric Cells Internal Resistance.notebook 6 March 15, 2016 Describing the discharge characteristic of a simple

5.3 Electric Cells Internal Resistance.notebook

13

March 15, 2016

5.3 Electric Cells