5.1 math

35
Q1 : Prove that the function is continuous at Answer : Therefore, f is continuous at x=0 Therefore, f is continuous at x=3 Therefore, f is continuous at x=5 Q2 : Examine the continuity of the function . Answer : Thus, f is continuous at x=3 Q3 : Examine the following functions for continuity. (a) (b) Exercise 5.1 : Solutions of Questions on Page Number : 159

description

math 12 classs

Transcript of 5.1 math

  • Q1:Provethatthefunction iscontinuousat

    Answer:

    Therefore,fiscontinuousatx=0

    Therefore,fiscontinuousatx=3

    Therefore,fiscontinuousatx=5

    Q2:Examinethecontinuityofthefunction.

    Answer:

    Thus,fiscontinuousatx=3

    Q3:Examinethefollowingfunctionsforcontinuity.

    (a) (b)

    Exercise5.1:SolutionsofQuestionsonPageNumber:159

  • (c) (d)

    Answer:

    (a)Thegivenfunctionis

    Itisevidentthatfisdefinedateveryrealnumberkanditsvalueatkisk5.

    Itisalsoobservedthat,

    Hence,fiscontinuousateveryrealnumberandtherefore,itisacontinuousfunction.

    (b)Thegivenfunctionis

    Foranyrealnumberk5,weobtain

    Hence,fiscontinuousateverypointinthedomainoffandtherefore,itisacontinuousfunction.

    (c)Thegivenfunctionis

    Foranyrealnumberc5,weobtain

    Hence,fiscontinuousateverypointinthedomainoffandtherefore,itisacontinuousfunction.

    (d)Thegivenfunctionis

    Thisfunctionfisdefinedatallpointsoftherealline.

    Letcbeapointonarealline.Then,c5

    CaseI:c

  • Therefore,fiscontinuousatallrealnumberslessthan5.

    CaseII:c=5

    Then,

    Therefore,fiscontinuousatx=5

    CaseIII:c>5

    Q4:Provethatthefunction iscontinuousatx=n,wherenisapositiveinteger.

    Answer:

    Thegivenfunctionisf(x)=x

    Itisevidentthatfisdefinedatallpositiveintegers,n,anditsvalueatnisn .

    Therefore,fiscontinuousatn,wherenisapositiveinteger.

    Q5:Isthefunctionfdefinedby

    continuousatx=0?Atx=1?Atx=2?

    Answer:

    n

    n

  • Thegivenfunctionfis

    Atx=0,

    Itisevidentthatfisdefinedat0anditsvalueat0is0.

    Therefore,fiscontinuousatx=0

    Atx=1,

    fisdefinedat1anditsvalueat1is1.

    Thelefthandlimitoffatx=1is,

    Therighthandlimitoffatx=1is,

    Therefore,fisnotcontinuousatx=1

    Atx=2,

    fisdefinedat2anditsvalueat2is5.

    Therefore,fiscontinuousatx=2

    Q6:Findallpointsofdiscontinuityoff,wherefisdefinedby

    Answer:

    Thegivenfunctionfis

    Itisevidentthatthegivenfunctionfisdefinedatallthepointsoftherealline.

    Letcbeapointontherealline.Then,threecasesarise.

  • (i)c2

    (iii)c=2

    Case(i)c2

    Case(iii)c=2

    Then,thelefthandlimitoffatx=2is,

    Therighthandlimitoffatx=2is,

    Itisobservedthattheleftandrighthandlimitoffatx=2donotcoincide.

    Therefore,fisnotcontinuousatx=2

    Hence,x=2istheonlypointofdiscontinuityoff.

    Q7:Findallpointsofdiscontinuityoff,wherefisdefinedby

    Answer:

    Thegivenfunctionfis

  • Thegivenfunctionfisdefinedatallthepointsoftherealline.

    Letcbeapointontherealline.

    CaseI:

    Therefore,fiscontinuousatallpointsx,suchthatx3

  • Hence,x=3istheonlypointofdiscontinuityoff.

    Q8:Findallpointsofdiscontinuityoff,wherefisdefinedby

    Answer:

    Thegivenfunctionfis

    Itisknownthat,

    Therefore,thegivenfunctioncanberewrittenas

    Thegivenfunctionfisdefinedatallthepointsoftherealline.

    Letcbeapointontherealline.

    CaseI:

    Therefore,fiscontinuousatallpointsx

  • CaseIII:

    Therefore,fiscontinuousatallpointsx,suchthatx>0

    Hence,x=0istheonlypointofdiscontinuityoff.

    Q9:Findallpointsofdiscontinuityoff,wherefisdefinedby

    Answer:

    Thegivenfunctionfis

    Itisknownthat,

    Therefore,thegivenfunctioncanberewrittenas

    Letcbeanyrealnumber.Then,

    Also,

    Therefore,thegivenfunctionisacontinuousfunction.

    Hence,thegivenfunctionhasnopointofdiscontinuity.

    Q10:Findallpointsofdiscontinuityoff,wherefisdefinedby

  • Answer:

    Thegivenfunctionfis

    Thegivenfunctionfisdefinedatallthepointsoftherealline.

    Letcbeapointontherealline.

    CaseI:

    Therefore,fiscontinuousatallpointsx,suchthatx1

    Hence,thegivenfunctionfhasnopointofdiscontinuity.

    Q11:Findallpointsofdiscontinuityoff,wherefisdefinedby

    Answer:

  • Thegivenfunctionfis

    Thegivenfunctionfisdefinedatallthepointsoftherealline.

    Letcbeapointontherealline.

    CaseI:

    Therefore,fiscontinuousatallpointsx,suchthatx2

    Thus,thegivenfunctionfiscontinuousateverypointontherealline.

    Hence,fhasnopointofdiscontinuity.

    Q12:Findallpointsofdiscontinuityoff,wherefisdefinedby

    Answer:

    Thegivenfunctionfis

    Thegivenfunctionfisdefinedatallthepointsoftherealline.

  • Letcbeapointontherealline.

    CaseI:

    Therefore,fiscontinuousatallpointsx,suchthatx1

    Thus,fromtheaboveobservation,itcanbeconcludedthatx=1istheonlypointofdiscontinuityoff.

    Q13:Isthefunctiondefinedby

    acontinuousfunction?

    Answer:

    Thegivenfunctionis

    Thegivenfunctionfisdefinedatallthepointsoftherealline.

    Letcbeapointontherealline.

  • CaseI:

    Therefore,fiscontinuousatallpointsx,suchthatx1

    Thus,fromtheaboveobservation,itcanbeconcludedthatx=1istheonlypointofdiscontinuityoff.

    Q14:Discussthecontinuityofthefunctionf,wherefisdefinedby

    Answer:

    Thegivenfunctionis

    Thegivenfunctionisdefinedatallpointsoftheinterval[0,10].

    Letcbeapointintheinterval[0,10].

  • CaseI:

    Therefore,fiscontinuousintheinterval[0,1).

    CaseII:

    Thelefthandlimitoffatx=1is,

    Therighthandlimitoffatx=1is,

    Itisobservedthattheleftandrighthandlimitsoffatx=1donotcoincide.

    Therefore,fisnotcontinuousatx=1

    CaseIII:

    Therefore,fiscontinuousatallpointsoftheinterval(1,3).

    CaseIV:

    Thelefthandlimitoffatx=3is,

    Therighthandlimitoffatx=3is,

    Itisobservedthattheleftandrighthandlimitsoffatx=3donotcoincide.

    Therefore,fisnotcontinuousatx=3

    CaseV:

    Therefore,fiscontinuousatallpointsoftheinterval(3,10].

  • Hence,fisnotcontinuousatx=1andx=3

    Q15:Discussthecontinuityofthefunctionf,wherefisdefinedby

    Answer:

    Thegivenfunctionis

    Thegivenfunctionisdefinedatallpointsoftherealline.

    Letcbeapointontherealline.

    CaseI:

    Therefore,fiscontinuousatallpointsx,suchthatx

  • Thelefthandlimitoffatx=1is,

    Therighthandlimitoffatx=1is,

    Itisobservedthattheleftandrighthandlimitsoffatx=1donotcoincide.

    Therefore,fisnotcontinuousatx=1

    CaseV:

    Therefore,fiscontinuousatallpointsx,suchthatx>1

    Hence,fisnotcontinuousonlyatx=1

    Q16:Discussthecontinuityofthefunctionf,wherefisdefinedby

    Answer:

    Thegivenfunctionfis

    Thegivenfunctionisdefinedatallpointsoftherealline.

    Letcbeapointontherealline.

    CaseI:

    Therefore,fiscontinuousatallpointsx,suchthatx

  • Thelefthandlimitoffatx=1is,

    Therighthandlimitoffatx=1is,

    Therefore,fiscontinuousatx=1

    CaseIII:

    Therefore,fiscontinuousatallpointsoftheinterval(1,1).

    CaseIV:

    Thelefthandlimitoffatx=1is,

    Therighthandlimitoffatx=1is,

    Therefore,fiscontinuousatx=2

    CaseV:

    Therefore,fiscontinuousatallpointsx,suchthatx>1

    Thus,fromtheaboveobservations,itcanbeconcludedthatfiscontinuousatallpointsoftherealline.

    Q17:Findtherelationshipbetweenaandbsothatthefunctionfdefinedby

  • iscontinuousatx=3.

    Answer:

    Thegivenfunctionfis

    Iffiscontinuousatx=3,then

    Therefore,from(1),weobtain

    Therefore,therequiredrelationshipisgivenby,

    Q18:Forwhatvalueof isthefunctiondefinedby

    continuousatx=0?Whataboutcontinuityatx=1?

    Answer:

    Thegivenfunctionfis

    Iffiscontinuousatx=0,then

  • Therefore,thereisnovalueofforwhichfiscontinuousatx=0

    Atx=1,

    f(1)=4x+1=41+1=5

    Therefore,foranyvaluesof,fiscontinuousatx=1

    Q19:Showthatthefunctiondefinedby isdiscontinuousatallintegralpoint.

    Here denotesthegreatestintegerlessthanorequaltox.

    Answer:

    Thegivenfunctionis

    Itisevidentthatgisdefinedatallintegralpoints.

    Letnbeaninteger.

    Then,

    Thelefthandlimitoffatx=nis,

    Therighthandlimitoffatx=nis,

    Itisobservedthattheleftandrighthandlimitsoffatx=ndonotcoincide.

    Therefore,fisnotcontinuousatx=n

    Hence,gisdiscontinuousatallintegralpoints.

    Q20:Isthefunctiondefinedby continuousatx= ?

  • Answer:

    Thegivenfunctionis

    Itisevidentthatfisdefinedatx= .

    Therefore,thegivenfunctionfiscontinuousatx=

    Q21:Discussthecontinuityofthefollowingfunctions.

    (a)f(x)=sinx+cosx

    (b)f(x)=sinxcosx

    (c)f(x)=sinxxcosx

    Answer:

    Itisknownthatifgandharetwocontinuousfunctions,then

    arealsocontinuous.

    Ithastoprovedfirstthatg(x)=sinxandh(x)=cosxarecontinuousfunctions.

    Letg(x)=sinx

    Itisevidentthatg(x)=sinxisdefinedforeveryrealnumber.

    Letcbearealnumber.Putx=c+h

    Ifxc,thenh0

  • Therefore,gisacontinuousfunction.

    Leth(x)=cosx

    Itisevidentthath(x)=cosxisdefinedforeveryrealnumber.

    Letcbearealnumber.Putx=c+h

    Ifxc,thenh0

    h(c)=cosc

    Therefore,hisacontinuousfunction.

    Therefore,itcanbeconcludedthat

    (a)f(x)=g(x)+h(x)=sinx+cosxisacontinuousfunction

    (b)f(x)=g(x)h(x)=sinxcosxisacontinuousfunction

    (c)f(x)=g(x)h(x)=sinxcosxisacontinuousfunction

    Q22:Discussthecontinuityofthecosine,cosecant,secantandcotangentfunctions,

    Answer:

  • Itisknownthatifgandharetwocontinuousfunctions,then

    Ithastobeprovedfirstthatg(x)=sinxandh(x)=cosxarecontinuousfunctions.

    Letg(x)=sinx

    Itisevidentthatg(x)=sinxisdefinedforeveryrealnumber.

    Letcbearealnumber.Putx=c+h

    Ifx c,thenh 0

    Therefore,gisacontinuousfunction.

    Leth(x)=cosx

    Itisevidentthath(x)=cosxisdefinedforeveryrealnumber.

    Letcbearealnumber.Putx=c+h

    Ifxc,thenh0

    h(c)=cosc

  • Therefore,h(x)=cosxiscontinuousfunction.

    Itcanbeconcludedthat,

    Therefore,cosecantiscontinuousexceptatx=np,nZ

    Therefore,secantiscontinuousexceptat

    Therefore,cotangentiscontinuousexceptatx=np,nZ

    Q23:Findthepointsofdiscontinuityoff,where

    Answer:

    Thegivenfunctionfis

    Itisevidentthatfisdefinedatallpointsoftherealline.

  • Letcbearealnumber.

    CaseI:

    Therefore,fiscontinuousatallpointsx,suchthatx0

    CaseIII:

    Thelefthandlimitoffatx=0is,

    Therighthandlimitoffatx=0is,

    Therefore,fiscontinuousatx=0

    Fromtheaboveobservations,itcanbeconcludedthatfiscontinuousatallpointsoftherealline.

    Thus,fhasnopointofdiscontinuity.

    Q24:Determineiffdefinedby

    isacontinuousfunction?

    Answer:

    Thegivenfunctionfis

  • Itisevidentthatfisdefinedatallpointsoftherealline.

    Letcbearealnumber.

    CaseI:

    Therefore,fiscontinuousatallpointsx0

    CaseII:

    Therefore,fiscontinuousatx=0

    Fromtheaboveobservations,itcanbeconcludedthatfiscontinuousateverypointoftherealline.

    Thus,fisacontinuousfunction.

    Q25:Examinethecontinuityoff,wherefisdefinedby

  • Answer:

    Thegivenfunctionfis

    Itisevidentthatfisdefinedatallpointsoftherealline.

    Letcbearealnumber.

    CaseI:

    Therefore,fiscontinuousatallpointsx,suchthatx0

    CaseII:

    Therefore,fiscontinuousatx=0

    Fromtheaboveobservations,itcanbeconcludedthatfiscontinuousateverypointoftherealline.

    Thus,fisacontinuousfunction.

    Q26:Findthevaluesofksothatthefunctionfiscontinuousattheindicatedpoint.

    Answer:

    Thegivenfunctionfis

    Thegivenfunctionfiscontinuousat ,iffisdefinedat andifthevalueofthefat

  • equalsthelimitoffat .

    Itisevidentthatfisdefinedat and

    Therefore,therequiredvalueofkis6.

    Q27:Findthevaluesofksothatthefunctionfiscontinuousattheindicatedpoint.

    Answer:

    Thegivenfunctionis

    Thegivenfunctionfiscontinuousatx=2,iffisdefinedatx=2andifthevalueoffatx=2equalsthelimitoffatx=2

    Itisevidentthatfisdefinedatx=2and

  • Therefore,therequiredvalueof .

    Q28:Findthevaluesofksothatthefunctionfiscontinuousattheindicatedpoint.

    Answer:

    Thegivenfunctionis

    Thegivenfunctionfiscontinuousatx=p,iffisdefinedatx=pandifthevalueoffatx=pequalsthelimitoffatx=p

    Itisevidentthatfisdefinedatx=pand

    Therefore,therequiredvalueof

    Q29:Findthevaluesofksothatthefunctionfiscontinuousattheindicatedpoint.

    Answer:

  • Thegivenfunctionfis

    Thegivenfunctionfiscontinuousatx=5,iffisdefinedatx=5andifthevalueoffatx=5equalsthelimitoffatx=5

    Itisevidentthatfisdefinedatx=5and

    Therefore,therequiredvalueof

    Q30:Findthevaluesofaandbsuchthatthefunctiondefinedby

    isacontinuousfunction.

    Answer:

    Thegivenfunctionfis

    Itisevidentthatthegivenfunctionfisdefinedatallpointsoftherealline.

    Iffisacontinuousfunction,thenfiscontinuousatallrealnumbers.

    Inparticular,fiscontinuousatx=2andx=10

    Sincefiscontinuousatx=2,weobtain

  • Sincefiscontinuousatx=10,weobtain

    Onsubtractingequation(1)fromequation(2),weobtain

    8a=16

    a=2

    Byputtinga=2inequation(1),weobtain

    22+b=5

    4+b=5

    b=1

    Therefore,thevaluesofaandbforwhichfisacontinuousfunctionare2and1respectively.

    Q31:Showthatthefunctiondefinedbyf(x)=cos(x )isacontinuousfunction.

    Answer:

    Thegivenfunctionisf(x)=cos(x )

    Thisfunctionfisdefinedforeveryrealnumberandfcanbewrittenasthecompositionoftwofunctionsas,

    f=goh,whereg(x)=cosxandh(x)=x

    Ithastobefirstprovedthatg(x)=cosxandh(x)=x arecontinuousfunctions.

    Itisevidentthatgisdefinedforeveryrealnumber.

    Letcbearealnumber.

    Then,g(c)=cosc

    2

    2

    2

    2

  • Therefore,g(x)=cosxiscontinuousfunction.

    h(x)=x

    Clearly,hisdefinedforeveryrealnumber.

    Letkbearealnumber,thenh(k)=k

    Therefore,hisacontinuousfunction.

    Itisknownthatforrealvaluedfunctionsgandh,suchthat(goh)isdefinedatc,ifgiscontinuousatcandiffiscontinuousatg(c),then(fog)iscontinuousatc.

    Therefore, isacontinuousfunction.

    Q32:Showthatthefunctiondefinedby isacontinuousfunction.

    Answer:

    Thegivenfunctionis

    Thisfunctionfisdefinedforeveryrealnumberandfcanbewrittenasthecompositionoftwofunctionsas,

    f=goh,where

    Ithastobefirstprovedthat arecontinuousfunctions.

    2

    2

  • Clearly,gisdefinedforallrealnumbers.

    Letcbearealnumber.

    CaseI:

    Therefore,giscontinuousatallpointsx,suchthatx0

    CaseIII:

    Therefore,giscontinuousatx=0

    Fromtheabovethreeobservations,itcanbeconcludedthatgiscontinuousatallpoints.

    h(x)=cosx

    Itisevidentthath(x)=cosxisdefinedforeveryrealnumber.

    Letcbearealnumber.Putx=c+h

    Ifxc,thenh0

    h(c)=cosc

  • Therefore,h(x)=cosxisacontinuousfunction.

    Itisknownthatforrealvaluedfunctionsgandh,suchthat(goh)isdefinedatc,ifgiscontinuousatcandiffiscontinuousatg(c),then(fog)iscontinuousatc.

    Therefore, isacontinuousfunction.

    Q33:Examinethat isacontinuousfunction.

    Answer:

    Thisfunctionfisdefinedforeveryrealnumberandfcanbewrittenasthecompositionoftwofunctionsas,

    f=goh,where

    Ithastobeprovedfirstthat arecontinuousfunctions.

    Clearly,gisdefinedforallrealnumbers.

    Letcbearealnumber.

    CaseI:

    Therefore,giscontinuousatallpointsx,suchthatx

  • CaseII:

    Therefore,giscontinuousatallpointsx,suchthatx>0

    CaseIII:

    Therefore,giscontinuousatx=0

    Fromtheabovethreeobservations,itcanbeconcludedthatgiscontinuousatallpoints.

    h(x)=sinx

    Itisevidentthath(x)=sinxisdefinedforeveryrealnumber.

    Letcbearealnumber.Putx=c+k

    Ifxc,thenk0

    h(c)=sinc

    Therefore,hisacontinuousfunction.

    Itisknownthatforrealvaluedfunctionsgandh,suchthat(goh)isdefinedatc,ifgiscontinuousatcandiffiscontinuousatg(c),then(fog)iscontinuousatc.

    Therefore, isacontinuousfunction.

  • Q34:Findallthepointsofdiscontinuityoffdefinedby .

    Answer:

    Thegivenfunctionis

    Thetwofunctions,gandh,aredefinedas

    Then,f=gh

    Thecontinuityofgandhisexaminedfirst.

    Clearly,gisdefinedforallrealnumbers.

    Letcbearealnumber.

    CaseI:

    Therefore,giscontinuousatallpointsx,suchthatx0

    CaseIII:

    Therefore,giscontinuousatx=0

    Fromtheabovethreeobservations,itcanbeconcludedthatgiscontinuousatallpoints.

  • Clearly,hisdefinedforeveryrealnumber.

    Letcbearealnumber.

    CaseI:

    Therefore,hiscontinuousatallpointsx,suchthatx1

    CaseIII:

    Therefore,hiscontinuousatx=1

    Fromtheabovethreeobservations,itcanbeconcludedthathiscontinuousatallpointsoftherealline.