50000KL - TANK REPORT.txt

download 50000KL - TANK REPORT.txt

If you can't read please download the document

description

Tank Calculation Report

Transcript of 50000KL - TANK REPORT.txt

PG 1::> ETANK FULL REPORT - 50000KLETank2000 Full 1.9.14 (26 Oct 2010)TABLE OF CONTENTS PAGE 1ETANK SETTINGS SUMMARY PAGE 2SUMMARY OF DESIGN DATA AND REMARKS PAGE 3SUMMARY OF RESULTS PAGE 5SHELL COURSE DESIGN PAGE 6BOTTOM DESIGN PAGE 18SEISMIC MOMENT PAGE 21ANCHOR BOLT DESIGN PAGE 23CAPACITIES AND WEIGHTS PAGE 26PG 2::>ETANK SETTINGS SUMMARYTo Change These ETank Settings, Go To Tools->Options, Behavior Tab.---------------------------------------------------------------------- No 650 Appendix F Calcs when Tank P = 0 -> Default : False -> This Tank : False Show MAWP / MAWV Calcs : True Enforce API Minimum thicknesses : True Enforce API Maximum Roof thickness : True Enforce Minimum Self Supp. Cone Pitch (2 in 12) : True Force Non-Annular Btm. to Meet API-650 5.5.1 : False Set t.actual to t.required Values : False Maximum 650 App. S or App. M Multiplier is 1 : True Enforce API Maximum Nozzle Sizes : True Max. Self Supported Roof thickness : 5 in. Max. Tank Corr. Allowance : 5 in. External pressure calcs subtract C.A. per V.5 : True Use Gauge Material for min thicknesses : False Enforce API Minimum Live Load : True Enforce API Minimum Anchor Chair Design Load = Bolt Yield Load : TruePG 3::>SUMMARY OF DESIGN DATA and REMARKSJob : 50000KLDate of Calcs. : 18/02/2013 , 07:45Mfg. or Insp. Date : 22/01/2013Designer : GANDHIProject : TUBAN PERTAMINAPlant : PERTAMINAPlant Location : TUBANSite : TUBANDesign Basis : API-650 11th Edition, Addendum 2, Nov 2009----------------------------------------------------------------------- TANK NAMEPLATE INFORMATION----------------------------------------------------------------------- Operating Ratio: 0,4- Design Standard:- API-650 11th Edition, Addendum 2, Nov 2009 -- (None) -- Roof : A-36: 0,375in. -- Shell (10): A-36: 0,5in. -- Shell (9): A-36: 0,5in. -- Shell (8): A-36: 0,75in. -- Shell (7): A-36: 0,75in. -- Shell (6): A-36: 1in. -- Shell (5): A-36: 1in. -- Shell (4): A-36: 1,25in. -- Shell (3): A-36: 1,25in. -- Shell (2): A-36: 1,5in. -- Shell (1): A-36: 1,5in. -- Bottom : A-36: 1,5in. -----------------------------------------------------------------------Design Internal Pressure = N.A.Design External Pressure = N.A.MAWP = N.A.MAWV = N.A.OD of Tank = 216 ftShell Height = 60 ftS.G. of Contents = 0,9Max. Liq. Level = 60 ftDesign Temperature = 140 FTank Joint Efficiency = 0,7Basic Wind Velocity = 100 mphWind Importance Factor = 1Using Seismic Method: API-650 10th Ed. Seismic Zone = 1 Site Amplification Factor = 1,5 Importance Factor = 1,5DESIGN NOTES NOTE 1 : Tank is not subject to API-650 Appendix F.7PG 4::>DESIGNER REMARKS PERTAMINA TUBAN 50000KLPG 5::>SUMMARY OF RESULTSShell Material Summary (Bottom is 1)------------------------------------------------------------------------Shell Width Material Sd St Weight CA# (ft) (psi) (psi) (lbf) (in)------------------------------------------------------------------------10 6 A-36 23.200 24.900 83.033 0,0259 6 A-36 23.200 24.900 83.033 0,0258 6 A-36 23.200 24.900 124.537 0,0257 6 A-36 23.200 24.900 124.537 0,0256 6 A-36 23.200 24.900 166.034 0,0255 6 A-36 23.200 24.900 166.034 0,0254 6 A-36 23.200 24.900 207.522 0,0253 6 A-36 23.200 24.900 207.522 0,0252 6 A-36 23.200 24.900 249.003 0,0251 6 A-36 23.200 24.900 249.003 0,025------------------------------------------------------------------------Total Weight 1.660.25Shell API 650 Summary (Bottom is 1)----------------------------------------------------------------------Shell t.design t.test t.external t.seismic t.required t.actual# (in.) (in.) (in.) (in.) (in.) (in.)----------------------------------------------------------------------10 0,1339 0,1128 N.A. N.A. 0,375 0,59 0,2646 0,2481 N.A. N.A. 0,375 0,58 0,3954 0,3834 N.A. N.A. 0,3954 0,757 0,5261 0,5187 N.A. N.A. 0,5261 0,756 0,6568 0,6541 N.A. N.A. 0,6568 15 0,7894 0,7894 N.A. N.A. 0,7894 14 0,9247 0,9247 N.A. N.A. 0,9247 1,253 1,06 1,06 N.A. N.A. 1,06 1,252 1,1954 1,1954 N.A. N.A. 1,1954 1,51 1,3307 1,3307 N.A. N.A. 1,3307 1,5----------------------------------------------------------------------NOTE: t.external includes Corrosion Allowance, per user option.OPEN TOP TANK: NO ROOFBottom Type: Flat Bottom: Non-Annular Bottom Floor Material = A-36 t.required = 0,236 in. t.actual = 1,5 in. Bottom Joint Efficiency = 0,7 Total Weight of Bottom = 2.249.246 lbfANCHOR BOLTS: (6) 1,5in. UNC Bolts, A-193 Gr B7TOP END STIFFENER: NONE, A-36, 0 lbfBOTTOM END STIFFENER: L1x1x1/8, , 0 lbfPG 6::>SHELL COURSE DESIGN (Bottom Course is #1)VDP Criteria (per API-650 5.6.4.1) L = (6*D*(t-ca))^0,5 = (6*216*(1,5-0,025))^0,5 = 43,7218 H = Max Liquid Level =60 ft L / H H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 60 + 2.31*0/0,9 = 60ft t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2,6*216*(60 - 1)*0,9/(23.200*1) + 0,025 = 1,3104 in. hMax_1 = E*Sd*(t_1 - CA_1)/(2,6*OD*G) + 1 = 1*23.200*(1,5 - 0,025) / (2,6 * 216 * 0,9) + 1 = 68,7034 ft. Pmax_1 = (hMax_1 - H) * 0,433 * G = (68,7034 - 60) * 0,433 * 0,9 = 3,3917 PSI Pmax_int_shell = Pmax_1 Pmax_int_shell = 3,3917 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 60 + 2.31*0/1 = 60ft t.test = 2,6*216*(60 - 1)/(24.900*1) = 1,3307 in.Course # 2 Material: A-36; Width = 6 ft. Corrosion Allow. = 0,025 in. Joint Efficiency = 1PG 7::> API-650 ONE FOOT METHOD Sd = 23.200 PSI (allowable design stress per API-650 Table 5-2b) St = 24.900 PSI (allowable test stress) DESIGN CONDITION G = 0,9 (per API-650) < Design Condition G = 0,9 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 54 + 2.31*0/0,9 = 54ft t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2,6*216*(54 - 1)*0,9/(23.200*1) + 0,025 = 1,1797 in. hMax_2 = E*Sd*(t_2 - CA_2)/(2,6*OD*G) + 1 = 1*23.200*(1,5 - 0,025) / (2,6 * 216 * 0,9) + 1 = 68,7034 ft. Pmax_2 = (hMax_2 - H) * 0,433 * G = (68,7034 - 54) * 0,433 * 0,9 = 5,7299 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_2) = Min(3,3917, 5,7299) Pmax_int_shell = 3,3917 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 54 + 2.31*0/1 = 54ft t.test = 2,6*216*(54 - 1)/(24.900*1) = 1,1954 in.Course # 3 Material: A-36; Width = 6 ft. Corrosion Allow. = 0,025 in. Joint Efficiency = 1 API-650 ONE FOOT METHOD Sd = 23.200 PSI (allowable design stress per API-650 Table 5-2b) St = 24.900 PSI (allowable test stress) DESIGN CONDITION G = 0,9 (per API-650) < Design Condition G = 0,9 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 48 + 2.31*0/0,9 = 48ftPG 8::> t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2,6*216*(48 - 1)*0,9/(23.200*1) + 0,025 = 1,049 in. hMax_3 = E*Sd*(t_3 - CA_3)/(2,6*OD*G) + 1 = 1*23.200*(1,25 - 0,025) / (2,6 * 216 * 0,9) + 1 = 57,2282 ft. Pmax_3 = (hMax_3 - H) * 0,433 * G = (57,2282 - 48) * 0,433 * 0,9 = 3,5962 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_3) = Min(3,3917, 3,5962) Pmax_int_shell = 3,3917 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 48 + 2.31*0/1 = 48ft t.test = 2,6*216*(48 - 1)/(24.900*1) = 1,06 in.Course # 4 Material: A-36; Width = 6 ft. Corrosion Allow. = 0,025 in. Joint Efficiency = 1 API-650 ONE FOOT METHOD Sd = 23.200 PSI (allowable design stress per API-650 Table 5-2b) St = 24.900 PSI (allowable test stress) DESIGN CONDITION G = 0,9 (per API-650) < Design Condition G = 0,9 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 42 + 2.31*0/0,9 = 42ft t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2,6*216*(42 - 1)*0,9/(23.200*1) + 0,025 = 0,9182 in. hMax_4 = E*Sd*(t_4 - CA_4)/(2,6*OD*G) + 1 = 1*23.200*(1,25 - 0,025) / (2,6 * 216 * 0,9) + 1 = 57,2282 ft. Pmax_4 = (hMax_4 - H) * 0,433 * G = (57,2282 - 42) * 0,433 * 0,9 = 5,9344 PSIPG 9::> Pmax_int_shell = Min(Pmax_int_shell, Pmax_4) = Min(3,3917, 5,9344) Pmax_int_shell = 3,3917 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 42 + 2.31*0/1 = 42ft t.test = 2,6*216*(42 - 1)/(24.900*1) = 0,9247 in.Course # 5 Material: A-36; Width = 6 ft. Corrosion Allow. = 0,025 in. Joint Efficiency = 1 API-650 ONE FOOT METHOD Sd = 23.200 PSI (allowable design stress per API-650 Table 5-2b) St = 24.900 PSI (allowable test stress) DESIGN CONDITION G = 0,9 (per API-650) < Design Condition G = 0,9 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 36 + 2.31*0/0,9 = 36ft t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2,6*216*(36 - 1)*0,9/(23.200*1) + 0,025 = 0,7875 in. hMax_5 = E*Sd*(t_5 - CA_5)/(2,6*OD*G) + 1 = 1*23.200*(1 - 0,025) / (2,6 * 216 * 0,9) + 1 = 45,7531 ft. Pmax_5 = (hMax_5 - H) * 0,433 * G = (45,7531 - 36) * 0,433 * 0,9 = 3,8008 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_5) = Min(3,3917, 3,8008) Pmax_int_shell = 3,3917 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 36 + 2.31*0/1 = 36ftPG 10::> t.test = 2,6*216*(36 - 1)/(24.900*1) = 0,7894 in.Course # 6 Material: A-36; Width = 6 ft. Corrosion Allow. = 0,025 in. Joint Efficiency = 1 API-650 ONE FOOT METHOD Sd = 23.200 PSI (allowable design stress per API-650 Table 5-2b) St = 24.900 PSI (allowable test stress) DESIGN CONDITION G = 0,9 (per API-650) < Design Condition G = 0,9 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 30 + 2.31*0/0,9 = 30ft t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2,6*216*(30 - 1)*0,9/(23.200*1) + 0,025 = 0,6568 in. hMax_6 = E*Sd*(t_6 - CA_6)/(2,6*OD*G) + 1 = 1*23.200*(1 - 0,025) / (2,6 * 216 * 0,9) + 1 = 45,7531 ft. Pmax_6 = (hMax_6 - H) * 0,433 * G = (45,7531 - 30) * 0,433 * 0,9 = 6,139 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_6) = Min(3,3917, 6,139) Pmax_int_shell = 3,3917 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 30 + 2.31*0/1 = 30ft t.test = 2,6*216*(30 - 1)/(24.900*1) = 0,6541 in.Course # 7 Material: A-36; Width = 6 ft. Corrosion Allow. = 0,025 in. Joint Efficiency = 1 API-650 ONE FOOT METHOD Sd = 23.200 PSI (allowable design stress per API-650 Table 5-2b) St = 24.900 PSI (allowable test stress)PG 11::> DESIGN CONDITION G = 0,9 (per API-650) < Design Condition G = 0,9 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 24 + 2.31*0/0,9 = 24ft t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2,6*216*(24 - 1)*0,9/(23.200*1) + 0,025 = 0,5261 in. hMax_7 = E*Sd*(t_7 - CA_7)/(2,6*OD*G) + 1 = 1*23.200*(0,75 - 0,025) / (2,6 * 216 * 0,9) + 1 = 34,2779 ft. Pmax_7 = (hMax_7 - H) * 0,433 * G = (34,2779 - 24) * 0,433 * 0,9 = 4,0053 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_7) = Min(3,3917, 4,0053) Pmax_int_shell = 3,3917 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 24 + 2.31*0/1 = 24ft t.test = 2,6*216*(24 - 1)/(24.900*1) = 0,5187 in.Course # 8 Material: A-36; Width = 6 ft. Corrosion Allow. = 0,025 in. Joint Efficiency = 1 API-650 ONE FOOT METHOD Sd = 23.200 PSI (allowable design stress per API-650 Table 5-2b) St = 24.900 PSI (allowable test stress) DESIGN CONDITION G = 0,9 (per API-650) < Design Condition G = 0,9 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 18 + 2.31*0/0,9 = 18ft t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2,6*216*(18 - 1)*0,9/(23.200*1) + 0,025 = 0,3954 in.PG 12::> hMax_8 = E*Sd*(t_8 - CA_8)/(2,6*OD*G) + 1 = 1*23.200*(0,75 - 0,025) / (2,6 * 216 * 0,9) + 1 = 34,2779 ft. Pmax_8 = (hMax_8 - H) * 0,433 * G = (34,2779 - 18) * 0,433 * 0,9 = 6,3435 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_8) = Min(3,3917, 6,3435) Pmax_int_shell = 3,3917 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 18 + 2.31*0/1 = 18ft t.test = 2,6*216*(18 - 1)/(24.900*1) = 0,3834 in.Course # 9 Material: A-36; Width = 6 ft. Corrosion Allow. = 0,025 in. Joint Efficiency = 1 API-650 ONE FOOT METHOD Sd = 23.200 PSI (allowable design stress per API-650 Table 5-2b) St = 24.900 PSI (allowable test stress) DESIGN CONDITION G = 0,9 (per API-650) < Design Condition G = 0,9 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 12 + 2.31*0/0,9 = 12ft t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2,6*216*(12 - 1)*0,9/(23.200*1) + 0,025 = 0,2646 in. hMax_9 = E*Sd*(t_9 - CA_9)/(2,6*OD*G) + 1 = 1*23.200*(0,5 - 0,025) / (2,6 * 216 * 0,9) + 1 = 22,8028 ft. Pmax_9 = (hMax_9 - H) * 0,433 * G = (22,8028 - 12) * 0,433 * 0,9 = 4,2098 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_9) = Min(3,3917, 4,2098) Pmax_int_shell = 3,3917 PSIPG 13::> HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 12 + 2.31*0/1 = 12ft t.test = 2,6*216*(12 - 1)/(24.900*1) = 0,2481 in.Course # 10 Material: A-36; Width = 6 ft. Corrosion Allow. = 0,025 in. Joint Efficiency = 1 API-650 ONE FOOT METHOD Sd = 23.200 PSI (allowable design stress per API-650 Table 5-2b) St = 24.900 PSI (allowable test stress) DESIGN CONDITION G = 0,9 (per API-650) < Design Condition G = 0,9 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 6 + 2.31*0/0,9 = 6ft t-Calc = 2,6*OD*(H' - 1)*G/(Sd*E) + CA (per API-650 5.6.3.2) = 2,6*216*(6 - 1)*0,9/(23.200*1) + 0,025 = 0,1339 in. hMax_10 = E*Sd*(t_10 - CA_10)/(2,6*OD*G) + 1 = 1*23.200*(0,5 - 0,025) / (2,6 * 216 * 0,9) + 1 = 22,8028 ft. Pmax_10 = (hMax_10 - H) * 0,433 * G = (22,8028 - 6) * 0,433 * 0,9 = 6,548 PSI Pmax_int_shell = Min(Pmax_int_shell, Pmax_10) = Min(3,3917, 6,548) Pmax_int_shell = 3,3917 PSI HYDROSTATIC TEST CONDITION < Design Condition G = 1 > H' = Effective liquid head at design pressure = H + 2,31*P(psi)/G = 6 + 2.31*0/1 = 6ft t.test = 2,6*216*(6 - 1)/(24.900*1) = 0,1128 in. Wtr = Transposed Width of each Shell Course = Width*[ (t-ca)_top / (t-ca)_course ]^2,5PG 14::> Transforming Courses (1) to (10) Wtr(1) = 6*[ 0,475/1,475 ]^2.5 = 0,3531 ft Wtr(2) = 6*[ 0,475/1,475 ]^2.5 = 0,3531 ft Wtr(3) = 6*[ 0,475/1,225 ]^2.5 = 0,5618 ft Wtr(4) = 6*[ 0,475/1,225 ]^2.5 = 0,5618 ft Wtr(5) = 6*[ 0,475/0,975 ]^2.5 = 0,994 ft Wtr(6) = 6*[ 0,475/0,975 ]^2.5 = 0,994 ft Wtr(7) = 6*[ 0,475/0,725 ]^2.5 = 2,0847 ft Wtr(8) = 6*[ 0,475/0,725 ]^2.5 = 2,0847 ft Wtr(9) = 6*[ 0,475/0,475 ]^2.5 = 6 ft Wtr(10) = 6*[ 0,475/0,475 ]^2.5 = 6 ft Hts (Height of the Transformed Shell) = SUM{Wtr} = 19,9872 ft INTERMEDIATE WIND GIRDERS (API 650 Section 5.9.7) V (Wind Speed) = 100 mph Ve = vf = Velocity Factor = (vs/120)^2 = (100/120)^2 = 0,6944 Design PV = 0 PSI, OR 0 In. H2O For Open Top Tank, Z = Required Top Comp Ring Section Modulus = (Zm)(Ve)(h)(OD^2) = (0,0001)(0,6944)(60)(216^2) = 194,4 in^3 SHELL COURSE #1 SUMMARY------------------------------------------- t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(1,3307, 0, 0) = 1,3307 in. t-650min = 0,375 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 1,3307 in. t.actual = 1,5 in. Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*216)-1,5]*12*6*1,5 = 249.003 lbf (New) = 244.855 lbf (Corroded) SHELL COURSE #2 SUMMARY------------------------------------------- t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(1,1954, 0, 0) = 1,1954 in. t-650min = 0,375 in. (per API-650 Section 5.6.1.1, NOTE 4)PG 15::> t.required = MAX(t.design, t.test, t.min650) = 1,1954 in. t.actual = 1,5 in. Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*216)-1,5]*12*6*1,5 = 249.003 lbf (New) = 244.855 lbf (Corroded) SHELL COURSE #3 SUMMARY------------------------------------------- t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(1,06, 0, 0) = 1,06 in. t-650min = 0,375 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 1,06 in. t.actual = 1,25 in. Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*216)-1,25]*12*6*1,25 = 207.522 lbf (New) = 203.374 lbf (Corroded) SHELL COURSE #4 SUMMARY------------------------------------------- t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,9247, 0, 0) = 0,9247 in. t-650min = 0,375 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0,9247 in. t.actual = 1,25 in. Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*216)-1,25]*12*6*1,25 = 207.522 lbf (New) = 203.374 lbf (Corroded) SHELL COURSE #5 SUMMARY------------------------------------------- t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,7894, 0, 0) = 0,7894 in. t-650min = 0,375 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0,7894 in. t.actual = 1 in.PG 16::> Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*216)-1]*12*6*1 = 166.034 lbf (New) = 161.884 lbf (Corroded) SHELL COURSE #6 SUMMARY------------------------------------------- t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,6568, 0, 0) = 0,6568 in. t-650min = 0,375 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0,6568 in. t.actual = 1 in. Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*216)-1]*12*6*1 = 166.034 lbf (New) = 161.884 lbf (Corroded) SHELL COURSE #7 SUMMARY------------------------------------------- t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,5261, 0, 0) = 0,5261 in. t-650min = 0,375 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0,5261 in. t.actual = 0,75 in. Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*216)-0,75]*12*6*0,75 = 124.537 lbf (New) = 120.387 lbf (Corroded) SHELL COURSE #8 SUMMARY------------------------------------------- t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,3954, 0, 0) = 0,3954 in. t-650min = 0,375 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0,3954 in. t.actual = 0,75 in.PG 17::> Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*216)-0,75]*12*6*0,75 = 124.537 lbf (New) = 120.387 lbf (Corroded) SHELL COURSE #9 SUMMARY------------------------------------------- t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,2646, 0, 0) = 0,2646 in. t-650min = 0,375 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0,375 in. t.actual = 0,5 in. Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*216)-0,5]*12*6*0,5 = 83.033 lbf (New) = 78.882 lbf (Corroded) SHELL COURSE #10 SUMMARY------------------------------------------- t-Calc = MAX(t-Calc_650, t_min_ext, t.seismic) = MAX(0,1339, 0, 0) = 0,1339 in. t-650min = 0,375 in. (per API-650 Section 5.6.1.1, NOTE 4) t.required = MAX(t.design, t.test, t.min650) = 0,375 in. t.actual = 0,5 in. Weight = Density*PI*[(12*OD) - t]*12*Width*t = 0,2833*PI*[(12*216)-0,5]*12*6*0,5 = 83.033 lbf (New) = 78.882 lbf (Corroded)PG 18::>FLAT BOTTOM: NON-ANNULAR PLATE DESIGN Bottom Plate Material : A-36 Annular Bottom Plate Material : A-36 Bottom_Area = PI/4*(Bottom_OD)^2 = PI/4*(2.596)^2 = 5.292.966 in^2 Weight = Density * t.actual * Bottom_Area = 0,2833 * 1,5 * 5.292.966 = 2.249.246 lbf (New) = 2.249.246 lbf (Corroded)< API-650 > Calculation of Hydrostatic Test Stress & Product Design Stress (per API-650 Section 5.5.1) t_1 : Bottom (1st) Shell Course thickness. H'= Max. Liq. Level + P(psi)/(0,433) = 60 + (0)/(0,433) = 60 ft St = Hydrostatic Test Stress in Bottom (1st) Shell Course = (2,6)(OD)(H' - 1)/t_1 = (2,6)(216)(60 - 1)/(1,5) = 22.090 PSI. (Within 24900 PSI limit for Non-Annular Bottom) Sd = Product Design Stress in Bottom (1st) Shell Course = (2,6)(OD)(H' - 1)(G)/(t_1 - ca_1) = (2,6)(216)(60 - 1)(0,9)/(1,475) = 20.218 PSI. (Within 23200 PSI limit for Non-Annular Bottom) -------------------------- t_min = 0,236 + CA = 0,236 + 0 = 0,236 in. (per Section 5.4.1) t-Calc = t_min = 0,236 in. t-Actual = 1,5 in.< FLAT BOTTOM: NON-ANNULAR SUMMARY > Bottom Plate Material : A-36 t.required = 0,236 in. t.actual = 1,5 in.PG 19::>NET UPLIFT DUE TO INTERNAL PRESSURE (See roof report for calculations) Net_Uplift = -1.618.764 lbf Anchorage NOT required for internal pressure.WIND MOMENT (Per API-650 SECTION 5.11) vs = Wind Velocity = 100 mph vf = Velocity Factor = (vs/120)^2 = (100/120)^2 = 0,6944 Wind_Uplift = Iw * 30 * vf = 1 * 30 * 0,6944 = 20,8333 lbf/ft^2 API-650 5.2.1.k Uplift Check P_F41 = WCtoPSI(0,962*Fy*A*TAN(Theta)/D^2 + 8*t_h) P_F41 = WCtoPSI(0,962*36.000*0*0/216^2 + 8*0,375) = 0,1083 PSI Limit Wind_Uplift/144+P to 1.6*P_F41 Wind_Uplift/144 + P = 0,1447 PSI 1.6*P_F41 = 0,1733 PSI Wind_Uplift/144 + P = MIN(Wind_Uplift/144 + P, 1.6*P_F41) Wind_Uplift/144 = MIN(Wind_Uplift/144, 1.6*P_F41 - P) Wind_Uplift = MIN(Wind_Uplift, (1.6*P_F41 - P) * 144) = MIN(20,8333,24,9523) = 20,8333 lbf/ft^2 Horizontal Projected Area of Roof (Per API-650 5.2.1.f) Xs (Moment Arm of Wind Force on Shell) = H/2 = (60)/2 = 30 ft As (Projected Area of Shell) = H*(OD + t_ins / 6) = (60)(216 + 0/6) = 12.960 ft^2 M_shell (Moment Due to Wind Force on Shell) = (Iw)(vf)(18)(As)(Xs) = (1)(0,6944)(18)(12.960)(30) = 4.860.000 ft-lbf Mw (Wind moment) = M_shell = 4.860.000 ft-lbf W = Net weight (PER API-650 5.11.3) = W_shell = 1.618.764 lbfRESISTANCE TO OVERTURNING (per API-650 5.11.2) An unanchored Tank must meet these two criteria: 1) 0,6*Mw + MPi < MDL/1,5 2) Mw + 0,4MPi < (MDL + MF)/2 Mw = Destabilizing Wind Moment = 4.860.000 ft-lbfPG 20::> MPi = Destabilizing Moment about the Shell-to-Bottom Joint from Design Pressure. = P*(PI*OD^2/4)*(144)*(OD/2) = 0*(3,1416*216^2/4)*(144)*(108) = 0 ft-lbf MDL = Stabilizing Moment about the Shell-to-Bottom Joint from the Shell and Roof weight supported by the Shell. = (W_shell + W_roof)*OD/2 = (1.618.764 + 0)*108 = 174.826.512 ft-lbf tb = Bottom Plate thickness less C.A. = 1,5 in. wl = Circumferential loading of contents along Shell-To-Bottom Joint. = 4,67*tb*SQRT(Sy_btm*H_liq) = 4,67*1,5*SQRT(36.000*60) = 10.295 lbf/ft MF = Stabilizing Moment due to Bottom Plate and Liquid Weight. = (OD/2)*wl*PI*OD = (108)(10.295)(3,1416)(216) = 754.505.808 ft-lbf Criteria 1 0,6*(4.860.000) + 0 < 174.826.512/1,5 Since 2.916.000 < 116.551.000, Tank is stable. Criteria 2 4.860.000 + 0,4 * 0 < (174.826.512 + 754.505.808)/2 Since 4.860.000 < 464.666.200, Tank is stable.RESISTANCE TO SLIDING (per API-650 5.11.4) F_wind = vF * 18 * As = 0,6944 * 18 * 12.960 = 162.000 lbf F_friction = Maximum of 40% of Weight of Tank = 0,4 * (W_Roof_Corroded + W_Shell_Corroded + W_Btm_Corroded + W_min_Liquid) = 0,4 * (0 + 1.618.764 + 2.249.246 + 0) = 1.547.204 lbf No anchorage needed to resist sliding since F_friction > F_windAnchorage NOT required since Criteria 1, Criteria 2, and SlidingARE acceptable.PG 21::>SEISMIC MOMENT (API-650 APPENDIX E & API-620 APPENDIX L) Ms (Seismic Moment) Ms = Z*I*(C1*Ws*Xs + C1*Wr*Ht + C1*W1*X1 + C2*W2*X2) Z = 0,075 Zone coefficient for zone 1 (from Table E-2) I = 1,5 Importance Factor S = 1,5 Site amplification factor (from Table E-3) C1 = 0,6 = Lateral earthquake force coefficient k = 0,6634 (factor for D/H = 3,6 from figure E-4) T = Natural Period of First Sloshing Mode = k*SQRT(OD) = 0,6634*SQRT(216) = 9,75 C2 = Lateral Earthquake Force Coefficient = 3,375(S)/T^2 = 3,375(1,5)/(9,75)^2 = 0,0533 From Figures E-2 & E-3 X1_H = X1/H chart factor X2_H = X2/H chart factor W1_Wt = W1/Wt chart factor W2_Wt = W2/Wt chart factor Wt = Weight of tank contents @ Max. Liquid Level X1 = (X1_H)*H = (0,375)*60 = 22,5 X2 = (X2_H)*H = (0,543)*60 = 32,5785 W1 = (W1_Wt)*Wt = (0,3153)*123.224.314 = 38.853.219 W2 = (W2_Wt)*Wt = (0,6224)*123.224.314 = 76.693.161 Ws = W_shell + W_Insulation (New Condition) = 1.660.258 + 0 = 1.660.258 Wr = W_roof + Snow Load + W_Insulation (New Condition) = 0 + 0 + 0 = 0 C1*Ws*Xs = 0,6*(1.660.258)(30) = 29.884.645 C1*Wr*Ht = 0,6*(0)(60) = 0 C1*W1*X1 = 0,6*(38.853.219)(22,5) = 524.518.472 C2*W2*X2 = (0,0533)(76.693.161)(32,5785) = 133.047.621 Ms = Z*I*(C1*Ws*Xs + C1*Wr*Ht + C1*W1*X1 + C2*W2*X2) = (0,075)(1,5)(29.884.645 + 0 + 524.518.472 + 133.047.621) = 77.338.211 ft-lbf W_shell = Weight of Shell (New Condition) W_roof2 = Weight of Roof Plates Supported By Shell (New) wt = (W_shell + W_roof2)/(PI*OD) (New Condition) = (1.660.258 + 0)/(PI*216) = 2447, lbf/ft RESISTANCE TO OVERTURNING (per Section E.4.1, E.4.2, assuming no anchors) wl = 7,9*(tb1)*SQRT(Sy*G*H) = 7,9*(1,475)*SQRT(36.000*0,9*60) = 16.522 lbf/ft where tb1 = t - CA = 1,475 in. (for 1st Shell Course)PG 22::> 1,25*G*H*OD = 1.25(0,9)(60)(216) = 14.580 lbf/ft since wl > 1,25*G*H*OD, wl = 1.25G*H*OD wl = 14.580 lbf/ft UNANCHORED TANKS (Section E.5.1) Ms/[OD^2(wt+wl)] = 77.338.211/[(216^2)(2447, + 14.580)] = 0,0974 b = wt + 1,273(Ms)/OD^2 = max longitudinal compressive force = 2447, + 1,273(77.338.211)/(216)^2 = 4.557 lbf/ft MAXIMUM ALLOWABLE SHELL COMPRESSION (Section E.5.3) b/(12t) = Max Longitudinal Compressive Stress = 4.557/(12*(1,5 - 0,025)) = 257 PSI G*H*OD^2/t^2 = (0,9)(60)(216^2)/(1,5 - 0,025)^2 = 1.158.023 Fa = 10^6*t/OD = (10^6)(1,5 - 0,025)/216 = 6.829 PSI t = 1,5 - 0,025 = 1,475 in. (OK since b/(12t)