CrystEngComm · 5 Table S3. The CuII center of geometry analysis for 1-3 by SHAPE 2.1 software...

11
1 Electronic supplementary information (ESI) Two-dimensional heterometallic Cu II Ln III (Ln = Tb and Dy) coordination polymers bridged by the dicyanamides showing slow magnetic relaxation behavior Jiao-Jiao Kong, Jia-Chen Zhang, Yu-Xuan Jiang, Jin-Xia Tao, Wen-Yan Wang and Xing-Cai Huang* School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China. E-mail: [email protected] CrystEngComm Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2019

Transcript of CrystEngComm · 5 Table S3. The CuII center of geometry analysis for 1-3 by SHAPE 2.1 software...

Page 1: CrystEngComm · 5 Table S3. The CuII center of geometry analysis for 1-3 by SHAPE 2.1 software Structure[ML5] PP-5 vOC-5 TBPY-5 SPY-5 JTBPY- 5 1 31.184 1.422 4.748 0.902 7.734 2 30.912

1

Electronic supplementary information (ESI)

Two-dimensional heterometallic CuIILnIII (Ln = Tb and Dy)

coordination polymers bridged by the dicyanamides showing

slow magnetic relaxation behavior Jiao-Jiao Kong, Jia-Chen Zhang, Yu-Xuan Jiang, Jin-Xia Tao, Wen-Yan Wang and

Xing-Cai Huang*

School of Chemistry and Environmental Engineering, Yancheng Teachers University,

Yancheng, 224007, China.

E-mail: [email protected]

CrystEngComm

Electronic Supplementary Material (ESI) for CrystEngComm.This journal is © The Royal Society of Chemistry 2019

Page 2: CrystEngComm · 5 Table S3. The CuII center of geometry analysis for 1-3 by SHAPE 2.1 software Structure[ML5] PP-5 vOC-5 TBPY-5 SPY-5 JTBPY- 5 1 31.184 1.422 4.748 0.902 7.734 2 30.912

2

Table of ContentsTable S1. The reported 3d-4f compounds bridged by dca .........................................................3

Table S2. Selected bond lengths (Å) and bond angles (o) for compounds 1–3..........................3

Table S3. The CuII center of geometry analysis for 1-3 by SHAPE 2.1 software .....................5

Table S4. The LnIII center of geometry analysis for 1-3 by SHAPE 2.1 software.....................5

Figure S1. X-ray powder diffraction pattern of compound 1 as prepared at room temperature (black line) and the simulated powder pattern from the single crystal data (red line). ..............6

Figure S2. X-ray powder diffraction pattern of compound 2 as prepared at room temperature (black line) and the simulated powder pattern from the single crystal data (red line). ..............6

Figure S3. X-ray powder diffraction pattern of compound 3 as prepared at room temperature (black line) and the simulated powder pattern from the single crystal data (red line). ..............7

Figure S4. Field dependence of the magnetization data at 1.8 K for compounds 1-3. ..............7

Figure S5. Temperature dependence of the in-phase (χ’) and out-of-phase (χ″) ac susceptibilities for 3 under zero dc field.....................................................................................8

Figure S6. Temperature dependence of the in-phase (χ’) and out-of-phase (χ″) ac susceptibilities for 2 under a 1000 Oe dc field. ..........................................................................9

Figure S7. Temperature dependence of the in-phase (χ’) and out-of-phase (χ″) ac susceptibilities for 3 under a 1000 Oe dc field. ........................................................................10

Table S5. Relaxation Fitting Parameters from the Least-Square Fitting of the Cole-Cole plots of 2 under zero dc field according to the Generalized Debye Model .......................................11

Table S6. Relaxation Fitting Parameters from the Least-Square Fitting of the Cole-Cole plots of 2 under 1000 Oe dc field according to the Generalized Debye Model ................................11

Page 3: CrystEngComm · 5 Table S3. The CuII center of geometry analysis for 1-3 by SHAPE 2.1 software Structure[ML5] PP-5 vOC-5 TBPY-5 SPY-5 JTBPY- 5 1 31.184 1.422 4.748 0.902 7.734 2 30.912

3

Table S1. The reported 3d-4f compounds bridged by dcaCompound Dimensi

onalityBridging mode SMM Ref.

{[(valepn)CuGd(NO3)(dca)2](CH3)2CO}n 1D µ-1,5 no 26[(Cu(daap))2Gd(NO3)2(dca)]n 1D μ-1,3 no 27[{((valpn)CuII)2PrIII}(C2O4)0.5(dca)]n 2D µ-1,5 no 28[Co(L)(dca)2Ln(NO3)2]2·4MeOH(Ln = Gd, Tb, Dy, Ho, Er)

0D µ-1,5 Yes (Dy) 29

[CuII(valdmpn)LnIII(µ-1,5-dca)3]n (LnIII=Gd ,Tb and Dy )

2D µ-1,5 Yes, loop(1.8K,Tb)

This work

valpen = 1,3-bis((3-ethoxysalicylidene)amino) propane; daap = 2,6-di(acetoacetyl)pyridine;valpn = 1,3-propanediylbis(2-iminomethylene-6-methoxyphenol), L= N,N’,N’’-trimethyl-N,N’’-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylene triamine; valdmpn = N,N′-bis-(3-methoxysalicylidene)-1,3-diamino-2,2-dimethylpropane

Table S2. Selected bond lengths (Å) and bond angles (o) for compounds 1–3

1 2 3Cu1-O1 1.955(4) 1.958(2) 1.958(3)Cu1-O2 1.945(4) 1.9590(19) 1.952(3)Cu1-N1 1.972(5) 1.981(3) 1.976(4)Cu1-N2 1.965(5) 1.982(2) 1.971(3)Cu1-N3 2.345(6) 2.354(3) 2.350(4)Ln1-O1 2.334(4) 2.334(2) 2.313(3)Ln1-O2 2.344(4) 2.3433(19) 2.313(3)Ln1-O3 2.739(4) 2.751(2) 2.750(3)Ln1-O4 2.581(4) 2.598(2) 2.582(3)Ln1-N4 2.498(5) 2.516(3) 2.490(4)Ln1-N5 2.468(6) 2.474(3) 2.445(4)Ln1-N7 2.476(6) 2.479(3) 2.455(4)Ln1-N8 2.461(5) 2.472(3) 2.448(4)Ln1-N10 2.481(5) 2.463(3) 2.451(4)Ln1···Cu1 3.432(3) 3.4262(4) 3.4003(6)O2-Cu1-O1 81.19(15) 81.55(8) 81.21(11)O2-Cu1-N2 90.64(17) 90.32(9) 90.58(13)O1-Cu1-N2 171.09(16) 171.18(9) 170.95(13)O2-Cu1-N1 164.65(18) 164.95(10) 165.20(14)O1-Cu1-N1 91.25(18) 91.21(10) 91.43(14)N2-Cu1-N1 95.8(2) 95.90(11) 95.69(15)O2-Cu1-N3 98.69(18) 98.85(10) 98.60(14)O1-Cu1-N3 88.43(18) 87.94(10) 88.41(13)N2-Cu1-N3 96.4(2) 96.73(11) 96.63(15)

Page 4: CrystEngComm · 5 Table S3. The CuII center of geometry analysis for 1-3 by SHAPE 2.1 software Structure[ML5] PP-5 vOC-5 TBPY-5 SPY-5 JTBPY- 5 1 31.184 1.422 4.748 0.902 7.734 2 30.912

4

N1-Cu1-N3 94.4(2) 94.03(11) 93.98(15)O1-Gd1-O2 65.71(13) 66.30(7) 66.76(9)O1-Gd1-N8O2-Gd1-N8

81.68(15)76.10(16)

81.66(9)76.18(9)

81.39(12)76.12(12)

O1-Gd1-N5 141.24(16) 141.20(10) 141.56(12)O2-Gd1-N5 100.83(17) 100.28(10) 100.53(13)N8-Gd1-N5 132.39(18) 132.43(11) 132.66(14)O1-Gd1-N7 89.76(16) 89.40(10) 89.11(13)O2-Gd1-N7 142.09(16) 142.17(9) 142.55(12)N8-Gd1-N7 130.82(19) 130.71(11) 130.19(14)N5-Gd1-N7 80.0(2) 80.35(12) 80.43(15)O1-Gd1-N10 137.34(16) 136.93(9) 136.49(12)O2-Gd1-N10 140.55(15) 140.43(9) 140.31(11)N8-Gd1-N10 77.41(18) 77.34(11) 77.39(14)N5-Gd1-N10 76.68(19) 77.07(11) 76.91(14)N7-Gd1-N10 76.99(18) 77.03(11) 76.80(14)O1-Gd1-N4 71.06(15) 71.47(9) 71.43(11)O2-Gd1-N4 71.94(15) 71.80(9) 71.83(12)N8-Gd1-N4 144.30(18) 144.34(11) 144.07(14)N5-Gd1-N4 70.20(19) 69.73(11) 70.14(14)N7-Gd1-N4 72.90(17) 73.15(10) 73.50(13)N10-Gd1-N4 138.24(17) 138.25(11) 138.50(14)O1-Gd1-O4 124.62(12) 125.11(7) 125.61(9)O2-Gd1-O4 63.05(13) 63.02(7) 63.19(9)N8-Gd1-O4 67.19(16) 67.35(9) 67.49(12)N5-Gd1-O4 69.41(17) 69.12(10) 69.20(12)N7-Gd1-O4 145.14(17) 145.04(10) 144.95(13)N10-Gd1-O4 79.93(15) 79.83(9) 79.55(11)N4-Gd1-O4 110.15(15) 109.81(9) 110.21(11)O1-Gd1-O3 60.83(12) 60.80(7) 60.80(9)O2-Gd1-O3 117.02(13) 117.55(8) 117.76(10)N8-Gd1-O3 65.84(17) 65.88(9) 65.46(13)N5-Gd1-O3 141.90(18) 141.93(11) 141.53(13)N7-Gd1-O3 67.78(17) 67.51(10) 67.29(13)N10-Gd1-O3 76.69(15) 76.30(9) 75.84(12)N4-Gd1-O3 116.13(16) 116.64(9) 116.84(12)O4-Gd1-O3 130.86(13) 130.90(8) 130.39(11)

Page 5: CrystEngComm · 5 Table S3. The CuII center of geometry analysis for 1-3 by SHAPE 2.1 software Structure[ML5] PP-5 vOC-5 TBPY-5 SPY-5 JTBPY- 5 1 31.184 1.422 4.748 0.902 7.734 2 30.912

5

Table S3. The CuII center of geometry analysis for 1-3 by SHAPE 2.1 softwareStructure[ML5] PP-5 vOC-5 TBPY-5 SPY-5 JTBPY-

51 31.184 1.422 4.748 0.902 7.7342 30.912 1.411 4.794 0.924 7.7733 30.979 1.391 4.881 0.894 7.855

PP-5 1 D5h Pentagon vOC-5 2 C4v Vacant octahedron TBPY-5 3 D3h Trigonal bipyramidSPY-5 4 C4v Spherical square pyramid JTBPY-5 5 D3h Johnson trigonal bipyramid J12

Table S4. The LnIII center of geometry analysis for 1-3 by SHAPE 2.1 softwareStructure[ML9] 1 2 3EP-9 36.550 36.352 36.296OPY-9 23.352 23.315 23.241HBPY-9 16.597 16.688 16.823JTC-9 16.442 16.327 16.229JCCU-9 8.931 8.854 8.869CCU-9 8.216 8.201 8.275JCSAPR-9 1.718 1.654 1.582CSAPR-9 1.205 1.186 1.165JTCTPR-9 2.650 2.533 2.441TCTPR-9 1.828 1.829 1.795JTDIC-9 13.138 13.214 13.261HH-9 11.206 11.203 11.276MFF-9 0.619 0.630 0.649

EP-9 1 D9h EnneagonOPY-9 2 C8v Octagonal pyramidHBPY-9 3 D7h Heptagonal bipyramidJTC-9 4 C3v Johnson triangular cupola J3JCCU-9 5 C4v Capped cube J8CCU-9 6 C4v Spherical-relaxed capped cubeJCSAPR-9 7 C4v Capped square antiprism J10CSAPR-9 8 C4v Spherical capped square antiprismJTCTPR-9 9 D3h Tricapped trigonal prism J51TCTPR-9 10 D3h Spherical tricapped trigonal prismJTDIC-9 11 C3v Tridiminished icosahedron J63HH-9 12 C2v Hula-hoopMFF-9 13 Cs Muffin

Page 6: CrystEngComm · 5 Table S3. The CuII center of geometry analysis for 1-3 by SHAPE 2.1 software Structure[ML5] PP-5 vOC-5 TBPY-5 SPY-5 JTBPY- 5 1 31.184 1.422 4.748 0.902 7.734 2 30.912

6

Figure S1. X-ray powder diffraction pattern of compound 1 as prepared at room temperature (black line) and the simulated powder pattern from the single crystal data (red line).

Figure S2. X-ray powder diffraction pattern of compound 2 as prepared at room temperature (black line) and the simulated powder pattern from the single crystal data (red line).

Page 7: CrystEngComm · 5 Table S3. The CuII center of geometry analysis for 1-3 by SHAPE 2.1 software Structure[ML5] PP-5 vOC-5 TBPY-5 SPY-5 JTBPY- 5 1 31.184 1.422 4.748 0.902 7.734 2 30.912

7

Figure S3. X-ray powder diffraction pattern of compound 3 as prepared at room temperature (black line) and the simulated powder pattern from the single crystal data (red line).

Figure S4. Field dependence of the magnetization data at 1.8 K for compounds 1-3.

Page 8: CrystEngComm · 5 Table S3. The CuII center of geometry analysis for 1-3 by SHAPE 2.1 software Structure[ML5] PP-5 vOC-5 TBPY-5 SPY-5 JTBPY- 5 1 31.184 1.422 4.748 0.902 7.734 2 30.912

8

Figure S5. Temperature dependence of the in-phase (χ’) and out-of-phase (χ″) ac susceptibilities for 3 under zero dc field.

Page 9: CrystEngComm · 5 Table S3. The CuII center of geometry analysis for 1-3 by SHAPE 2.1 software Structure[ML5] PP-5 vOC-5 TBPY-5 SPY-5 JTBPY- 5 1 31.184 1.422 4.748 0.902 7.734 2 30.912

9

Figure S6. Temperature dependence of the in-phase (χ’) and out-of-phase (χ″) ac susceptibilities for 2 under a 1000 Oe dc field.

Page 10: CrystEngComm · 5 Table S3. The CuII center of geometry analysis for 1-3 by SHAPE 2.1 software Structure[ML5] PP-5 vOC-5 TBPY-5 SPY-5 JTBPY- 5 1 31.184 1.422 4.748 0.902 7.734 2 30.912

10

Figure S7. Temperature dependence of the in-phase (χ’) and out-of-phase (χ″) ac susceptibilities for 3 under a 1000 Oe dc field.

Page 11: CrystEngComm · 5 Table S3. The CuII center of geometry analysis for 1-3 by SHAPE 2.1 software Structure[ML5] PP-5 vOC-5 TBPY-5 SPY-5 JTBPY- 5 1 31.184 1.422 4.748 0.902 7.734 2 30.912

11

Table S5. Relaxation Fitting Parameters from the Least-Square Fitting of the Cole-Cole plots of 2 under zero dc field according to the Generalized Debye Model

Temperature / K χS / cm3mol−1K χT / cm3mol−1K τ / s α1.82.02.53.03.53.63.84.04.24.5

0.949730.866710.745020.71030.687190.599040.52710.402450.024260.02572

6.706436.066134.929164.141723.560173.463873.286113.125362.981112.78386

2.849E-42.8653E-42.91902E-42.87443E-42.42005E-42.14353E-41.80065E-41.5E-41E-48E-5

0.253540.253590.245850.214050.144330.148250.126760.130.140270.11

5.0 0.02425 2.51002 5E-5 0.051

Table S6. Relaxation Fitting Parameters from the Least-Square Fitting of the Cole-Cole plots of 2 under 1000 Oe dc field according to the Generalized Debye Model

Temperature / K χS / cm3mol−1K χT / cm3mol−1K τ / s α2.53.03.54.04.5

0.530670.421540.326420.26950.17747

5.485713.970863.415223.027992.72922

0.002052.63067E-41.60132E-45.97166E-54.77964E-5

0.310230.154640.102380.074540.0754