5 ERI ES L TBRUI

70

Transcript of 5 ERI ES L TBRUI

Page 1: 5 ERI ES L TBRUI
Page 2: 5 ERI ES L TBRUI

 

Page 3: 5 ERI ES L TBRUI

5 ERI ESL TBRUI<S IVERSITET

DESCRIPTIONOF ElVE U

Waidemar JohanssonEva~lou GustafssonMary Mc Afee

ICAl PROPERTIESS IlS

Institutionen for markvetenskapAvdelningen for lantbrukets hydroteknik

Swedish University of Agricultural SciencesDepartment of Soil SiencesDivision of Agricultural Hydrotechnics

Rapport 148Report

Uppsaia 1985ISSN 0348-1816

ISBN 91-576-2390-2

Tryck: Sveriges lantbruksuniversitet, Uppsala 1986

Page 4: 5 ERI ES L TBRUI
Page 5: 5 ERI ES L TBRUI

PREFACE

This report presents physical characteristics of soils which have been the basis

for two research projects. One project investigated the waterholding properties

of drought-sensitive soils, the other investigated the effects of mulching on

soil physical conditions and on moisture supply, root development and yield of

cereals. Soil physical investigations formed a distinct section of these projects

and are thus presented in a separate report. This allows comparison between the

profiles described and with other profiles investigated and described previously.

Investigations were carried out in the soil physics laboratory at the Division

of Hydrotechnics, using methods in routine use there. Many of the staff of the

Division have assisted in field samrl ing, laboratory investigations and prepa­

ration of results. I wish to mention in particular Eva-Lou Gustafsson, Karin

S5dergren, Sven-Erik Karlsson, Tore Lindstr5m and Christina ~hman. Jan Lindstr5m

took the photographs of profiles which are included in the report.

In compiling this report, I have had the assistance of Eva-Lou Gustafsson and

Mary McAfee who prepared results and material for publ ication. M. McAfee also

prepared most of the text.

This work was financed by the Swedish Council for Forestry and Agricultural

Research and by the Experimental Division of Hydrotechnics at the Swedish

University of Agricultural Sciences.

Uppsala oktober 1985

Waldemar Johansson

3

Page 6: 5 ERI ES L TBRUI

FoRORD

I denna rapport redovisas resultat fran markfysikal isk karakteristik av

jordar, vilka ingatt som studieobjekt i tva forsknlngsprojekt. Det ena av

dessa projekt g~11er torkk~nsl i~a jordars vattenhushallande egenskaper,

det andra inverkan av markt~ckning pa fysikal iska f6rhallanden i marken

och pa stras~ds rotutveckl ing, vattenf6rs6rjning och avkastning. Den mark­

fysikal iska karakteristiken har utgjort en avgr~nsad del av respektive pro­

jekt oeh redovisas d~rf6r oeksa separat. H~rigenom underl~ttas j~mf6relser

mellan de 01 ika profilerna och med andra markprofiler, som varit f6remal

f6r 1iknande unders6kningar.

Unders6kningarna har genomf6rts yid Avdelningen f6r hydrotekniks markfysi­

kal iska laboratorium med de metoder som idag rutinm~ssigt anv~ndes d~r.

Manga personer yid avdelningen har medverkat yid provtagningen i f~lt, un-

ders6kningar laboratoriet och bearbetning av prim~rmaterial. H~r viII

jag s~rskilt n~mna assistent Eva-Lou Gustafsson, agronom Karin S6dergren,

f6rs6kstekniker Sven-Erik Karlsson, institutionsteknlker Tore Llndstr6m

oeh laboratorieassistent Christina ohman. Ingenj6r Jan Lindstr6m har ta­

git samtl iga profilfoton.

Rapporten har utformats i samrad med Eva-Lou Gustafsson och M.Se. Mary

MeAfee, vilka har svarat f6r slutbearbetningen av resultaten. M MeA fee

har skrivit huvuddelen av rapporten.

Arbetet har bekostats av Skogs- oeh jordbrukets forskningsrad samt av f6r­

s6ksavdelningen f6r hydroteknik yid Sveriges lantbruksuniversitet.

Uppsala i oktober 1985

Waldemar Johansson

4

Page 7: 5 ERI ES L TBRUI

CONTENTS

INTRODUCTION

METHODS

Site description and sampl ing

Determination of physical characteristics

DESCRIPTION OF PROFILES

Ultuna 1, 1979 Heavy clay

Ultuna 2, 1983 Heavy medium clay

Wadsbro 1, 1979 Si 1ty 1ight medium clay

Wadsbro 2, 1982 S11 ty 1ight med i um clay

Albo 1, 1979 Si 1ty 1igh t clay

Albo 2, 1984 Si 1ty 1ight clay

Igelsta 1979 Heavy clay

Ku ra 1979 Heavy gyttj a c"' ay

Limsta 1982 Heavy clay

Ugerup 1981 51 ightly clayey sand

Sveden 1982 Silty 1ight clay

Varmlands Saby 1983 Sandy medium clay

REFERENCES

REPORTS ON SOIL PHYSICAL STUDIES

page

7

7

8

11

14

19

22

27

30

35

41

44

49

52

57

63

63

5

Page 8: 5 ERI ES L TBRUI
Page 9: 5 ERI ES L TBRUI

INTRODUCTION

This report describes the physical properties of twelve cultivated soils,

sites pf current field investigations on the water holding capacity of mine­

ral soils susceptible to drought and on the effects of mulching being carried

out by the Division of Agricultural Hydrotechnics. Profiles are analysed and

described using procedures developed at the Division and in routine use here.

They are described in order of sampl ing year and county, with the 1ightest

soil first within counties. Profiles from the same property sampled in diffe­

rent years are, however, placed together in this report.

During the last 30 years, many Swedish soil profiles have been investigated

and described in a series of reports which also detail methods of investiga­

tion and presentation. Methods are described by Andersson (1955, 1962), An­

dersson & Wiklert (1970, 1972) and Johansson (1964). Other reports with results

from soil physical investigations are listed after the references.

Since all previous reports have been in Swedish and only a few have an Engl ish

summary, methods will be described briefly In the first part of this report.

Diagrams and tables illustrate the characteristics of profiles so completely

that written descriptions have been reduced to a minimum.

METHODS

Site desc r i pt ion and samp1 ing

Location of each sampl ing site is referred to property, urban district and

county and details of site coordinates (system 2.5 gon V 1938) on the relevant

topographical map are included. Details of site topography and geology are

summarized according to FAO Guidel ines for Soi 1 Description (undated). Infor­

mation on cl imate (nearest meteorological station) includes length of the grow­

ing season between +5°C and +50 C and the mean temperature and rainfall during

this period (mean values 1931-60).

Extent of sampl ing is described for sampl ing using 10 cm high cyl inders with

72 mm diameter. Four repl icates are taken from each level of the profile down

to 100 cm depth. In addition, metal cases are used to extract a full vertical

profile and several horizontal sections of the soil. Cylinder samples (undistur­

bed) are used in subsequent laboratory determinations of physical properties of

the soil, while sections are used for the photographs included in this report.

7

Page 10: 5 ERI ES L TBRUI

Determination of physical characteristics

Mechanical analysis is carried out using methods of sieving and pipetting to

separate the fractions according to size classes shown in the table below.

The Swedish system of textural classification was first proposed by Ekstrom

(1927) .

Group

blockstone

11

gravel11

sand11

fine sand11 11

si 1t11

clay11

Sub-g roup Particle diameter (mm)

> 2001arge 200 - 60sma 11 60 - 20coarse 20 - 6fine 6 - 2coarse 2 - 0.6med ium 0.6 - 0.2

0.2 - 0.06very fine 0.06 - 0.02coarse 0.02 - 0.006fine 0.006 - 0.002coa rse 0.002 - 0.0002fine < 0.0002

Abbreviation

c. sandm. sandf. sandvf. sandc. si 1tL si 1tc. clayf. c'l ay

Furthermore, soils are classified according to their clay content thus:

< 5 % clay by weightclayless - sI ightly clayey

clayey soils

1 ight clay soi 1s

medium clay soils

heavy clay soils

very heavy clay soils

5-15 %

15,.. 25 %

25-40 %

40-60 %

) 60 %

11

11

11

11

11

The class medium clay can be divided into two subclasses, I ight medium clay

and heavy medium clay. A high content of sand or silt in alight or medium

clay can be indicated by the adjectives Isandyl amd Isiltyl respectively.

Note that these Swedish descriptions are used throughout this report since

they are more specific than the classifications obtained from the standard

textural triangle.

Results of mechanical analysis are presented in a standard diagram in which

the horizontal axis represents 0 to 100 % by weight and the vertical axis re­

presents 0-100 cm depth in the profile. Both axes have a I inear scale. Mecha­

nical composition of soil samples from each 10 cm level of the profile is

entered on the diagram at the midpoint of each depth interval (5, 15, 25 ...

cm below the surface). The proportion (%by weight) of each of the textural

8

Page 11: 5 ERI ES L TBRUI

fractions is entered in order of increasing particle size (clay, silt, fine

sand etc.) with percentage loss on ignition bringing the total to 100 %. The

loss on ignition value corresponds to the humus content of the sample when

water of crystallization is corrected for by a factor. Ignition is carried out

in a furnace at 550 0C for 2 hours.

The following determinations are carried out on undisturbed samples from every

10 cm so ill eve 1:

Moisture content at rious soil mois sions. Known tensions are appl ied

using methods described by Andersson & Wiklert (1972). Successively greater

tensions are appl ied and the volume of water retained by a soil sample at each

tension step is determined by weighing. Tensions are always referred to in

metres of water column (mwc). Results are presented in tables (see Table 1),

as soil moisture retention curves - also called soil moisture characteristic

curves or soil moisture characteristics (see Fig. 2) - and as water tension

(wt - curves (see Fig. 3). The relationships between moisture content and water

retention are used to construct drainage equilg~riL!!:!:"Jwdr-) curves (Johansson.

1964), see Fig. 4.

The soil moisture characteristic curve is constructed on a separate diagram

and shows curves for 'levels of special interest in the profile. In such dia­

grams, the 1inear scale hori'zontal axis shows moisture content (volume %) and

the logarithmic scale vertical axis shows tension (mwc) , pF and equivalent

pore diameter (mm).

Water tension curves show the relationship between appl ied tensions and water

content in a soil profile. They are presented in standard diagrams where the

horizontal axis shows volume from 0 to 100 %and the vertical axis shows depth

below the soil surface from 0 to 100 cm. The diagram thus represents 100 %

volume of a 1 m deep soil section which can be divided to show volume of pores

and volume of sol ids.

Each tension curve shows the volume percentage of water (= mm water per 10 cm

level) remaining in the pores of successive soil levels at the particular ten­

sion. It also shows the volume of air which enters the pores and provides an

indirect picture of pore size distribution in the different layers of the pro­

f i 1e.

In the diagrams, moisture content at biologically determined wilting point is

also indicated (w -curve). The method used to determine wilting point is de­w

9

Page 12: 5 ERI ES L TBRUI

scribed by Wiklert (1964). A nylon net is placed on top of the undisturbed soil

sample and about 50 mm of rich topsoil appl ied above this. Sunflower and wheat

seeds are then germinated and grown on the samples. Water is suppl ied until the

seedl ings are establ ished, then the soil sample is allowed to dry out. At a

point when the seedl ings wilt permanently, and do not regain their turgor after

16 hours in a moist environment, the added topsoil is removed and the moisture

content of the soil sample is determined.

Values of moisture content at a tension of 150 mwc are presented in tables for

three silty 1ight clay soils and a heavy gyttja clay.

Drainage equil ibrium curves are constructed on a separate volume - depth dia­

gram. These curves show the moisture content of the profile at matric tension

equivalent to a certain drainage or watertable depth. Thus, if the watertable

1ies 1.0 m below the soil surface, the mean tension in the first 10 cm level

(0-10 cm) will be 0.95 mwc, in the 10-20 cm level it will be 0.85 mwc etc. In

the 90-100 cm level, tension will be 0.05 mwc. The values for wdr-curves are

interpolated from moisture characteristics or wt-curves, In the following dia­

grams, wdr-curves for 0.5, 1.0 and 3.0 m drainage (watertable) depth have been

calculated for each profile.

Saturated hydraul ic conductivity is determined on the 10 cm cyl inder samples

in a constant head apparatus described by Andersson (1955) and later modified

in some respects. Results (means from measurements 1 hour and 24 hours after

start) expressed in cm/hour are included in the ,table of physical characteris­

tics for each profile. These tables also include values of material ity (= volume

% of solids), porosity (= volume % of pores), moisture content at sampling (vo­

lume %), dry bulk density (g/cm3) and density of sol ids (g/cm3).

Moisture content at sampl ing is determined by weighing fresh samples, drying

the samples at 1050C (after all other determinations have been carried out)

and reweighing. Loss in weight = mass of water in sample.

Dry bulk density = mass of dry matter/total volume of sample. This is calcu­

lated after drying of samples since sampl ing cyl inders have a known volume.

Density of sol ids = mass of dry matter/volume of sol ids. A 5 g sample of dry

soil is poured into a measuring flask and the volume of this dry soil is ob­

tained by measuring the volume of ethyl alcohol (96 %) which must be added to

bring the total volume of contents to 50 cm3 .

Results of dry bulk density ( a) and density of sol ids ( a) allow calcula-t s

t10n of volume % of solid,s (= 100 at /as ) and porosity (= 100 - 100 at /as )'

10

Page 13: 5 ERI ES L TBRUI

DESCRIPTION OF PROFILES

Ultuna 1, 1979

Ultuna, Uppsala lan. Topographical map 111 Uppsala NV. Coordinates 66336/16041.

Sampl ing date: 16/11/1979.

Sampl ing site is located to the south of the Department of Ecology and Environ­

mental Research, on a plain sloping down to the Fyris river in the east. The

geological foundation is granite, covered by glacial and postglacial clay.

Cl imate (Ultuna recording station): 190 day growing season with mean monthly

temperature = 11 .1 oC and mean total rainfall = 340 mm.

Cyl inder samples (4 repl icates) were taken from each 10 cm level down to 100 cm.

Soil profile description. Soil texture is shown by Fig. 1. The topsoil (0-30 cm)

consists of a heavy clay (50 %by weight), the subsoil of a heavy clay with an

even greater clay content (58 % by weight). The profile has, on average, 17 %

fine silt and 11 %coarse silt throughout. The topsoil, which shows signs of

compaction, has large, blocky aggregates. Aggregate form changes with depth,

becoming more granular and fragmented. In the lower part of the profile, aggre­

gates become more columnar. There are some large pores in all levels and a

large number of roots throughout the profile. Saturated hydraul ic conductivity

is quite high in all levels of the profile, especially in the 40-80 cm level.

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100Depth (cm)

Porosity decreases somewhat with depth from 50 % in the topsoil to 45 % in the

subsoil. Wilting occurs at around 25 % moisture and remains fairly constant

for all levels. Available water storage capacity between full saturation of the

pore space and wilting point is 468-269 = 199 mm. When the watertable lies 1.0 m

below the surface, the following amounts of water can be retained by this soil:

Total(mm)

Moisture(vol.%)

44.9 45.1 39.9 37.2 36.6 36.0 38.3 37.4 39.1 43.1 397.6

Plant available water at this drainage depth is 398·- 269 = 129 mm, a reserve

which should be adequate to supply the crop during normal dry periods in the

growing season.

11

Page 14: 5 ERI ES L TBRUI

12

Tab le I. Summa ry of the ma in physical characteristics of the prof i le U1tuna 1, 1979

Depth So lids Pores ~loi sture content, vc Jume % Dry bulk Density Saturated(cm) (vol %) (vol %)

tension, ~'J i It i ngdensity of hydraul ic

m\<JC (g/cm3) 50 lid} conductivity0.05 0.5 1.0 2.0 4.0 6.0 point (g/cm ) (cm/hou r)

0-10 51.0 49.0 47.9 45.5 44.8 43.8 41.3 40.4 28.0 I. 35 2.64 18

10-20 47.8 52.2 49.4 45.8 1,4.8 43.9 41.9 40.3 26.5 1.28 2.67 22

20- 30 51.4 48.6 45.6 40.3 39.4 38.5 36.6 35.6 26.9 I. 40 2.72 16

30-40 53.2 46.8 43.5 37.5 36.4 35.5 34.0 33.3 26.8 I. 46 2.75 26

40-50 52.7 47.3 43.3 36.7 35.7 34.9 33.5 33.1 26.1 1.46 2.76 78

50-60 52.5 47.5 41.2 35.3 34.5 33.9 32.8 32.3 25.2 1. 1'5 2.76 99

60-70 54.9 45.1 41.7 36.6 35.8 35. I 34.1 33.6 27.3 I. 50 2.74 40

70-80 56.2 43.8 39.4 34.9 32.6 31.3 29.8 29.3 23.6 1. 55 2.75 123

80-90 57.5 42.5 39.9 36.3 35.6 34.9 34.1 33.5 27.9 1. 58 2.74 20

90-100 55. I 44.9 43. I 1'0.2 39.6 39.0 38.1 37.7 30.7 I. 52 2.76 41

Tota I 532 ..~ 1,67.7 435.0 389.1 379.2 370.8 356.2 31'9.1 269.0(mm)

Page 15: 5 ERI ES L TBRUI

pF

0,4

5.2

5.0

4.6

4.6

4.4

'"4.0

3.6

3.6

3.4

3.2

3.0

2.6

2.6

2.4

2.2

2.0

\.6

\.6

1.4

1.2

\.0

0.6

0.6

...6.6

6.4

6.2

6.0

\

'I- t-l1 31

i-H-+"P-\A+1,+"'lH-+---- .--1-

-- I-

" Cl _.1= t3';;-';;; ::U-, ~ ~] ..~:; - 5,8u 4_ ~ r.: u.- ~ 5,6

1"- 0-10 fill 15 9 I 1 10( 5.4

f'.- 0- ,," - +- 1~~'~:I~1 1811 4 10) IO[I '-I' IOU'" () 1) 11 9 1 110) lOO

1-1--­1--'1-

1-.I-

'" i-i- +-

II-+-+-+-il-,-+-,+-l-- '-:-H::t~~I3:~,~ll~-:r--t-:11:i=r-:l-

d,

~~1I,)0,03 1000

0,04 7000,06 5000,00 .(000,10 300

0,15 2000,20 150

0,30 100

0,43 70

g:~ Z21.0 30

1,5 20

3.0 104.3 76.0 ,7.5 4

10 3

IS 2

30 \

" 0.7It! 0.'75 0.4

100 0.3

lSO 0.2

300 0.1430 0,07

WO 0,05750 0,04

1000 0,03

1500 0,02

I I'02

10

15

20

25

30

35

40

is 45

~50

i'! 55

60

65

70

75

BO

B5

90

95

100 rnoi sture content, vol

Fig. 1. Mechanical composition and losson ignition. U1tuna 1, 1979.

Fig. 2. Soil moisture retentioncurves. U1tuna 1, 1979.

VOLUVE, Z VOLlj'.',t.:" %

10

15

20

25

30

35

40

is45

~50

'" 55

60

65

70

75

80

B5

90

95

100

Fig. 3.tension

I

Volume relations and watercurves. U1tuna 1, 1979.

96 100

10

15

20

25

30

35

40

ti 45

i 50

~ 55

60

65

70

75

BO

B5

90

95

100

Fig. 4. Drainage equi1 ibriumcurves. U1tuna 1, 1979.

13

Page 16: 5 ERI ES L TBRUI

Ul tuna 2, 1983

Ultuna, Uppsala lan. Topographical map 11 I Uppsala NV, coordinates 66340/16034.

Sampl ing date: 20/9/1983.

Sampl ing site is located in the north-east corner of a field bordered to the

east by Dag Hammarskjold road and to the south by the road to Vipangen. The

site I ies on the western edge of a plain bordered by the Fyris river in the

east and by a rock fault in the west, The geological foundation is granite,

covered by glacial and postglacial clay,

Cl imate (Ultuna recording station): 190 day growing season with mean monthly

temperature:::: 11,1 0 C and mean total rainfall:::: 340 mm.

Cyl inder samples (4 repl icates) were taken from each 10 cm level down to

100 cm. A full vertical profile was extracted and horizontal sections were

taken at 15, 35, 55 and 80 cm below the surface (Plate 1).

Soil profile description. Soil texture is shown by Fig, 5, The topsoil consists

of a heavy medium clay, the subsoil of a heavy clay, Proportions of clay, silt

and fine sand in the topsoil are 39, 28 and 24 % respectively. These values

remain fairly constant throughout the profile.

Structure of this soil is well developed and shows a characteristic change

with depth. Aggregates in the topsoil are large and rather blocky, while in

the subsoil they are granular, becoming columnar deeper in the profile.

Porosity is on average 45 % and remains fairly constant in all levels. Wilting

occurs at an average of 27 % moisture for 0-100 cm. The moisture content at

wilting for individual 10 cm layers increases with depth from 25 % (0-10 cm)

to 33 % (90-100 cm). Available water storage capacity between full saturation

of the pore space and wilting points is 450-275 :::: 175 mm down to 1 m depth.

When the watertable 1 ies 1,0 m below the surface, the following amount of

water can be stored in the profile:

Depth (cm) 0-10 10-20 20-30 30-40 lfO-50 50-60 60-70 70-80 80-90 90-100

Moisture 38,138.3 37.2 37.7 37.8 38,1 37.9 39.1 41,9 43.8(vol.%)

Total(mm)

389.9

Plant available water at this drainage depth is 390-275 :::: 115 mm. This should

be sufficient to supply the crop during normal dry periods in the growing

season.

14

Page 17: 5 ERI ES L TBRUI

Tab Ie 2. Summa ry of the ma i n phys Ica I characteristics of the prafl le UI tuna 2, 1983

Depth So I Ids Pores Hoisture content, volume % Dry bu Ik Dens i ty(ern) (vol %) (val %)

tension, hri 1t i ng at density ofm\'JCpoi nt sampl ing (1/CCl')

0.05 0.5 1.0 2.0 6.D

0-10 53.0 I, 7.0 41'.0 39.7 37.9 36.7 33.5 24.8 35.6 1.1'2 2.68

ID-20 55.9 411. 1 41.7 39.1 37.9 37.0 31.. 3 26.6 35.7 1. 50 2.68

20-30 57.8 42.2 1'0.3 37.4 37.0 35.8 33.7 25.6 34.9 1. 53 2.65

30-40 58.1 41.9 40. I 37.9 37.3 36.4 34.6 26.8 35.8 1. 58 2.72

40-50 54.8 1'5.2 41.5 37.9 36.8 36. I 33.9 26.4 36.6 1. 51 2.75

50-60 53.2 46.8 42.2 37.6 36.5 35.8 33.5 26.6 36.8 1. 47 2.76

60-70 55.0 1'5.0 40.6 36.6 35.7 35.0 32.9 26.5 36.2 1. 52 2.76

70-80 54.5 45.5 1,0.9 36.9 36.3 35. 1, 33.4 28.0 36.5 1. 50 2.76

80-90 53.9 46. I 42.5 39.9 39.3 38.6 36.8 30.1 39. 1, 1. 119 2.76

90-100 54.0 46.0 43.8 42. I 41.6 40.9 39.2 33.5 41.5 1.48 2.75

Tota I 550.2 449.8 417.6 385. I 376.3 367.7 345.8 271'.9 309.0(rnm)

15

Page 18: 5 ERI ES L TBRUI

100 000

5,a

l,a

5,6

1,0

1,4

1,6

5,4

5,2

5,0

4,8

4,6

f~'----

t-

1-, +-+-+1 --j-j--+-1 - ::~

4,0

l,8

3,6

3,4

3,2

3,0

2,a

2,6

2,4

2,2

2,0

1 -,--

,

Fig. 6. Soil moisture retentioncurves. Ultuna 2, 1983.

10

75,

3,0

4,)

6,07,5

10

15

d.0,001

~)0,03 1000

0,04 7000,06 5000,08 1;000,10 300

0,15 2000,20 is.(}

0,30 100

0,43 700,60 500,75 1;01,0 30

1,5 20

10000

ht

nMC

lO

436075

100

150

300430

600750

1000

1500

V/EIGHT, j;

_~_~ J .... __' 'I

Fig. 5. Mechanical composition andloss on ignition. Ultuna 2, 1983.

10

15

20

25

30

35

40

6 45

~50

1'5 55

60

65

70

75

80

85

90

95

100

10

15

20

25

30

35

40

6 45

~50

1'5 55

60

65

70

75

80

85

90

95

100

Fig. 7. Volume relations and watertension curves. Ultuna 2, 1983.

10

15 11 -

20

35

40

45

Fig. 8. Drainage equil ibriumcurves. Ultuna 2, 1983.

16

Page 19: 5 ERI ES L TBRUI

Plate L Vertical profi'le 0-100 crn and horizontal sections at 15,35,55 and80 crn depth, Ultuna 2, 19830

17

Page 20: 5 ERI ES L TBRUI
Page 21: 5 ERI ES L TBRUI

Wadsbro 1, 1212

Wadsbro, Malmkoping, Sodermanlands lan. Topographical map 10H Strangnas SV, co­

ordinates 65609/15567.

Sampl ing date: 5/10/1979.

Sampl ing site is located on a convex slope in terrain with moraine outcrops sur­

rounded by arable land. The geological foundation is gneiss, overlain by glacial

and postglacial clay.

Cl imate (Eskilstuna recording station): 190 day growing season with mean monthly

temperature = 10.20 C and mean total rainfall = 360 mm.

Cyl inder samples (4 repl icates) were taken from each 10 cm level down to 100 cm.

Soil profile description. Soil texture is shown by Fig. 9. The topsoil consists of

a medium clay with a high silt content. Average proportions of clay, fine silt,

coarse silt, very fine sand and fine sand in the topsoil are 26, 14, 20 and 11 %

respectively. The subsoil consists of a heavy clay (40-80 cm) and a medium clay

(80-100 cm). Fine silt content decreases with depth to 3 % while fine sand con­

tent increases to 32 %.

The 0-20 cm layer has 6 % loss on ignition and has an open structure, with many

wormholes and large pores. The presence of layered or varved clay and silt below

50 cm impedes root development but does not inhibit it completely. The relative­

ly high silt fraction and correspondingly low clay content mean that the struc­

ture is dense and has no permanent system of cracks.

Porosity is rather low below the 0-10 cm level and decreases further with depth.

It is greatest (57 %) in the 0-10 cm level and least (39 %) in the 80-90 cm level.

Wilting occurs at a moisture content of between 15 % (0-10 cm) and 33 % (60-80 cm).

Available water storage capacity of the soil between full saturation of the pore

space and wilting point is 441-245 = 196 mm down to 1 m depth. At a watertable

depth of 1.0 m, the profile can retain the following amounts of water in itslayers:

Depth (cm)

Moisture(vol.%)

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

34.0 40.9 36.0 34.0 38.5 39.8 42.2 42.1 40.0 39.4

Total(mm)

386.9

Plant available water at this drainage depth is 387-245 = 142 mm. However, crop

rooting depth is usually restricted to the upper 50 cm of this profile which has

a plant available moisture content of 183-100 = 83 mm at 1.0 m drainage depth.

This amount of moisture will supply a growing crop for 15-20 days.

Permeabil ity is high down to 80 cm depth but very low below this. 19

Page 22: 5 ERI ES L TBRUI

20

Tab le 3. Summary of the main physical characteristics of the profl le \~adsbro I, 1979

Oepth So lids Pores O"y bulk Dens i ty Sa tu ra ted(cm) (vol%) (vol%) dens i ty of hydraul ic

(9/cI113 ) i v i ty

0-10 113.0 57.0 50.7 35.6 33.8 32.9 31.9 31.2 14.8 22. 1, 1 .12 2.61 19

10-20 53.8 1,6.2 1,4.4 41.9 110.5 39.1 37.6 36.7 15.5 35.3 1. 1,1 2.62 10

20-30 56.3 'n.7 1·'0.6 36.6 35. 1, 34.1 33.0 32.3 18.1 31 .7 1. 1'9 2.65 18

30-40 58.5 41.5 38.6 34.2 33.5 32.9 32.5 31.0 20.3 30.4 1. 57 2.69 29

40-50 56.4 43.6 1,1 .2 38.5 38. I 37.2 36.9 35. 1, 31 .1, 33.6 1 .511 2.73 20

50-60 57. I 1,2.9 1+2.2 39.5 38.8 38.0 37.2 36.5 27.4 34.5 1. 54 2.70 21

60-70 56.6 43. 1, "3.4 41.6 41.0 1,0.4 39.7 39.1 33.0 36.6 1 .51, 2.72 11

70-80 56.9 43.1 42.5 41.5 40.7 ,,0.3 39.6 39. I 32.5 37.7 1. 55 2.72 22

80-90 60.5 39.5 40.2 39.4 38.9 38.5 37.9 37.4 30.8 36.3 1.63 2.69 0.01

90 .. 100 59. 1, 40.6 39.4 38. I 31l, 6 31.6 27.9 26.5 21 .5 29.9 1. 60 2.69 0.01

Tota I 558.5 4111.5 1,23.2 386.9 375.3 365.0 354.2 345.2 21,5.3 328. 1)(111111)

Page 23: 5 ERI ES L TBRUI

0,0

0,6

0,1,

3.1

3.0

2,0

2,6

2,4

2,2

2,0

',B

1,6

1,4

1,2

1.0

pF7,0

6,8

6,6

6,'

·6,2

_1

,-', ,1\1,,-,\'-+-1-+ +--j

rnoi5tllre content, val

0,1 ~~~~l~~~~}j~tBi~fFH~~!n~ll0,07

0,05 --'-0,040,03

0,02 >---- ;------i- ~-----

I 1 I i 1 " I i ; , 1 __ ,\ ;'; .L=- 0 2 '" 6 8 10 12 14 16 18 20 22 24 26 28 30 32 3/, 36 3840 42 "M 1,. 48 50 52 51;

10000

h t mwc

lOO 000

r!~~'I~~'I!~[~~~n[mmI~ 6,0

'cj. >-...,.J IS g ~ c . ~_ . S,S

si ~e o~~ 12 0 ~ ~ § ,~d. ""- -.J ,~ u "- u > 4... E vr._ 0 5.6

0.001 1-1\ 'k"M-+++-1 +1 ~ ~~=~6 ~7 i~ ~~ ~~ 1 ~ ~ ~ ~ :66 5,4

(~) !\ "'" 380-903911162111002100 5,20,0) 1000 5,0

~:~ ~: 4,80,08 400 1---- 4.60,10 300

~:ii ~~"'i" ,- ~~~I- -, -+-++-+-H-+-l-+--1 ::

0,30 lOO ~mllllll~tfll'~ 4,0~:~ ~ 1__ 1-···· - - i-- 3,80,75 40 1--1- 3.6

~:~ ~~ f-f--+-+--+--+--+--i---ll----j-"-+'__'I-f--+--+--+---j--+_'N~\k' __+--1 +-+-+_+-IH'- - 3.4

L\l---33.0 104,3 76.0 57.5 .4

10 J

" 2

3043tJJ75

'00

""300430tJJO730

1000

1 lOO

70

90

60

85

95

40

35

65

25

75

20

30

80

10

15

100

6 45

~ 50

Cl 55

Fig. 9. Mechanical composition andloss on ignition. Wadsbro 1, 1979.

Fig. 10. Soil moisture retentioncurves" Wadsbro 1, 1979.

10

15

20

25

30

35

40

15 45

~50

co 55

60

65

70

10

15

20

25

30

35

40

D 45

i 50h:15 55

60

65

70

75

80

85

90

95

100

Fig. 11. Volume relations and watertension curves. Wadsbro 1, 1979.

Fig" 12. Drainage equil ibriumcurves. Wadsbro 1, 1979.

21

Page 24: 5 ERI ES L TBRUI

Wadsb ro 2, 1982

Wadsbro, Malmkoping, Sodermanlands lan. Topographical map 10H Strangnas SV, co­

ordinates 65600/15577.

Sampl ing date: 16/11/1982.

Sampl ing site is located on a sI ight slope in an undulating plain with some mor­

aine outcrops. The geological foundation is gneiss, covered by glacial and post­

glacial clay.

Cl imate (Eskilstuna recording station): 190 day growing season with mean monthly

temperature =: 10.20 C and mean total rainfall = 360 mm.

Cyl inder samples (4 repl icates) were taken from each 10 cm level down to 100 cm.

A full vertical profile was extracted (Plate 2).

Soil rofile descri ion. Soil texture is shown by Fig. 13. The topsoil consists

of medium clay containing approximately 30 %silt, 20 %very fine sand and 15 %

fine sand. The subsoil consists of a heavy clay (30-60, 80-100 cm) and a medium

clay (60-80 cm). A layer with a high content (25-30 %) of very fine sand occurs

between 60 and 80 cm. This profile has a varved structure below 60 cm depth and

this reduces root penetration but does not inhibit it completely. The clay con­

tent results in formation of a system of cracks in which roots can travel. The

topsoil has a high number of wormholes and a good, open structure.

Pomsity varies with mechanical composition of layers. It is, on average, 44 %

(0-100 cm) and ranges from 48 % (0-10 cm) to 37 % (20-30 cm). Wilting occurs at

increasing moisture content with depth, with the exception of the 60-80 cm level.

Wilting occurs at 16 %moisture in the surface layer and at 39 % in the 90-100

cm layer. Available water storage capacity of the profile between ful I satura­

tion of the pore space and wilting point is 444-261 =: 183 mm. When the watertable

1 ies at 1.0 m below the surface, the profile can retain the following amounts of

water:

Depth (cm) 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100Total(mm)

37.9 35.8 33.1 35.1 40.1 42.8 40.6 l11.6 47.4 47.0 401.4

Plant available water at this drainage depth is 401-261 =: 140 mm. In the 0-60 cm

layer, the profile can retain 225-138 =: 87 mm water at 1.0 m drainage depth. If

root development is restricted to the 0-60 cm layer, available moisture will

supply the crop for a period of 15-20 days.

Permeability is reasonably high in the 10-50 cm layer but rather low in all other

levels.

22

Page 25: 5 ERI ES L TBRUI

Table 11. Summary of the main physical characteristics of the profi le \1adsbro 2, 1982

Depth(cm)

Sol Ids(vol%)

Dry bulkdens i £Y(g/cm )

Densityofsol

Saturatedhydrau 1i cconductivity

0-10

10-20

20-30

30-40

40-50

50-60

60-70

70-80

80-90

90-100

51.9

55.7

63.4

60.0

Si'.553.1

55.8

56.3

52.4

52.9

48. I

44.3

36.6

40.0

46.9

44.2

1'3.7

l, 7.6

47.1

42.8

39.8

35.5

38.0

l,4.4

46.3

1'2.8

43.0

47.8

I, 7.0

39.2

36.4

33. lj

35.2

40.1

1'2.4

39.5

39.9

45.8

45. 1,

37.7

35.5

32.7

34.9

39.6

1+1.9

37.9

39.2

36.5

34.6

32.0

34.4

38.8

l'l .2

36.3

37.7

43.6

43.7

33.932. l,

30.2

32.2

35.9

38.2

30.5

35.5

1'2.9

43.2

16.5

17.5

20.9

25.8

28.1

28.9

22.2.

27.0

35.8

38.6

35.5

32.8

30.8

32.0

32.4

33.4

23.3

29.8

39.6I, I. 4

I. 38

I .47

1.70

1. 64

I .50

1. 47

I. 53

I .54

l.l15

I. 47

2.65

2.64

2..68

2.73

2..76

2.77

2.74

2.73

2.76

2.77

2..4

19

36

6.2

12

11, 3

1.9

3.5

1.8

1.5

Total 556.0 4l,4.0 1+27.4 397.3 389.7 378.8 354.9 261.3 331.0(mm)

23

Page 26: 5 ERI ES L TBRUI

moisture content, vol

pF

CCC=;=C' 7,0

',8

6.6

',4

',2

I· ~

l

....-j_ ..

-+11\I- -'t-++~I-+-++-~

i\ 1\1'\ .

...._~p-,. "

. 1- ..... j=-

!'\~C­

-l\f\f'

~~~"f!"•••ffi·~c;ID'·mw'~rnnmJ'i'wror=:::F~~ ~- g §'-~ : : ~ I~· : §, ~ ~ 5,6

-+4-+-j1i--'k' --'!'-.'+-+-+-H~ ~6=~~ ~~ ~ 1~ ~~ 1~ ~ ;~~I~ - 5.'

i\ 1'-. .. " ) 80~90 60 1) 1) 10 1 , 100 . :::

4,8

4,'

4,4..,4,0

l.6

3,'

3,4

3,2

3,0

2.8

2,'

2.4

2,2

2,0

1,8

0.1 ~~~~~frHq~JSfMqT~n~Jf~l~fTI0,07

O,OS t

~:~j i---0,02 f-! -I ++-1-1--+--,· 1-',-11 i···: ... i. 1·····.-,·,

I I I I I I I 'I' I I 1'1 , •. 0 2 4 • 0 10 12 14 16 18 20 22 " 26 20 lO 32 14 j, l8 " 42 " "

10000

100 000

h t m\~c

d,0,001

($i)0,03 1000

0,04 7000.06 5000,08 4000,10 ]00

0.15 2000,20 150

0,30 100

0,.4) 700,60 500,75 ./i.,Q

1,0 30

1,5 10

Fig, 14, 5011 moisture retentioncurves, Wadsbro 2, 1982.

3,0 104,3 76,0 57,5 "

10 3

15 2

f..j .. I, 1-.1 ,--'f--I-+-f-,-l2" 'd3

30 1 ~~t~jtrM~ff8N~~fn~~~t8~~43 0,7 ,-

~ g:~ 1-- 1,6

~: ~:~ Ij-+--j'-,-H-I t I 1,41,2

1,0

0,8

0,'

0,4

300

430600750

1000

1500

Fig. 13. Mechanical composition andloss on ignition. Wadsbro 2, 1982,

10

15

20

25

30

35

40

t5 45

i 50

~ 55

60

65

70

75

80

85

90

95

100

Fig, 15. Volume relations and watertension curves. Wadsbro 2, 1982.

10

15

20

25

30

35

'0

6 45

i 50

~'" 55

60

65

70

75

80

85

90

95

100

Fig. 16. Drainage equilibriumcurves. Wadsbro 2, 1982.

24

Page 27: 5 ERI ES L TBRUI

Plate 2. Vertical profile 0-100 cm. Wadsbro 2, 1982.

25

Page 28: 5 ERI ES L TBRUI
Page 29: 5 ERI ES L TBRUI

Al bo 1, 1979

Albo, Vasterfarnebo, Vastmanlands lan. Topographical map l1G Vasteras NO, coordi­

nates 66457/15282.

Sampl ing date: 9/10/1979.

Sampl ing site is located in a sI ight depression on a gentle convex slope. The

geological foundation consists of gneiss and this is covered by moraine and var­

ved glacial clay. Some postglacial clay occurs in the area but not at this site.

Cl imate (Vasteras recording station): 190 day growing season with mean monthly

temperature = 12.6°C and mean total rainfall = 340 mm.

Cyl inders samples (4 repl icates) were taken from each 10 cm level down to 100 cm.

Soil rofile descri ion. Soil texture is shown by Fig. 17. The topsoil consists

of a silty 1 ight clay with low (3 %) loss on ignition, the subsoil of a silty me­

dium clay (30-60 cm) and a silty 1ight clay (60-100 cm). The mean proportions of

clay, fine silt, coarse silt, very fine sand and fine sand in the total profile

are 24, 25, 37, 8 and 2 % respectively. The coarse silt fraction increases with

depth from 23 to 55 %. The silt content means that the structure of this soil is

unstable, the surface tending so smear in wet periods and to form a crust in dry.

A rather high capillary flow can occur in the unstratified topsoil and cause des­

sication and pan formation,

396.8

Total(mm)0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

36.4 35.7 36.6 37.9 38.4 40.4 41.3 44.0 42.6 43.5

Depth (cm)

The presence of varved silt and clay in the subsoil restricts root depth to 50-60

cm. Porosity is relatively low (mean 43 %for 0-100 cm) and remains fairly con­

stant below the 0-10 cm level. \4ilting OCCUI-S at between 13 and 23 % moisture, re­

flecting fluctuations in the clay content (Fig. 19). In all levels, there is a

rather large difference between wilting point and the moisture content at a tension

of 150 mwc, which means that roots have difficulty in making full use of water

which should be available physically. Available water storage capacity of this soil

between full saturation of the pore space and wilting point is 434-195 239 mm

down to 1 m depth. When the watertable 1 ies 1.0 m below the surface, the profile

can retain the following amount of water:

Since root depth is restricted to the upper 60 cm of the profile, the maximum

amount of available water at 1.0 m drainage depth total (0-60) - unavailable

(0-60). From the values given above and in Table 5, this is 225-115 = 110 mm.

This represents a moderate moisture reserve during dry periods.

Permeabil ity under the 50 cm level is very low, which can lead to waterlogging

and low aeration of the topsoil after heavy rain.

27

Page 30: 5 ERI ES L TBRUI

Tabl e 5. Summary of the main physical characteristics of the profi le Alba I, 1979

Depth Sol i ds Pores Hoi~.!_~~e_.s:_?~.tent, v9.-.~.~12.~.% ___.___________ Dry bulk Density Saturated(cm) (vol%) (vol%) tension, mVJC \.fi~ting at densl§y of hydraul ic

--------------------.-------...------ po I nt sampl ing (g/cm ) 50] i ds conduct ivi ty0.05 0.5 1.0 2.0 .~,!l.__....£.~~_20_._._.0.Q_ ..____. (g/cm3) (cm/hou rL.

0-10 51.5 48.5 44.1 37.7 36.3 34.9 31,.1 33.6 19.0 10.8 13.2 36.1 I. 35 2.61 6.8

10-20 57.5 42.5 39.4 36.4 35.4 34.5 33.9 33. 1+ 23.6 13.2 18.7 35.9 1. 51 2.62 2.4

20-30 59.3 40.7 39.3 37.0 36.2 35·5 31.. 9 34. 1, 22.3 13.2 15.8 36.1 I. 57 2.64 1'.2

30-40 57.7 1+2.3 40.6 38.1 37.6 36.5 35.7 35.0 28.2 19.7 23.2 36.8 1. 54 2.1\6 10

40-50 57.5 42.5 40.1 38.5 37.9 37.1 36.2 31' f." 24.9 16.9 22.8 37.6 I. 53 2.67 25,. )

50-60 57.9 42.1 41.4 40.3 39.9 39. 1, 38.6 38.1 21+. 8 17.7 21.4 39. 1, I. 56 2.69 0.02

60-70 57.0 43.0 41.9 41.0 IlO.5 40.0 39.4 39.0 17.1 12.7 20.7 I,D .3 I. 54 2.70 0.003

70-80 55.3 1,4.7 44.6 43.2 42.8 42. 1, 1'1.8 41.3 22.8 16.1 22.7 42.5 1. 1'9 2.69 0.02

80-90 55.8 44.2 43.0 1'1 .3 40.7 I,D .3 39.7 39.1 18.0 12.8 16.4 40.2 1. 50 2.69 0.80

90-100 56.1 43.9 1+3 .5 42.8 42.4 1,2.2 41.8 111 .3 22.0 15.0 20.5 112.0 1. 50 2.68 0.03

Tota I 565.6 434.4 417.9 396.3 389.7 382.8 376.1 370.7 222.7 IlJ8.1 195. 11 386.9(mm)

28

Page 31: 5 ERI ES L TBRUI

pF

7,0

6,8

6,6

6.4

6,2

6,0

5.8

5,6

S,I

5,2

5,0

6,8

6,6

4,4

'"6.0

J.B

1.6

3.6

3,2

3.0

2.8

2.6

2.4

'"2,0

1,a

1.6

1.4

1.2

1,0

0,8

0,6

0,6

moisture content, vol.%

Fig. 18. Soil moisture retentioncurves. Albo 1, 1979.

;cc

~~-- j----

f\t\I/~I::: " ou

--[3; ]] c c

--+-f-- I~ ':o " Q ,---

'" ..E U .

., 0

-~ K -- .----o·

lii. H14 21 1j ~o~

12l::;: 4 1 021001-1\ 3 001 1001=-

-

L>-."~K

- -- --['<; 1"-I

--1 _.If"'"

-~k2-- -

h--

f- +. I-·i-C 1=1-- f-,- - 1---

I 11-

''\ I3

f-- '1f--

I \7

5,3

2 I-I1\

,I I I 1 I I I i I [ i i [ [ i I 111 I I i I J

2 6 6 8 10 11 14 16 18 20 22 24 26 28 30 n 34 36 3B--W-- ',-;' 54

0,1

0.0

0,00,00.0

0,0

,0,7

0,50,40,3

0,2

3,0 '04,3 76.0 57,5 4

10 3

15 2

d.0.001

t~)

0,03 1000

0,04 7000,66 500O.OS 4000,'10 lOO

0.15 2000,20 150

0,30 100

0,43 ro

8:n ~1.0 30

1,5 20

10000

ht

mV.'c

lOO 000

3.43W75

'00

15'

300430

600750

, 000

1500

17. Mechanical composition andon ignition. Albo 1, 1979.

10

15

20

25

30

35

40

is 45

~ SO

i'S 55

60

65

70

75

80

85

90

95

100

Fig.loss

15

20

25

30

35

40

is 45

~SO

i'S 55

60

65

70

75

80

85

90

95

100 ",_, .._>..-_,_, ,L. __~ '--'--=

Fig. 19, Volume relations and watertension curves. Albo 1, 1979.

10

15

20

25

30

35

40

is 45

~50

i'S 55

60

65

70

75

80

85

90

95

100

Fig. 20. Drainage equi'l ibriumcurves, Albo 1, 1979.

29

Page 32: 5 ERI ES L TBRUI

Al bo 2, 1984

Albo, Vasterfarnebo, Vastmanlands lan. Topographical map llG Vasteras NO, coor­

dinates 66457/15283.

Sampl ing date: 10/10/1984.

Sampl ing site 1 ies approximately 50 m from the Albo 1, 1979 site. Details of geo­

logy, environment and cl imate are thus similar to those described for Albo 1.

Cyl inder samples were taken from each 10 cm level down to 100 cm. A full vertical

section was extracted and horizontal sections were taken at 10, 25, 55 and 80 cm

below the surface (Plate 3).

Soil rofile descri ion. Soil texture is shown by Fig. 21. The topsoil is a light

silty clay with, on average 23 %clay, 28 %fine silt, 22 %coarse silt, 11 %very

fine sand and 8 %fine sand. The subsoil consists of a medium clay (40-50 cm) and

a silty light clay. In the lower half of the profile, the coarse si'lt fraction in­

creases to 54 % (70-90 cm). The profile has a very dense structure, with alternate

layers of silt and clay in the subsoil. Smearing and crust formation in the sur­

face layer and dessication and pan formation in the topsoil occur often in the

spring and early summer when rain falls on the bare soil surface and is followed

by dry periods. Roots are restricted to the upper 50-60 cm and permeabil ity of the

soi 1 is very low below this level (Table 6). In hydraul ic conductivity tests on

the 70-80 cm samples, two cyl inders gave very high values and two gave very low

values.

Porosity is on average 45 %and remains relatively constant from one layer to the

next. Wilting (150 m water tension) occurs at an average moisture content of 16 %,

with variations due to mechanical composition between layers so that it is lowest

(11 %) in the 0-20 cm level and highest (24 %) in the 40-50 cm level. Available

water storage capacity between full saturation of the pore space and 150 mwc is

450-157 = 293 mm. When the watertable lies 1.0 m below the surface, the following

amount of water can be stored in the profile:

Depth (cm) 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

37.8 36.2 37.2 35.5 40.1 39.7 41.4 41.6 42.6 43.3

Total(mm)

395.4

Since root depth is restricted to the upper 60 cm of the profile, maximum avail­

able water == total (0-60) - unavailable (0-60) at 150 mwc == 227-89 '" 138 mm. The

corresponding amount calculated from biologically determined wilting point should

be 110-115 mm. During longer dry periods in the growing season, water is 1ikely

to be 1imiting for the crop on this soil.

After heavy rain, the topsoil can remain waterlogged and poorly aerated for some

time.

30

Page 33: 5 ERI ES L TBRUI

Table 6. Summa ry of the ma i n phY5 Ica I characteristics of the profile Albo 2, 1984

Depth So I Ids Pores _____.~ tu re ~?n ten t, volume % Dr'y bulk Density Satu rated(cm) (vol%) (voJZ)

tension,at density of hydraul le

rm-JC--- samp 1 in9 (g/cm 3) 50 I i d~ conductivity

O. D5 0.5 1.0 2.0 6.0 150 (g/(m ) Lc:m/ho'!.':L_

0-10 54. I 45.9 42.6 38.8 37.7 36.1 3/,,8 11.5 38.8 1. 42 2.63 26

10-20 52.6 47.4 42.2 37.0 35.9 34.2 33. I 10.9 37,11 1. 38 2.62 51

20-30 55.9 44.1 40.7 37.7 36.7 35.5 34.3 13 .6 37.4 1. 49 2.67 59

30-4D 56.3 43.7 39.5 35.7 35.0 34.5 33.0 14./' 34.6 1. 51 2.69 72

110"50 55.2 44.8 42.6 40.2 39,11 38.7 36.9 23.7 39.0 1.49 2.69 12

50-60 56.2 1'3.8 42.0 39.4 38.6 38.0 37.0 14.9 38.6 I. 51 2.68 0.88

60--70 55.4 44.6 42.5 40.8 39.9 39.5 38.9 16.8 40.0 1. 50 2.7D 0.55

70-80 5/+ .2 /j5.8 42.6 40.4 40.0 39·7 38.8 17.5 39.6 1. Ij 7 2.72 19

80-90 54.5 45.5 42.9 41.7 41.4 41.2 40.9 16.9 41.1 1.47 2.69 0.08

90-100 56.1 43.9 43.3 42.3 42.0 41.8 111 .3 16.3 41.7 1 .50 2.68 0.13

Tota I 550.5 1149.5 420.9 394.0 386.6 379.2 369.0 156.5 388.2(mm)

31

Page 34: 5 ERI ES L TBRUI

0,02 1 I I I i I I i I i ! i , I i i I I , , , :.\~:' ',I J 0,4

v 0 2 I; 6 8 10 12 14 16 18 20 22 24 26 2[1 30 32 34 36 3$ ~-o n 46 MJ 50 52 54 -c...,

pF

-~- J.7 'o

1----j---- :1 6.8

+--- j--- 6.6

6,4

6,2

6,0

1--'· , -

moisture content. vol

i- .

i-

i--- !-i -

Figo 220 Soil moisture retentioncurveso Alba 2, 19840

107543

2

10.70,50,40,3

0,2

0,1

0,070,05 1-·0,040,0)

10000

100 000

h t roMC

3,04,3

~:~10

15

3043W75

100

ISO

300430600750

1000

1500

Figo 210 Mechanical composition andloss on ignitiono Alba 2, 19840

10

15

20

25

30

35

'0

15 45

F' 50

~ 55

60

65

70

75

80

85

95

10

15

20

25

30

35

'0

15 45

~50

Cl 55

60

65

70

75

BO

85

90

95

100

VOLU',iE, %76 80 84 B8 92 96100

__ '..... L_.__ ..-'---'_-"i~Figo 230 Volume relations and watertension curveso Alba 2, 19840

10

15

20

25

30

35

40

15 45

~ 50

f'j 55

65

70

75

80

85

90

95

100

Figo 240 Drainage equil ibriumcurveso Alba 2, 19840

32

Page 35: 5 ERI ES L TBRUI

Plate 3. Vertical profile 0-100 cm and horizontal sections at 10, 25,55 and 80 cm depth. Albo 2, 1984.

33

Page 36: 5 ERI ES L TBRUI
Page 37: 5 ERI ES L TBRUI

Igelsta 1979

Igelsta, Vasteras, Vastmanlands lan. Topographical map llG Vasteras SO, coordi­

nates 66193/15489.

Sampl ing date: 4/9/1979.

Sampl ing site is located on a 51 ight slope surrounded by an undulating plain.

To the west 1 ies an esker, to the north a drained marsh. The geological founda­

tion is granite, overlain by glacial and postglacial clay at this point.

Cl imate (Vasteras recording station): 190 day growing season with mean monthly

temperature = 12.6°C and mean total rainfall = 340 mm.

Cyl inder samples were taken from each 10 cm level down to 100 cm. A full verti­

cal profile was extracted and horizontal sections were taken at 5, 25, 45 and

70 cm below the surface (Plate 4).

Soil rofile descri tion. Soil texture is shown by Fig. 25. The topsoil con­sists of a heavy clay with 6 % loss on ignition, the subsoil of heavy clay.

There is a fairly high silt content throughout the profile, in which the average

proportions of clay, silt and fine sand are 51, 30 and 13 % respectively.

The upper part of the profile has a very dense structure and although roots are

found throughout the profile, they are very fine and poorly developed. The clay

in the lower layers (60-100 cm) is varved and this acts as a barrier to the ca­

pillary movement of moisture.

Porosity is, on average, 47 % for the profile and is fairly constant from one

level to the next. Wilting occurs at around 29 % moisture, so much of the water

retained in the profile is unavailable to plants (Fig. 27). Available water stor­

age capacity of this soil between full saturation of the pore space and wilting

point is 470-292 = 178 mm down to m depth. When the watertable 1 ies 1.0 m below

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

42.3 41.1 37.6 39.0 42.3 42.2 42,0 44.0 44.6 45.4

the surface, the profile can retain the following amount of water in its layers:Total(mm)

420.5

Depth (cm)

Moisture(vol.%)

Plant available water at this drainage depth is 421-292 = 128 mm. The presence

of layered clay in the profile restricts upward movement of moisture to the roots.

This means that less moisture than 128 mm can be available to the crop and the

moisture content of the profile may be insufficient during dry periods. Further­

more, the soil has a tendency to smear and form a crust which can inhibit crop

establ ishment and reduce soil aeration.

Permeabil ity is rather high in the 20-70 cm layers but very low below this.

35

Page 38: 5 ERI ES L TBRUI

36

Tab I e 7. Summa ry of the ma i n phys leal characteristics of the prof i 1e 1ge1sta 1979

Depth So j i ds Pores Dry bulk(cm) (vol%) (vol %)

--------~~!~-~~~~~.~-- -~- \'1 i 1t i ng atdens i ty

point sarnp 1i ng(9/em 3)

0-10 52.1 1, 7.9 1,4.6 1;3.2 42.2 1'0.7 38.1 21'.3 43.7 1.38 2.65 2.5

10-20 53.5 46.5 1,4.2 41 .8 40.8 39.2 36.9 24.3 1'1.7 1,/,2 2.66 3.6

20··30 54.9 45.1 1'1.6 38.0 37.2 36.1 31t.2 26.0 37.3 1. 1,B 2.69 12

30-40 53.1 1;6.9 42. 1, 39.3 38. 1, 37.4 35.3 26. 1j 39. 1, 1 .115 2.71, 9.0

1t0- 50 52.2 47.8 411. 8 42. 1, 41.5 Ito .It 38. 1, 30.0 1'2.1 1. 1,1, 2.75 10

50-60 52.3 1+}.7 1,4.5 1'1.9 40.9 39.8 37.0 30.B 1t2. B 1.41, 2.75 5.6

60-70 53.9 Ij6.1 43.5 41.3 1'0.5 39.B 37.8 31.2 1'0.7 1. 1,8 2.75 15

70··80 52.9 47.1 Itl'.7 43.1 42.2 111 .6 39.6 32.8 42.8 1. 116 2.77 0.09

80-90 52.9 1'7.1 45.0 43.3 42.6 42.1 110.2 32.4 42.7 1. 1;6 2.76 0.09

90-100 52.7 1'7.3 1'5.4 43.9 lj2.7 1'1.8 40.8 311. 2 11 11. 1+ 1.411 2.71{ 1.8

Tota I 530.5 469.5 1,1'0.7 41B.2 409.0 398.9 37B.3 292. 1, 1117 .6(mm)

Page 39: 5 ERI ES L TBRUI

100000

10000

h t JfMC

I"-=

pf

.1::,6,4

6,2

6,0

5,8

5,6

5,6

5,2

5,0

6,8

4,6

6,0

6,2

4,0

1,8

J.6

3.4

1,1

1,0

2,8

2.6

2,4

J2.2

r:-1 1.6

1'41,·2.j::_ 0.6

0,6

moisture content, vol

Fig. 26. Soil moisture retentioncurves. Igelsta 1979.

, ,~~"

~k- ,... ,l e ;~;

I' t !

l\'~,>

" UC C -;;

!'~~. . 0

I"o ~

4-I~ u ". u > ...: E u'

f'-- 0-1' 3915 161 3- 6 3 17

\ , ~ :O:i[ 5517 13 8 1 1 0~:--~ 1"- 5315 131 231 0

t ,~ !

i' ,-~ I'>.I'\H

-+t

i

I;

1

,~+- t i, j.+

1 2-

+-'-tr-- ,, .. ~

, i

i\I\,7

5 -4J2 .- i--~

1\' , ,I I ! i I i i I i i !

n 2 " 6 8 10 12 14 16 18 20 22 14 26 28 30 32 34 36 39 ~o 1.2 41, MlSiJ""

10,70,50,60,3

0,2

0,1

0,00,00,00,0

0,0

d,0.001

l(~)

0,0] 1000

0,0.4 7000,06 5000,09 J,OO

0,10 300

0,15 2000.20 150

0,30 1000,43 70

&:n ~1,0 30

1,5 20

30436075

lOO

lSiJ

3,0 104,3 76,0 57,5 4

10 3

" 2

300430600750

1000

150090

95

Fig. 25. Mechanical composition andloss on ignition. Igelsta 1979.

75

80

85

100 ,~~, ~_,l_ ,~~_

10

15

20

25

30

35

40

1545

~50

i'5 55

60

65

70

VOLU'·;r:, I~

10

15

20

25

30

35

40

D 45 tot 50 ~i'5 Q

~

Fig. 27. Volume relations and watertension curves. Igelsta 1979.

Fig. 28. Drainage equil ibriumcurves. Igelsta 1979.

37

Page 40: 5 ERI ES L TBRUI
Page 41: 5 ERI ES L TBRUI

Plate 4. Vertical profile 0-100 cm and horizontal sections at 5, 25, 45 and70 cm depth. Igelsta 1979.

39

Page 42: 5 ERI ES L TBRUI
Page 43: 5 ERI ES L TBRUI

Kuro 1979

Kuro, ~ngso, Vastmanlands lan. Topographical map l1H Enkoping SV, coordinates

66050/16522.

Sampl ing date: 31/8/1979.

Sampl ing site is located in an area which was once a bay of the lake Malaren and

which has been drained with embankments and pumps. Sampl ing site 1ies 30 m from

the embankment. The geological foundation here is grey gneiss, covered by glacial

and postglacial clay. On this former lake bottom, however, there is a gyttja or

mud inclusion in the clay.

Cl imate (Vasteras recording station): 190 day growing season with mean monthly

temperature = 12.6°C and mean total rainfall = 340 mm.

Cyl inder samples (4 repl icates) were taken from each 10 cm level down to 100 cm.

Soil rofile descri ion. Soil texture is shown by Fig. 29. The soil is a heavy

clay, very heavy in the 40-50 and 70-80 cm levels. Increased clay content corres­

ponds to decreased fine sand content. Loss on ignition, which is on average 6 %

by weight throughout the profile, indicates the presence of organic matter in all

levels. The mean proportions of clay, silt and very fine sand in the entire pro­

file are 54, 23 and 10 % respectively.

This profile has a w~ll developed structure and good drainage conditions have led

to formation of a permanent system of cracks, even in lower levels. Roots follow

these cracks down to 50-60 cm, above which level pH is between 4 and 5. Below 60

cm depth, pH decreases rapidly from 3.8 (60-70) to 3.1 (80'-90 cm) and root growth

is inhibited.

Porosity is high (65 %for 0-100 cm) and increases sI ightly with depth (see Fig.

31). Biological wilting point could not be determined for samples below the 60-

70 cm level, since low pH inhibited seedl ing growth. For the 20-30 to 60-70 cm

levels, the very high wilting point values in relation to the moisture content

at a tension of 150 mwc reflect the influence of pH. Wilting point in Figs. 31

and 32 show water retained at a tension of 150 mwc. Available water storage capa­

city of the soil between full saturation of the pore space and wilting point is

653-255 = 398 mm down to 1 m. When the watertable 1 ies at 1.0 m below the surface,

the following amount of water can be retained:

Depth (cm) 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100Total(mm)

Plant available water at this drainage depth (from 150 mwc) is 529-255 = 274 mm.

For 0-60 cm, the corresponding value is 286-156 = 130 mm. The soil has thus good

reserves of available water during dry periods but despite this, is often low

yielding. The reason for this may be chemical rather than physical conditions.

41

Page 44: 5 ERI ES L TBRUI

Tab le 8. Summa ry of the ma 1n physical character 1st ics of the profile KurU 1979

Depth So I Ids Pores Moisture content, vo 1ume % D"y bulk Dens i ty Saturated(cm) (vol:1;) (vol:1;)

tension,vii 1t i n9 dens i ty of hydrauJ le

Ill\'/C------~ po i n t (9/cm 3 ) so 1 i ds conductivity

0.05 0.5 1.0 2. 0__-.iJ.cQ.___6~_.5..o_._~___.._._._. __ ._.(.'I!.cr2L_(~11l[ilcJ~ ,. )

0··10 38.2 61.8 55.7 "5.6 "3.7 1'1.6 '+0.2 39.2 31.0 23.3 22 .3 1. D1 2.61, 22

10·2D "1.9 58.1 52.8 1'7.7 1,6. " '+5.0 liJ.6 '+2.5 3'+.6 25.'+ 25.3 1.11 2. (,I, 1720 .. 30 39·1 6D.9 58.7 50.3 1'9.0 '+8.0 47.1 46.5 311. 9 25.5 37.0 1 .07 2.7 1, 1.9

30-40 34.8 65.2 60.'+ "7.9 47.0 1,6.2 '+5.3 1,,+ .9 36.2 29.6 113. 1, 0.9'; 2.72 31

4D·50 33·5 66.5 56.6 49./' 1,8.9 48.3 1'7.7 117 . 3 33.1 27 .9 53.f, 0.91 2.72 98

50-6D 35·2 64.8 5".6 48.0 I, 7.2 116.5 1'5.7 ,+1'.7 31.2 21'.0 58.7 0.96 2.73 72

60· 70 32.6 67.4 59.8 55.6 55.2 5".7 53.9 53.1 31.2 23.9 60.1 0.90 2.77 57

70 .. 80 31.9 68.1 57.7 52.5 51.9 51.4 50.7 49.9 32.8 26.2 0.88 2.77 51,

80-90 30.6 69.'+ 65.D 60.9 60.'+ 59.8 59.0 58.3 31.2 21'.4 0.8 1, 2.75 17

90-100 29.5 70.5 66.7 63.7 63.3 62.8 62.0 61.5 31 .7 21).7 0.82 2.79 1,0

Tota I 347.3 652.7 588. D 521.6 513.0 50 lL3 495.2 487.9 327.9 25".9(mm)

42

Page 45: 5 ERI ES L TBRUI

pr:]7,0

I','J'"·6,4

~j ::

5,'

5,6

15,4

'1

'

::-4,6

4,4

1

1j~3,4

'1::.2.6

l,'

1>,41"1',0i1.61',6:1,4

11.2-1',0jo.1°,6

io.4

COil tent , vo\

Fig. 30. Soil moisture retentioncurves. Kur6 1979.

, ..i ::: .•..,,. i

i T i iT ' ...1f\ i

·C

I~I~I~

I~dI ic I~

1-·- '; ,,::J: 1;;1:; ilJI:i l5 '::I" 3 80'90 i591i1' 12 on

.lit!

+-'1\ f'. ,

!

3

;.

~ \7

~ T'~~5.4

)!

~\<'\,

I , I l , , i , :0

o 2 .I; 6 B 10 12 14 1618 20 U 24 26 28 30 32 )f, 36 38 I.D 42 44 (..{; 1,8 5052 54 56 586-0 62 64'~66 68'

ht

f!O\K

'00000

3,0 104.3 76.0 57,5 4

10 )15 ,

d.0,001

7;1")10,03 1000

0,01; 700a,Ob 5000,08 4000.10 300

(\15 2000,20 150

0,30 1000,43 700,60 so0.75 401,0 30

1,5 20

10000

JO ,43 0,7

60 0,57$ 0,4

100 0,3

150 0.2

300 0.1430 0,0600 0,0750 0,0

1000 0,0

1500 0,0

Fig, 29, Mechanical composition andloss on ignition. Kur6 1979.

10

15

20

25

30

35

'0

15 45

~ 50

i'5 55

60

65

70

75

BO

85

VOLUf"l!:, %

10 10

15 15

20 20

25 25

30 30

35 35

40 '0

45 45is 15

~50 E

so

lOl 55 lOl 55

60 60

65 65

70 70

75 7S

80 80

85 85

90 90

95 95

100 100

water Fig. 32. Drainage equ i 1i br i umcurves. Kur6 1979.

4",)

Page 46: 5 ERI ES L TBRUI

Limsta 1982

Limsta, Ransta, V~stmanlands l~n. Topographical map llG V~sterSs NO, coordi­

nates 66323/15441.

Sampl ing date: 9/11/1982.

Sampl ing site is located on the upper part of an open plain which slopes gently

towards a river in the south-east. The geological foundation is gneiss, over­

lain by glacial and postglacial clay.

Cl imate (V~sterSs recording station): 190 day growing season with mean monthly

temperature == 12.6°C and mean total rainfal'l == 340 mm.

Cyl inder samples (4 repl icates) were taken from each 10 cm level down to 100 CIIL

A full vertical section was extracted and horizontal sections were taken at 10,

30, 55 and 80 cm below the surface (Plate 5).

ile deseri ion. Soil texture is shown by Fig. 33. The topsoil consists

of heavy clay, the subsoil of very heavy clay. Respective proportions of fine and

coarse silt increase from 12 and 5 % (30-40 cm) to 17 and 15 % (90-100 cm). The

topsoil contains 9 %very fine sand and 16 %fine sand but in the subsoil these

fractions decrease to 3 and 1 % respectively.

The upper layers of this profile have a very compact structure with large, blocky

aggregates and a dense plough pan. Hydraul ic conductivity is very low (Table 9)

and water in the upper layers is prevented from reaching the drains.

Porosity increases from 45 % in the topsoil to 52 % in the subsoil. Wilting oc­

curs at between 29 %moisture (0-30 cm) and 37 % (30-100 cm). Available water

storage capacity of this soil between full saturation of the pore space and

wilting point is 491-350 == 141 mm. When the watertable lies 1.0 m under the sur­

face, the following amounts of water can be retained by the profile:

10 10-20

41.8 42.2

0-100Total(mm)

467.3

Plant available water at this drainage depth is 467-350 = 117 mm. This represents

a reasonably good moisture reserve for the crop during dry periods, provided that

roots have penetrated the plough pan. The main problem with this soil tends to be

waterlogging of the upper layers during wet periods.

44

Page 47: 5 ERI ES L TBRUI

Tab I e 9. Summa ry of the main physical characteristics of the p raf i le L ims ta 1982

Oepth So lids Pores Moisture content, volume % ory bu I k Dens i ty Saturated(cm) (val %) (val %)

___~nsion~___ wi 1t i n9densi 3y of hydraul ie

at(g/cm ) so 1 j ds conductivity

0.05 0.5 1.0 2.0 6.0point sampl ing

(g/cm3) (cm/hour)---------- --------------0-10 54.7 1,5.3 43.5 /'2.6 41.7 40./' 38.7 27.6 1'1.8 1. 1'5 2.66 0.12

10-20 51,.7 1,5.3 1,3.5 42.7 112.0 40.9 38.5 27.7 1'1.8 1./'5 2.66 0.01

20-30 53.5 46.5 45.1 411.7 44.1 143.3 41. 11 32.6 1'2.9 1• I~ S 2.71 0.02

30- 1'0 48.8 51.2 48.7 48.5 118.0 47.4 1,5.8 36.4 1,6.6 1. 35 2.76 0.11

40-50 119.2 50.8 /18.6 47.5 46.7 45.9 4/1.5 36.7 45.2 1. 36 2.76 0.34

50-60 48.2 51.8 49.9 47.3 1,6.4 45.7 1,4.2 35. I, /~5 .8 1. 34 2.78 6.9

60-70 119.8 50.2 48.9 1'7.6 /,6.9 46.1, 1'5.1 36.7 46.1 1. 37 2.75 0.04

70-80 50.9 49.1 48.5 47.3 1'6.8 1,6.4 1'5.3 39.4 45.7 1. ln 2.76 7.2

80-90 49.8 50.2 49.5 48.6 48.4 48.0 47.0 38.4 117.3 1. 38 2.77 0.37

90-100 49.8 50.2 50.2 1,8.5 48.2 48.1 47.2 38.6 47.2 1. 38 2.78 0.10

Total 509.4 490.6 476.4 465.3 459.2 452.5 1'37.7 3119.5 1'50.4(mm)

Page 48: 5 ERI ES L TBRUI

pr

moisture content, vol,'!

Fig. 34. Soil moisture retentioncurves. Limsta 1982.

, __ ", _cc',' 7,0

;-- ;- i-',-' ,,_' i 6,8

i~-Ii i, i- ;

I::i- ,- , .. ;

1\ J~,-- I ... j- i i-j- '-

1=1=.~ I ,~ I,;; ~

16,0It~ I~ 5,6

1- I" I.- 5,6

i-- i'" ::: ~I i: li'i ' ii 1::: 15,4

cl f:: Ho·" 005,1

5,0--

4,8

1··_·; , i- ! 4,6i 1--

1'-1'- "4

'",- f'..-,'<i 6,1

4,0

i • -tfl· 3,6

;-' i-3,6

H- 1,-'-

[3 3,1

3,0

,- 1-,__ ·_..... i--1,8

1,6iI.- :

'-1, , i

_...._. :-"

11~. ;-- 1,4

1.1

1,075

j--1- l-j: t liLt:

1,0

4, j-- i-- 1.63 ;-

,I- i-- i, ,

U1 L·i- ; TTT . 1.1-

1,07

i .._; ... _,._ ..., FT,,:'T-L];; ".- o.05 i-0< l 0,03

0,402 .... ,._.,1.; l ' i , . :\ cl, .t

7 4 6 B 10121416 1B 20 22 2" 26 28 3032 H 36 3$.1;04244.(.6 425115254

1

0,0,0,0,

0,

107

563,

0,10,00,0,0,

0,

1000

700500400300

20015(1

100

7050

'"30

20

h t mwc

100 000

d,0,001

(~)0,03

0,0<0,060,000.10

0,150,20

0,300,43

8:n1,0

1,5

3,06,36,07,5

10

15

10000

30

6lIIJ75

100

150

300430IIJ()750

1000

1500

Mechanical composition andignition. Limsta 1982.

Fig. 33.loss on

10

15

20

25

30

35

'0

i'i '5

~~

10

15

20

25

30

35

<0

t> 45

~50

,~ 55

Fig. 35. Volume relations and watertension curves. Limsta 1982.

Fig. 36. Drainage equil ibriumcurves. Limsta 1982.

46

Page 49: 5 ERI ES L TBRUI

Plate 5. Vert[cal profile 0-100 cm and hor[zontal sect[ons at 10, 30, 55and 80 cm depth. Limsta 1982.

47

Page 50: 5 ERI ES L TBRUI
Page 51: 5 ERI ES L TBRUI

Ugerup 1981

Ugerup, Kristianstad, Kristianstad lan. Topographical map 3D Kristianstad SO,

coordinates 62052/13948.

Sampl ing date: 28/8/1981.

Sampl ing site is located in a field surrounded by trees planted to form a wind­

break. The surrounding area is a wide, flat plain which is subject to wind ero­

sion. The foundation of Cretaceous rock is overlain by sand and fine sand depo­

sited by melting land ice.

Cl imate (Kristianstad recording station): 220 day growing season with mean month-

ly temperature = 12.7°C and mean total rainfall 390 mm.

Cyl inder samples (4 repl icates) were taken from each 10 cm level clown to 100 cm.

Soil rofile descri ion Soil texture is shown by Fig. 37. The topsoil consists

of fine to medium sand with a low humus content, the subsoil of a somewhat coar­

ser sand. Proportions of fine, medium and coarse sand in the topsoil are 56, 29

and 5 % respectively. In the subsoil, these fractions form 43, 36 and 15 % (40­

70 cm) and 29, 61 and 5 % (70-100 cm). The upper 30 cm of the profile contains

an average of 3 %clay, the subsoil 0.7 %clay.

The profile has a very poorly developed, almost single grained, structure and

root depth is I imited to the topsoil. Permeabil ity is high in all levels and in­

creases somewhat with depth.

Porosity is on average 42 %for the entire profile. Because of the coarse texture

of the soil, wilting occurs at very low moisture contents. At wilting, the top­

soil contains 6-7 %moisture and the subsoil contains even less (Table 10). Avail­

able water storage capacity of the profile between full saturation of the pore

space and wilting point is 415-47 = 368 mm down to 1 m depth. Moisture is easily

removed from the soil by appl ication of even low tensions (Fig. 39). When the

water table 1 ies at 1.0 m below the surface, the following amount of water can be

retained by the soil layers:

Depth (cm) 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

17.7 21.8 19.1 16.5 13.4 19.3 24.7 30.3 35.8 42.4

Total(mm)

24'1.0

Plant available water at this drainage depth is thus 241-47 = 194 mm. Since root

development is restricted to the topsoil, maximum amount of water available in

the 0-30 cm layer is 59-17 = 42 mm. This represents a poor moisture reserve and

irrigation is normally required to ensure crop yields on this sandy soil.

Page 52: 5 ERI ES L TBRUI

50

Table 10. Summa ry of the main physical characteristics of the profi le Ugerup 1981

Depth So lids Pores ________ ~\o i stur~s:.~2!_tent t vo 1ume % Dry bu I k Density Satu rated(cm) (vol %) (vol %) , ~'jilting at densi 3y of hydraui ic

---- tension, ml,'lC _ point' sampl ing (g/em) sol id3

conductivity

.._________._ ..___..Jl..:...Q~:..L_.l~_ ..L~_~~ ____.__.___.___.__~L_.(cmL~".':.L_

0-10 56.7 43.3 42.3 26.6 16.7 12,6 11.0 6.6 15.7 1. 45 2,55 9 t·,0

10-20 55.6 44.4 42.9 28,6 18,9 14.1 12,6 5.9 18,3 1 ,1,2 2.56 8,0

20- 30 58,4 41.6 1'0,9 25.1 13.1 10,1 8,9 1,,1 13 .6 1. 51 2.58 11

30-40 62,3 37.7 35,8 20,0 8,4 5,9 4,7 3. 1, 11.6 1. 60 2.57 11

1,0- 50 62,0 38,0 311.3 11,,0 8.0 6.1 11.9 4,3 10,8 1. 59 2,57 18

50-60 62.8 37,2 34,2 17.4 11,1 8 r 7.6 1',1, 111.0 1.62 2,58 11,)

60·· 70 59.2 40.8 36,6 18.8 12.3 9.8 8. 1, 4.3 15.2 1 ,51, 2.60 17

70-80 56.2 113.8 40.9 17.0 10.3 7,7 6 ,. 5.0 15.3 1,1,6 2.59 29.0

80-90 56.3 1'3.7 41.5 15.7 10,2 8,4 7.3 5.1 17.1 1 .1'5 2.58 37

90-100 51'.9 45,1 1'2. I, 17.2 11.8 9.5 8.5 11.3 26./' 1 ,1,2 2.58 30

Tota I 58 11. 4 415.6 391.8 200.4 120.8 92.7 80. 1, 1'-;.4 1~i8 . 0(mm)

Page 53: 5 ERI ES L TBRUI

h t nMC

100 000

2 4 6 e 1012 14 16 18 20 22 24 26 28 30 32 34 36 3B 1..0 t.2"4 (~4$ SO 52 SI,

n-,oisture conLent, vol,'?

! 1-

,--L.. 1_ i-i'!+ + ! ...

I,T ·i:'-! ...~ ....•.. I+--;.;-+-+ ,

J 1.1

,'_ I ~ , w /]~ -: -;; L~I]] " " c&L~.J 10-20 4 1 2 48 34 7 3 00"

+~-I-I'-+--I-I---i-j- 11--1240_50 1 1 1 4531, 170 100

80-90 '- 1 1 2 61 6 0 100

10000

d,F

0,001 f--(Ill0.Q3 1000

0,04 7000,06 5000,08 ,000,10 300

0,15 2000,20 150

0,30 100

0.43 700,60 500,75 601,0 301,5 20

is3,0

~4.l6,07,5

~ 10

15

30

"6075

100

150

lOO430600750

1000

1500

Fig. 37, Mechanical composition andloss on ignition, Ugerup 1981.

Fig, 38, Soil moisture retentioncurves, Ugerup 1981,

VOIHil~, 1..

Fig. 40, Drainage equil ibriumcurves, Ugerup 1981,

'0

'520

25

30

35

40

5 45

~50

~ 55

60

65

70

75

BO

B5

90

95

relations and waterUgerup 1981,

20

o 4 B 12 16 20 24:-r28~~,-,,:,:,r~:-;:5rlnl .-la : \.~ILTHJG POINT, \\1

15 JY \)'\VOLU:'1E OF PORES'~~-c--hll-+-+-"",-',--;:;-,n;-~,..~

25 /:E416 rn/m

:: ,- jl;~~o /' .is ::Jll' ;"~ :: -j\~\!

60 'It,~\ \j/;;::~ji\\I,::~J\\\

lOO 11 IIIFig, 39, Volumetension curves,

Page 54: 5 ERI ES L TBRUI

Sveden 1 2

Sveden, Stora Tuna, Kopparbergs l~n. Topographical map 13F Falun SO, coordinates

67050/14824.

Sampl ing date: 3/11/1982.

Sampl ing site is located on a wide fluvial plain where the geological foundation

consists of granite covered in places by blocky moraine and at the sampl ing site

by silt deposits.

Cl imate (Falun recording station): 165 day growing season with mean monthly tem~

perature = 11 .7°C and mean total rainfall = 340 mm.

Cyl inder samples (4 repl icates) were taken from each 10 cm level down to 100 cm.

A full vertical section was extracted and horizontal sections were taken at 10,

25, 50 and 85 cm below the surface (Plate 6).

Soil rofile descri tion. Soil texture is shown by Fig. 41. The topsoil consists

of a silty 1ight clay, the subsoil of a silty 1ight clay (40-60 cm) and a silty

medium clay (60-100 cm). The clay content increases from 16 to 35 %with depth.

The fine silt and coarse silt fractions make up 25 and 37 %of the profile and

these values remain constant in all levels except the 50~70 cm level. The propor~

tion of fine sand ranges from 5 % in the 20-30 cm level to 23 % in the 50-60 cm

level.

The soil has a weak structure which is very unstable. There are few pores and no

roots occur below 55 cm, where the profile becomes layered. Alternating clay lay­

ers (2 mm thick) and silt layers (1 mm thick) begin at 55 cm and continue below

100 cm depth.

0-10 10-20 20~30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

38.6 38.8 34.2 34.0 33.0 34.5 37.5 40.8 42,2 45,0

Apart from the 0~10 and 10-20 cm levels where the values are 55 and 54 % respec­

tively, porosity in the profile is low (average 42 % for 20-100 cm). Wilting occurs

at between 9 and 23 %moisture or at an average of 16 %for the full profile. Avail­

able water storage capacity of this soil between full saturation of the pore space

and wilting point is 441-157 = 284 mm down to 1 m depth. When the watertable lies

at 1.0 m below the surface, the profile can retain the following amount of water:Total(mm)

378.6

E-~pth (cm)

Root depth is effectively restricted to the upper 55 cm of the profile by the varv­

ed structure below. Plant available water at 1 m drainage in the 0-60 cm layer is

213-73 = 140 mm, so the soil has adequate water reserves. Problems with this soil

are its low permeabil ity under 20 cm depth and its tendency to smear during spring

rain and to form a crust during subsequent drying.

52

Page 55: 5 ERI ES L TBRUI

Tab Ie 11. Summa ry of the main physical characteristics of the profile Sveden 1982

Depth Sol i ds Pores Moisture content, volume % Dry bu Ik Density Saturated(cm) (vol %) (vol%) _________tension.~______ \./i I t i ng at dens 1ty of hydrau lie

point samp 1i n9 (g/cm3) so 1 i ds conduc t i v i tyD.05 0.5 1.0 2.0 6.0 50 150 -------. (g/cm 3) (cm/hou '0)

0-10 45.0 55.0 43.5 39·7 38.5 35.8 31.,.2 14.0 8.1 12.1 39.5 1. 17 2.61 8.6

10-20 46.3 53.7 44.8 39.4 38.5 36.1 31;'9 11;,0 8.1 10.9 38.8 1.22 2.64 24

20-30 59.2 40.8 36.7 34.5 33.8 32.9 32.2 12.6 6.5 9.iJ 34.0 1. 59 2.68 0.40

30-40 58.5 41.5 36.9 34.3 33.3 32.8 32.0 16.4 8.8 10.9 33.2 1. 57 2.68 7. 1;

40-50 61.6 38.4 35.4 33·1 32.3 31.9 31.1 18.0 10.3 13 .4 32.5 1 .65 I. .68 0.35

50-60 59.5 40.5 36. I. 34.3 33.6 33.1 31.9 1.1.6 12.5 16.5 3iJ.l 1. 60 1..69 0.0/

60-/0 59.3 40.7 38.6 36.9 36.2 35.6 3iJ.5 25.7 13.9 22.8 35.6 1. 60 Z./D 1. /,

70-80 57.3 iJZ./ 41.2 40.4 39.8 39.1. 37.9 31.1 16.1 1.0.1 38.8 I. 55 2.71 0.03

80-90 5/ .iJ 42.6 41..3 41./ 41.3 40.9 39.8 38./ 17.6 18.5 1'0.4 1. 56 2.72 0.01.

90-100 55.0 45.0 1'5.3 44.9 iJ4./ 4iJ.5 1'3.8 38.6 1/.5 1.2.6 44.0 1. 50 Z. /2 0.01.

Tota I 559.1 440.9 400.9 379.2 3/2.0 362.8 352.3 230./ 119.4 157. I. 3/0.9(mm)

53

Page 56: 5 ERI ES L TBRUI

.0

.8

.6

2

.0

.8

.6

0,1.

.2

.0

.8

2,6

2,4

2.2

1.0

1,8

1.6

1.6

1.2

1,0

0.8

0,6

pF

°

n,oisture content, vol

Fig. 42. Soil moisture retentioncurves. Sveden 1982,

..... ::'i'· 7.

iT',; il ' 6.

'TT!""" i6•

.. 6.

K\' ! i6.

I:: I~ I=~6.

5.

eI;

I~ 5.c-i I I'; I-s.r---r

\ i 1~: I: 5.i 115

........ -\- -- ,,. 4

1-- ---,

1:< I'm,,,,, i 4

4

3

3

3

1'1" 3

3

t-<t 2

I

\>2 !\ '-3

.... L,_. i-i-- i ....., .....

75,3

'''-'''-2

\ __..J ! ii i : i : , , : i , • i .Jo 2. 4 6 B 10 12 14 16 18 20 22 24 26 28 ]0 32 ]4 36 38 1.0 I.; 1,4 /,,6 "8 50 52 Sf,

0,1

0.0

0.00.00,0

0,0

1

0,70.50,60,3

0,2

3,0 104.3 76.0 57,5 4

10 3

15 2

d,0,001

(~)0,03 1000

0,04 7000,06 5000,03 4000,10 300

0,15 2000,20 is{)

0,30 1000,43 700,60 500,75 401,0 ]0

1,5 20

10000

ht

ml'iC

100 000

JO1,3

6<J75

100

150

300

430600750

1000

1500

WEIGHT I %

Fig. 41. Mechanical composition andloss on ignition. Sveden 1982.

10

15

20

25

30

35

40

456

~50

~ 55

60

Fig. 43. Volume relations and watertension curves. Sveden 1982.

Fig. 44, Drainage equilibriumcurves. Sveden 1982.

10 10

15 15

20 20

25

30

35 35

40

6 45 6

~50

~l!j 55 ~

60

65

54

Page 57: 5 ERI ES L TBRUI

Plate 6. Vertical profile 0-100 cm and horizontal sections at 10, 25, 50 and85 cm depth. Sveden 1982.

55

Page 58: 5 ERI ES L TBRUI
Page 59: 5 ERI ES L TBRUI

Varmlands Saby 1983

Varmlands Saby, Kristinehamn, Varmlands lan. Topographical map 10E Karlskoga SV,

coordinates 65515/14033.

Sampling date: 17/11/1983.

Sampl ing site is part of a large flat area drained by embankments and pumps. The

area is part of a peninsula formed between two inlets in the north-west corner

of Lake Vanern. The geological foundation is granite, covered with a thin layer

of glacial clay and postglacial clay with sand layers. The latter were deposited

in varying thicknesses by wave action.

Cl imate (Karlstad recording station): 200 day growing season with mean monthly

temperature = 11.4°c and mean total rainfall = 380 mm.

Cyl inder samples (4 repl icates) were taken from each 10 cm level down to 100 cm.

A full vertical section was extracted and horizontal sections were taken from 10,

25, 60 and 80 cm below the surface (Plate 7).

Soil rofile descri tion. Soil texture is shown by Fig. 45. The topsoil consists

of a sandy medium clay with a low humus content and a high silt content. A very

thin layer of fine sand occurs at 20-30 cm. The subsoil consists of a heavy clay

(30-60 cm) and a layer containing 80 %very fine and fine sand (70-80 cm).

Structure of the soi 1 is dominated by the presence of the sandy layers, which

present a textural barrier to root growth and capillary movement of water.

Porosity varies with the mechanical composition of the layers (Fig. 47). It is

on average, 43 % in the topsoil and 49 % for the full profile. It is lowest (39 %)

in the sand layer at 70 cm and highest (61 %) in the 80-100 cm layer. Wilting

point also varies throughout the profile. It occurs at 26 % moisture in the top­

soil, at 36 % in layers with a high clay content (30-40, 60-70 cm) and at 8 % in

the sandy layer (70-80 cm). Water holding capacity in individual levels varies

accordingly, especially at tensions greater than 2 m water column (Fig. 47).

Available water storage capacity of the soil between full saturation of the pore

space and wilting point is 487-276 = 211 mm. When the watertable 1 ies 1.0 m un­

der the surface, the profile can retain the following amount of water:

Depth (cm) 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100Total(mm)

Since root depth is restricted to above the sand layer at 70 cm, plant available

water at 1.0 m drainage depth in the 0-70 cm layer is 303-207 = 96 mm. This is

adequate to supply the crop only during shorter dry periods.

Permeabil ity is rather low in all layers except 60-70 and 80-100 cm.

57

Page 60: 5 ERI ES L TBRUI

Table 12. Summary of the main physical characteristics of the profile Varmlands Saby 1983

__________-,0..'-."-'05'-------'0-'..-".5__1--'.0 2.0 6.0

Depth(cm)

So lids(vo 1%)

Pores(vol%)

Dry bulk Density Saturateddensity of hydraulic'(g/cm3) sol ids conductivity

________ (g/cm3~m/hou':.L__.

0-10

10-20

20-30

30- L,0

40-50

50-60

60-70

70-80

80-90

90-100

54.3

56.9

59.9

52.0

53. I

L'9.6

48.3

60.7

39.2

38.5

1'5.7

43.1

L'O.1

48.0

1+6.9

50.4

51. 7

39.3

60.8

61.5

1+0.2

41.9

37.7

47.4

46.3

L+9.9

51.1

38.3

59.2

60.5

38.5

41.0

36.8

46.6

L+4.0

48.9

1+9.4

37.3

58.0

59.2

37.1

40.2

35.8

l,6.0

1+2.8

48.3

48.5

36.6

57.3

58.4

36.2

39.4

33.9

1+5.6

40.9

47.8

11].7

32.9

56.7

57.8

31.. 1

37.3

28.8

43.8

35.8

45.6

l12.1

15.6

53.9

54.3

23.5

29.1

24.4

35.5

25.6

31.4

37.3

7.9

29.5

32.2

36.3

39.5

35.9

1~5. 4

41.9

l1].9

48.6

37.5

58. I

60.0

1.59

1. 41

1. 45

1. 35

1. 31

1. 63

1. 06

1. 05

2.72

2.73

2.73

2.71

2.68

2.71

2.73

1 .0

0.02

O.Oll

0.22

0.03

0.08

3.5

0.12

5214

58

Total 512.5 487.5 472.5 1'59.7 451.0 438.9 391.3 276.4 1+51.1(mm)

Page 61: 5 ERI ES L TBRUI

10000

'00 000

ht

nMC

3,2

3.0

2,8

2,6

2,4

2,2

2,0

1,6

1,6

1,4

1,2

1,0

0,8

0,6

0,6

/i,O

4,6

4,4

4,2

l.6

3,6

pF

1

;;6.6

- 6,4

j6,2

6,0

5,8

5,6

5,4

.0,:,2

5,0

moisture content, vol.;c,

Fig. 46. Soil moisture retentioncurves. Vgrmlands 5Mby 1983.

- CO -cc------ i-

,-·rl------

t---,,___• i .1,

k - - t---- - ,- -

\l\if- -

-- 01~ ~ .~ ~ ~q

I ..·-,

I~I ,0

~ 10-20~\---1-'-51: ; ,I, : I:; :::l\ 1 2120" 35

1\1\ "- ,*b 61 '; 5 ; 14 ~:i 4 6

-= ,-

1\I'

--

'\ '\ ".~

t-

',; f'-..;--,-- '" -,,-1-

4 1"- 2 I '" 3rY 1F

F~1:,-f\;,

1\'i-

,_ .. -,

,--f- 1\;7 i-- i-s, i--- ,31·21- ,-

\\~ \,i

.1 , , , I , , , ! i : ! !•

I'02 4 6 8 10 12 14 16 16 20 22 2/, 26 26 30 n 34 36 38 ~o 1,2 1,4 41. 1,8 SO 52 54

0,1

0,0

0,00,00,0

0,0

10,7

0,50,40,3

0,2

3,0 104,3 76.0 57,5 4

10 3

15 2

d,

~~1

("I0,03 1000

0,04 7000,06 5000,00 .1;000.10 300

0,15 2000,20 150

0,30 1000,43 700,60 500,75 I;..(J1,0 30

1,5 20

30436075

100

150

300430600750

1000

1500

Fig. 45. Mechanical composition and1055 on ignition. Vgrmlands Sgby 1983.

10

15

20

25

30

35

,0

i545

~50

55

60

65

70

75

10

15

20

25

30

35

40

45i5

~50

~55

60

65

70

75

80

10

15

20

25

30

35

40

is 45

~50

p 55

60

65

70

75

80

85

90

95

VCUJ:"1~, %

Fig. 47. Volume relations and watertension curves. Vgrmlands Sgby 1983.

Fig. 48. Drainage equil ibriumcurves. Vgrmlands Saby 1983.

59

Page 62: 5 ERI ES L TBRUI
Page 63: 5 ERI ES L TBRUI

Plate 7. Vert1cal profile 0-100 cm and hor1zontal sections at 10, 25, 60 and80 cm depth. Varmlands Saby 1983.

61

Page 64: 5 ERI ES L TBRUI
Page 65: 5 ERI ES L TBRUI

REFERENCES

Andersson, S. 1955. Markfysikal iska undersokningar i odlad jord. VIII, Enexperimentell metod. Grundforbattring 8, specialnummer 2.

Andersson, S, 1962, Markfysikal iska undersokningar i odlad jord. XIII,NAgra teoretiska synpunkter p~ vattenhaltskurvor, dranerings­jamvlkter och porstorleksfordelnlngar, Grundforbattring 15, 51­108,

Andersson, S. & Wiklert, P. 1970. Markfysikal iska undersokningar i odladjord, XX. Studier av nagra markprofl1er i Norrland. Grundfor­battring 23, 3-76,

Andersson, S. & Wiklert, P. 1972. Markfysikal iska undersokningar i odladjord. XXIII. Om de vattenh~llande egenskaperna has svenska jordarter. Grundforbgttring 25, 53-143.

Ekstrom, G. 1927. Klassifikation av svenska ~kerjordar. S.G.U, Ser. C,nr 345, Stockholm.

Food and Agriculture Organization of the United Nations (FAO). Undated.Guide'lines for soil description. Rome.

Johansson, W. 1964. Markfysikal isk karakteristik av sex akerjordsprofiler.Grundforbgttring 17, 267-301.

Wiklert, P. 1964. Studier av vissningsgrgnsen. En modifierad odl ingsmetod.Grundforbattring 17, 1-100.

REPORTS ON SOiL PHYSICAL STUDIES

Andersson, S, 1955. Markfysikaliska undersokningar i odlad jord. IX. Studierav nagra gyttjejordsprofiler i ~rebro lan. Grundforbattring 8,102-138,

Andersson, S, & Wiklert, P. 1960. Markfysikal iska undersokningar i odladjord, XI. Studier av nagra markprofiler pa Ultuna egendom. Grund­forbattring 12, specialnummer 3.

Andersson, S, & Wiklert, P. 1977. Studier av markprofiler i svenska akerjor­dar, En faktasammanstallning.

Del 11, Norrbottens, Vasterbottens, Vasternorrlands och J;:hntlandslan, Avdelningen for lantbrukets hydroteknik, Uppsala. Rapport 104.

De'l ill, Gavleborgs, Kopparbel~gs och Varmlands lan. /~vdelningen f(5rlantbrukets hydroteknik, Uppsala. Rapport 105.

Del IV. f.\lvsborgs och Goteborgs- och Bohuslan. Avdelningen fi5rlantbrukets hydroteknik, Uppsala. Rapport 106.

Hakansson, I. 1968. Fysikal isk och kemisk beskrivning av markprofiler fr~n

8 platser i Uppland och Vastergotland. Rapporter fran Jordbearbet­ningsavdelningen, Uppsala. Nr 1

Wiklert, P. t, Andersson, S. & \.Jeidow, B. 1983. (Bearbetning och publ iceringKarlsson, I. & Hakansson, A,), Studier' av markprofiler i svenskaakerjordar, En faktasammanstallning.

Del V. Skaraborgs lan. Avdelningen for lantbrukets hydroteknik,Uppsala, Rapport 130.

63

Page 66: 5 ERI ES L TBRUI

64

Del VI, orebro och Vastmanlands lan, Avdelningen for lantbruketshydroteknik, Uppsala. Rapport 131.

Del I. Ultuna, Uppsala lan, Avdelningen for lantbrukets hydrotek­nik, Uppsala. Rapport 132,

Del VI I, Uppsala lan, Avdelningen for lantbrukets hydroteknik,Uppsala. Rapport 133.

Del VI I I. Stockholms, Sodermanlands och ostergotlands lan. Avdel­ningen for lantbrukets hydroteknik, Uppsala. Rapport 134.

Del IX. Hallands, Jonkopings, Kronobergs, Kalmar och Gotlands lan.Avdelningen for lantbrukets hydroteknik, Uppsala. Rapport 135.

Del X. Malmohus och Kristianstad Jan, Avdelningen for lantbruketshydroteknik, Uppsala. Rapport 136.

Del XI. Kristianstad lan. Avdelningen for lantbrukets hydroteknik.Rapport 137.

Page 67: 5 ERI ES L TBRUI

Forteckning over utgivna haften i publ ikationsserien

SVERIGES LANTBRUKSUNIVERSITET, UPPSALA. INSTITUTIONEN FOR MARKVETENSKAP.AVDELNINGEN FOR LANTBRUKETS HYDROTEKNIK. RAPPORTER.

125 Berglund, K. 1982. Beskrivning av fern myrjordsprofiler f,an Gotland.55 s.

126 Eriksson, J. 1982. Markpaekning och rotmiljo. Packningsbenagenheten hossvenska akerjordar. Forandringar i markens funktion orsakadeav packning. 138 s.

,

127 Erpenbeek, J.M. 1982. Irrigation Sehedul ing. A review of techniques andadaption of the USDA Irrigation Sehedul ing Computer Programfor Swedish conditions. 135 s.

128 Berglund, K. & Bjorck, R. 1982. Om skordeskadorna i Varmlands lan 1981.Linn~r, H. 1982. Vaxtnaringsbevattning.Eriksson, J. 1982. A field method to check subsurface-drainage efficiency.

129 Karlsson, I. 1982. Soil moisture investigation and classification ofseven soils in the Mbeya region, Tanzania. 56 s.

130 Itliklert, P.t ,Andersson, 5. & Weidow, B. Bearbetning oeh publ icering:Karlsson, I. [; Hakansson, A. 1983. Studier av mar-kprofilele isvenska akerjordar. En faktasammanstallning. Del V. Skaraborgslan. 130 s.

131 Wiklert, P.t ,Andersson, S. & Weidow, Bo Bearbetning oeh publieering:Karlsson, I. & Hakans50n, A. 1983. Studier av markprofiler isvenska ~kerjordar. En faktasammanst511ning. Del Vi. ~rebro

och Vastmanlands lan. 82 s.

132 Wiklert, P.t ,Andersson, 5. & Weidow, 8. 8earbetning och pub1 ieering:Karlsson, I. & H~kansson, A. 1983. Studier av rnar-kprofiler isvenska akerjordar. En faktasarnmanst51lnlng. Del I. Ultuna,Uppsala lan. 125 s.

133 Wiklert, P.t ,Andersson, 5. & Weidow, 8. Bearbetning och publ leering:Karlsson, I. & Hakansson, A. 1983. Studier av markprofiler Isvenska ~kerjordar. En faktasammansta1lning. Del Vii. Uppsalalan. 140 s.

134 Wiklert, P.t ,Andersson, S. & Weidow, B. Bearbetning och pub1 leering:Karlsson, I. & Hakansson, A. 1983. 5tudier av markprofiler isvenska akerjordar. En faktasammanstallning. Del VII!. Stock­holms, Sodermanlands oeh ostergotlands lan. 12? s.

135 Wiklert, P.t ,Andersson, S. & Weidow, B. Bearbetning oeh publ leering:Karlsson, I. & Hakansson, t\. 1983. Studier av markprofiler isvenska akerjordar. En faktasammanstallning. Del IX. Hallands,JBnk6pings, Kronobergs, Kalmar och Gotlands lan.104 s.

136 Wiklert, P.t ,Andersson, S. & Weidow, B. Bearbetning och publ ieering:Karlsson, I. & Hakansson, A. 1983. Studier av markprofiler isvenska akerjordar. En faktasammanstallning. Del X. Malm6husoch Kristianstads Jan. 116 5.

137 Wiklert, P.t ,Anders50n, S. & Weidow, B. Bedrbetning oeh publ ieering:Kar)sson, I. & Hakansson, A. 1983. 5tudier av markprofiler isvenska akerjordar. En faktasammanstallning. Del XI. Kristian<­stads lan. 110 s.

65

Page 68: 5 ERI ES L TBRUI

138 Berg1und, G., Huhtasaari, Co & Ingeva11, A. 1984. Dranering av jordar medrostprob1em. 20 s.

Ingeva11, A. 1984. Dranering av tryckvatten. 10 s.

139 Persson, R. 1984. Vattenmagasin f6r bevattning. 57 s.

140 Ingevall, A. 1984. Berakning av lerhalt fran vattenha1tsdata. En jamf6re1seme11an hygroskopicitets- och vissningsgransdata som underlag f6r6versikt1 ig jordartsbestamning. 61 s.

141 A1 inder, S. 1984. A1 ternativa bevattningsformer. I. Bevattningsramp. 29 s.

142 Linner, H. 1984. Markfuktighetens inf1ytande pa evapotranspiration, ti11­vaxt, naringsupptagning, avkastning och kval itet hos potatis(Solanum Tuberosum L.l. 153 s.

143 McAfee, M. 1984. Drainage of Peat Soils. A 1iterature review. 38 s.

144 Messing, I. 1985. Inverkan av tung k6rning pa mark yid tva tidpunkter undervarperioden. En markfysika1 isk studie av en 1erjord i Revingeheds­omradet. 20 s.

145 Jonsson, B. 1985. Organiska och syntetiska fibermaterial som dranerings­f i 1te r. 46 s.

146 Eriksson, L., Fabricius, M., Danielsson, E., Hu1tman, B., Juto, H. ochHuhtasaari, C. 1985. De od1ade jordarna i Norrbottens och Vasterbottens

1an. 84 s.

147 McAfee, M. 1985. The Rise and Fall of Ba1 inge Mossar. 69 s.

148 Johansson, W., Gustafsson, E.-L. & McAfee, M. 1985. Description of physicalproperties of twelve cultivated soils. 64 s.

66

Page 69: 5 ERI ES L TBRUI

 

Page 70: 5 ERI ES L TBRUI