4H-SiC MOSFETs with: (i) Phosphosilicateglass gate ...neil/SiC_Workshop... · 900C PSG 1000C PSG...

37
C. Jiao, Y. Zheng, A. Modic, T. I. Smith, A. C. Ahyi and S. Dhar Dept. of Physics, Auburn University, Auburn, AL, USA 4H-SiC MOSFETs with: (i) Phosphosilicate glass gate dielectric (ii) Surface counter-doping with Sb 10 th ARL SiC MOS Workshop, College Park, MD, Aug 13, 2015

Transcript of 4H-SiC MOSFETs with: (i) Phosphosilicateglass gate ...neil/SiC_Workshop... · 900C PSG 1000C PSG...

C. Jiao, Y. Zheng, A. Modic, T. –I. Smith, A. C. Ahyi

and S. Dhar

Dept. of Physics, Auburn University, Auburn, AL, USA

4H-SiC MOSFETs with: (i) Phosphosilicate glass

gate dielectric (ii) Surface counter-doping with Sb

10th ARL SiC MOS Workshop, College Park, MD, Aug 13, 2015

Channel mobility problem in SiC power MOSFETs

2

• Channel mobility in commercial MOSFETs low ~20 cm2 V-1 s-1

• Channel can contribute up to 50% of total on-resistance

• Higher mobility Smaller chip size, lower operating oxide fields, less design

constraints, lower blocking voltages etc.

channel

channelR

1∝

J. W. Palmour et al., ISPSD 2014

SiO2-4H-SiC interface traps

3

Interface traps reduce both n and by trapping and Coulomb scattering

4H-SiC%1

bulk

ch

Nano-scale

imperfections and

defects at/near the

SiO2/SiC interface

Oxide

SiC

current

J = .E = q.n.µ.E

21310~ cmNit (as-oxidized, without passivation)

3

Schorner et al IEEE EDL, 20, 241 (1999)

0 5 10 15 20

0.0

5.0x1012

1.0x1013

Experiment

Model

Ele

ctr

on c

oncentr

ation (

cm

-2)

Gate Voltage (V)

Ideal model

Slope=Cox/q

Measured

slope≈Cox/q

1175C NO

annealing, tox=

550 A

4

Interface trap passivation

Ele

ctr

on d

ensity (

10

12 c

m-2

)

Gate Voltage (V)

Ideal model

Slope=Cox/q

Measured

Slope<<Cox/q

E. Arnold et al. IEEE Trans. Elec. Dev (2001)

• As-ox: >90% free e- remain

trapped 4

Cox= SiO2

capacitance

S. Dhar et al. Jn. Appl. Physics (2010)

• NO: Reduction of trap density:

>1013 cm-2 ~1012 cm-2

As-oxidized NO annealed

Si MOSFET: ‘Universal’ mobility behavior

5

Takagi et al.,IEEE TED, 12, 2357 (1994)

• Low electron density n:

Coulomb scattering

• Moderate n, moderate

temperature: Phonon

scattering

• High n: Surface

roughness scattering

1/ch= 1/phonon + 1/coulomb +1/SR

Mobility in NO annealed 4H-SiC MOSFET

6

50 100 150 200 250 300 350 400 45010

15

20

25

30

35

40

45

Ha

ll M

ob

ility

(cm

2 V

-1 s

-1)

Temperature (K)

ns: 7.4E11 cm

-2

ns: 1.4E12 cm

-2

ns: 4.0E12 cm

-2

ns: 5.0E12 cm

-2

T1

n increasing

No ndependence

Regime 1 Regime 2

S. Dhar et al., ICSCRM (2011) T< 373 K, T µ

• Coulomb

scattering

• Thermally

activated

transport

T >400 K, T µ

• Coulomb

scattering at low

fields

• Phonon and

surface

roughness

scattering at

high E fields

1175C NO

tox= 550 A

Summary of 4H-SiC MOS interface treatments

7

• Group I :

• Hydrogen/wet anneals: μ> 200 cm2 V-1s-1 Si-face, weakly bonded, instability

• Na, K: μ~ 200 cm2 V-1s-1 , heavy instability

(mid 2000s, Chalmers Univ., Sweden)

• Cs, Rb: μ~ 40 cm2 V-1s-1 , high Dit ,

Lichtenwalner et al., Appl Phys Lett. (2014)

• Group II: Alkaline earth metals

• Ca, Ba, Sr (oxide interlayers): μ~ 90 cm2 V-1s-1 , low Dit,

Lichtenwalner et al., Appl Phys Lett. (2014)

• Group III:

• B (Borosilicate glass): μ~ 100 cm2 V-1s-1 , low Dit,

Okamoto et al., IEEE EDL, (2014)

• Group V:

• N (Various processes): μ~ 35 cm2 V-1s-1 , low Dit , most reliable oxide

Most widely studied SiC MOS system 2000-2014

• P (Phosphoslicate glass): μ~ 100 cm2 V-1s-1 , low Dit , poor long term stability

Okamoto et al., IEEE EDL, (2010)

• Sb (surface doping) + N: μ~ 100 cm2 V-1s-1 , low Dit , technologically promising

Modic et al., IEEE EDL, (2014)

THIS TALK

Scaling between interface trap density and mobility

1/ch= 1/phonon + 1/coulomb +1/SR

0 2 4 6 8 10 12 140

10

20

30

40

50

60

70

80

90

Max. m

obili

ty (

cm

2V

-1s-1

)

No. of interface traps (1011

cm -2)

Phospho-silicate glass (PSG)

‘Thin PSG’

N3 =Standard NO

NO + H

N0

N4

N1N2

• NO annealing: Most

established trap

passivation method

• scales with number of

interface traps (Rozen et al.

IEEE TED, 2011)

• Trapping and Coulomb

scattering limited at low

gate voltages

8

Recent Results: Non-scaling between trapping and mobility

0 2 4 6 8 10 12 140

20

40

60

80

100

120

140

Max. m

obili

ty (

cm

2V

-1s

-1)

No. of interface traps (1011

cm -2)

PSG (a-face)

PSG process A

NO (a-face)

N plasma (Si-face)

• Surface counter

doping by N and P

• Inaccurate Dit

measurements as

‘fast traps’ not

included. (Yoshioka

et al. , J. Appl.

Phys., 2012)

1/ch= 1/phonon + 1/coulomb + 1/SR

9

Surface counter-dopingFiorenza et al. APL, 103, 153508 (2013)

• Nitridation and phosphorus

treatments lead to unintentional

surface counter-doping 10

‘Fast states’ and the C-ψs method

11

What is PSG?

12

SiO2

SiC

PSG

SiCSiO2 + P2O5 (P2O5)x(SiO2)1-x

Advantages and disadvantages:

Low Dit

High µ𝑓𝑒 Instability

Polarization at low E-field stress

Electron/hole trapping at high E-field stress

Phosphosilicate glass (PSG) formation process

13

4POCl3 + 3O2 2P2O5 + 6Cl2Condition:

Maintain POCl3 at 15°C; bubble through by N2;

Anneal at 900~1100°C (15min) flowing O2;

Post anneal (drive-in, 30min) with N2 at same temperature as annealing.

Allows the study of annealing temperature variation

900~1100°C

Phosphorus uptake with temperature variation

14

0

1

2

3

4

5

6

7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

900 950 1000 1050 1100

P interface coverage

P bulk percentage

P in

terf

ace

co

vera

ge (

10

14

cm-2

)

Annealing T (°C)

Courtesy: C. Xu and L.C. Feldman, Rutgers Univ.

15

Reason for different P uptake

POCl3temp

Bulk P

percent (%)

x value

900°C 6.7 0.115

950°C 5.2 0.087

1000°C 4.6 0.076

1050°C 4.6 0.076

1100°C 4.2 0.069

During the drive-in annealing, some

P2O5 is lost to the gas phase by

evaporation.

(P2O5)x (SiO2)1-x

Reference: P. Balk and J.M. Eldridge,

“Phosphosilicate Glass Stabilization of FET

devices”, IEEE, 1969

C-ψs characterization

16

Courtesy: C-ψs code provided by D. Morisette, Purdue Univ.

Taking ‘fast states’

into account, higher

P coverage leads to

lower Dit1E+09

1E+10

1E+11

1E+12

1E+13

0.2 0.3 0.4 0.5 0.6 0.7 0.8

950C PSG

1000C PSG

1100C PSG

Dit

(cm

-2*e

V-1

)

Ec - E (eV)

Interface traps correlation with P coverage

100K100K

17

NOPSG

PSG: Lower density of ‘fast traps’

Wei-Chieh Kao et al., Semiconductor Science and Tech., 2015

Low temperature G-ω measurement

PSG Instability

0.00E+00

2.00E-11

4.00E-11

6.00E-11

8.00E-11

1.00E-10

1.20E-10

1.40E-10

1.60E-10

1.80E-10

-10 -5 0 5 10

d1

d1 5m

Cap

acit

ance

(F)

Voltage (V)

∆V ~ -2.9V

1000 °C PSG

0.00E+00

2.00E-11

4.00E-11

6.00E-11

8.00E-11

1.00E-10

1.20E-10

1.40E-10

1.60E-10

-10 -5 0 5 10

b2

b2 5m

Cap

acit

ance

(F)

Voltage (V)

∆V ~ 0.65V

1100 °C PSG

BTS condition: 150°C, +1.5MV/cm,

5 min

18

Two competing mechanisms of instability:trapping and polarization

BTS: qNnet = q(Ntrp - Npol) = Cox × ∆VFB(1)

Relaxation (20 days): Npol ≈ 0 , qNtrp = Cox × ∆VFB(2)

(assumption: electron trapping relaxes much slower than polarization)

T (°C) Npol (×1012 cm-2) Ntrp(×1012 cm-2)

1000 1.23 0.77

1050 0.40~0.66 0.60~1.45

1100 0.32 0.88

Devices with 1 h BTS:

Polarization scales with phosphorus uptake.

P

19

0

20

40

60

80

100

0 1 2 3 4 5

900C PSG

1000C PSG

1100C PSG

µfe

(cm

2V

-1s

-1)

Eox (MV/cm)

Field-effect mobility µ𝑓𝑒 dependence on P

20

At high E-field,

mobility of 1000°C

PSG is highest.

Possible reason:

Trade-off between

trap passivation and

counter-doping

P-type SiC

N+ N+

Mo Gate

PSGNi Ni

L = 150μm,

W = 290μm

Temperature dependence of mobility: PSG

21

1

µ=

1

µ𝑐+

1

µ𝑠𝑟+

1

µ𝑠𝑝

µ𝑐 : T ↑, µ𝑐 ↑

µ𝑠𝑝 : T ↑, µ𝑠𝑝 ↓

µ𝑠𝑟 : weak T dependence

900 oC PSG

1100 oC PSG

PSG Summary

• POCl3 annealing temperature variation causes different P

interface coverage

• Correlation: higher P coverage results in lower Dit

• Two competing mechanisms of instability identified: trapping

and polarization. Polarization charge scales with P uptake.

• Correlation between P coverage and µ𝑓𝑒 needs further

investigation

• Temperature dependence of µ𝑓𝑒 shows different limiting

mechanisms: Coulomb scattering µ𝑐 and surface roughness

scattering µ𝑠𝑟.

22

Separation of trap passivation and counter-

doping effects

• Difficult to investigate using N or P

as they result in both effects

• Heavier dopants (As, Sb) not

expected to chemically passivate

dangling bonds

• Surface counter-doping with Sb

23

Effects of surface counter-doping

p-type

Semiconductor

Dielectric

Metal~1-3 nm

doped n-type

• Higher carrier density at same E

• Less traps filled at VT due to less band-

bending, efficient screening (C )

• E SR for same carrier density • Ideally VT reduction is smaller as

counter-doping thickness is

reduced

• In practice, VT determined by

combination of doping and

interface charge 24

Sb surface doping processSIMS

25

Sb profile after oxidation

• ~75% of Sb lost during

oxidation

• Total interfacial amount

: ~5.7E12 cm-2

• Total activated

amount:~10%

• Width of profile limited

by depth resolution of

SIMS. Layer < 10 nm

• No crystal damage

detected by ion

scattering

SiCSiO2

FWHM

~10 nm

26

Surface counter-doping results

p-well: 6E15 cm-3

Sb+NO

T=300 K

Sample

OXIDE

THICKNESS

(NM)

Threshold

voltage (V)

FE, max (cm2

V-1 s-1)

NO 60 2.0 32

Sb 65 1.5 80

Sb+NO 80 1.1 110 27

Sb acts as a dopant but does not passivate traps

28

n type

Ec

Ei

EF

Ev

---

V EFn type

Ec

Ei

EF

Ev

----

V EF-

Low temperature High temperature

‘Sb only’ ‘Sb + NO’

Temperature dependence of ‘Sb+NO’ mobility

• Low field performance at high temperature better than NO

• High field performance at higher temperature similar to NO

• Low temperature behavior same as NO

‘Universal’ mobility behavior for NO annealed

interfacesF

E m

obili

ty (

cm

2V

-1 s

-1)

‘Sb+NO’: Threshold voltage stability

32

Sb process applied to heavier doped p-wells:

P-body doping Standard NO(no Sb) Sb 2.5E13cm-2 Sb 5E13cm-2

Al 1E17 1 1 1

Al 5E17 1 1 1

Sb

Al

1.00E+15

1.00E+16

1.00E+17

1.00E+18

1.00E+19

1.00E+20

0 500

100

0

150

0

200

0

250

0

300

0

350

0

400

0

450

0

ion

s/c

m3

Range (A)

Al Implant concentration 1e17/cm3: mask Mo 1000 A, SiO2 150 A

Sb, 80 KeV, 2.5e13

Sum Al implant

Oxide ends

33

P-well: 1E17 cm-3, tox: ~60 nm

Sb process applied to heavier doped p-wells:

Main advantage of surface counter-doping : Higher sub-threshold slope

0

5

10

15

20

25

30

35

0 1 2 3 4

Mo

bil

ity (

cm

2V

-1s

-1)

E-field (MV/cm)

standardNO

Sb 2.5E13

Sb5E13

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

0 1 2 3 4 5 6 7 8 9 101112

standardNO

Sb2.5E13

Vg

I d(A

mps)

Vg

I d(A

mps)

Vg

I d(A

mps)

I d(A

mps)

34

P-well: 5 E17 cm-3, tox: ~60 nm

Sb process applied to heavier doped p-wells:

• Higher S can be obtained on heavy p-wells

• Process optimization: Uneven activation/loss of Sb

Summary

• Highlights of recent SiC MOS channel engineering results

presented

• Transport limited by ‘fast traps’ and ‘surface roughness’

• Details of these mechanisms not clear

• ‘Universal’ mobility behavior in SiC MOSFETs identified

• PSG is a unique model system to study channel transport

with minimal effects of trapping

• Surface counter-doping processes have strong potential for

threshold voltage control and sub-threshold slope

improvement in practical MOSFETs

35

Acknowledgements• A. C. Ahyi, T.-Isaacs Smith, A.

Modic, C. Jiao, Y. Zheng

(Auburn group)

• G. Liu and L. C. Feldman

(Rutgers University)

• D. Morissette and J.A. Cooper

(Purdue University)

• S.T. Pantelides and group

(Vanderbilt University)

• P. Mooney (Simon Fraser

University)

• M. Goryll (Arizona State)

• R. Kaplar (Sandia)

• A. Lelis (ARL)

36

THANK YOU !!

37