4/6/2015 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm...

21
4/6/2015 1 Transition Metals in Coordination Chemistry IA VIIIA 1 H 1.008 IIA IIIA IVA VA VIA VIIA 2 He 4.003 3 Li 6.941 4 Be 9.012 IIIB IVB VB VIB VIIB VIII IB IIB 5 B 10.811 6 C 12.011 7 N 14.007 8 O 15.999 9 F 18.998 10 Ne 20.180 11 Na 22.990 12 Mg 24.305 13 Al 26.982 14 Si 28.086 15 P 30.974 16 S 32.065 17 Cl 35.453 18 Ar 39.948 19 K 39.098 20 Ca 40.078 21 Sc 44.956 22 Ti 47.867 23 V 50.942 24 Cr 51.996 25 Mn 54.938 26 Fe 55.845 27 Co 58.933 28 Ni 58.693 29 Cu 63.546 30 Zn 65.409 31 Ga 69.723 32 Ge 72.64 33 As 74.921 34 Se 78.96 35 Br 79.904 36 Kr 83.798 37 Rb 85.468 38 Sr 87.62 39 Y 88.906 40 Zr 91.224 41 Nb 92.906 42 Mo 95.94 43 Tc (98) 44 Ru 101.07 45 Rh 102.906 46 Pd 106.42 47 Ag 107.868 48 Cd 112.411 49 In 114.818 50 Sn 118.710 51 Sb 121.760 52 Te 127.60 53 I 126.904 54 Xe 131.293 55 Cs 132.905 56 Ba 137.327 71 Lu 174.967 72 Hf 178.49 73 Ta 180.948 74 W 183.84 75 Re 186.207 76 Os 190.23 77 Ir 192.217 78 Pt 195.078 79 Au 196.967 80 Hg 200.59 81 Tl 204.383 82 Pb 207.2 83 Bi 208.980 84 Po (209) 85 At (210) 86 Rn (222) 87 Fr (223) 88 Ra 226.025 103 Lr (262) 104 Rf (261) 105 Db (262) 106 Sg (266) 107 Bh (264) 108 Hs (277) 109 Mt (268) 110 Ds (281) 111 Rg (272) 112 (285) 113 114 (289) 115 116 117 118 57 La 138.906 58 Ce 140.116 59 Pr 140.908 60 Nd 144.24 61 Pm (145) 62 Sm 150.36 63 Eu 151.964 64 Gd 157.25 65 Tb 158.925 66 Dy 162.500 67 Ho 164.930 68 Er 167.259 69 Tm 168.934 70 Yb 173.04 89 Ac 227.028 90 Th 232.038 91 Pa 231.036 92 U 238.029 93 Np 237.048 94 Pu (244) 95 Am (243) 96 Cm (247) 97 Bk (247) 98 Cf (251) 99 Es (252) 100 Fm (257) 101 Md (258) 102 No (259) Cn (284) (289) (294) (294) (291) d 6 d 5 Fe 4s 3d Fe 2+ 4s 3d Fe 3+ 4s 3d d 10 d 9 Cu 4s 3d Cu + 4s 3d Cu 2+ 4s 3d described by # valence d e d e first row M 2+ ions = Z 20 Fl Lv “Even when they are saturated in the sense of the older theory of (primary) valence, the elementary atoms still possess sufficient chemical affinity to bind other seemingly also saturated atoms and groups of atoms, under generation of clearly defined atomic bonds. This doctrine has now been so amply confirmed experimentally by investigations of a very large number of molecular compounds which are now called complex compounds, that we can make it the starting-point of further developments.” Alfred Werner 1913 Nobel Prize Lecture Complex Compounds

Transcript of 4/6/2015 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm...

Page 1: 4/6/2015 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Ybchemistry.bd.psu.edu/jircitano/413ch111213b.pdf · Ligand Field Theory (LFT) 3. Crystal Field Theory (CFT) Carl Ballhausen Danish

4/6/2015

1

Transition Metals in Coordination Chemistry IA VIIIA

1

H 1.008 IIA

IIIA IVA VA VIA VIIA

2

He 4.003

3

Li 6.941

4

Be 9.012

IIIB IVB VB VIB VIIB VIII IB IIB

5

B 10.811

6

C 12.011

7

N 14.007

8

O 15.999

9

F 18.998

10

Ne 20.180

11

Na 22.990

12

Mg 24.305

13

Al 26.982

14

Si 28.086

15

P 30.974

16

S 32.065

17

Cl 35.453

18

Ar 39.948

19

K 39.098

20

Ca 40.078

21

Sc 44.956

22

Ti 47.867

23

V 50.942

24

Cr 51.996

25

Mn 54.938

26

Fe 55.845

27

Co 58.933

28

Ni 58.693

29

Cu 63.546

30

Zn 65.409

31

Ga 69.723

32

Ge 72.64

33

As 74.921

34

Se 78.96

35

Br 79.904

36

Kr 83.798

37

Rb 85.468

38

Sr 87.62

39

Y 88.906

40

Zr 91.224

41

Nb 92.906

42

Mo 95.94

43

Tc (98)

44

Ru 101.07

45

Rh 102.906

46

Pd 106.42

47

Ag 107.868

48

Cd 112.411

49

In 114.818

50

Sn 118.710

51

Sb 121.760

52

Te 127.60

53

I 126.904

54

Xe 131.293

55

Cs 132.905

56

Ba 137.327

71

Lu 174.967

72

Hf 178.49

73

Ta 180.948

74

W 183.84

75

Re 186.207

76

Os 190.23

77

Ir 192.217

78

Pt 195.078

79

Au 196.967

80

Hg 200.59

81

Tl 204.383

82

Pb 207.2

83

Bi 208.980

84

Po (209)

85

At (210)

86

Rn (222)

87

Fr (223)

88

Ra 226.025

103

Lr (262)

104

Rf (261)

105

Db (262)

106

Sg (266)

107

Bh (264)

108

Hs (277)

109

Mt (268)

110

Ds (281)

111

Rg (272)

112

C (285)

113

C 12.011

114

C (289)

115

C 12.011

116

C (289)

117

C 12.011

118

57

La 138.906

58

Ce 140.116

59

Pr 140.908

60

Nd 144.24

61

Pm (145)

62

Sm 150.36

63

Eu 151.964

64

Gd 157.25

65

Tb 158.925

66

Dy 162.500

67

Ho 164.930

68

Er 167.259

69

Tm 168.934

70

Yb 173.04

89

Ac 227.028

90

Th 232.038

91

Pa 231.036

92

U 238.029

93

Np 237.048

94

Pu (244)

95

Am (243)

96

Cm (247)

97

Bk (247)

98

Cf (251)

99

Es (252)

100

Fm (257)

101

Md (258)

102

No (259)

Cn (284) (289) (294) (294) (291)

d 6

d 5

Fe 4s 3d

Fe2+ 4s 3d

Fe3+ 4s 3d

d 10

d 9

Cu 4s 3d

Cu+ 4s 3d

Cu2+ 4s 3d

described by # valence d e–

d e– first row M2+ ions = Z – 20

Fl Lv

“Even when they are saturated in the sense of the older theory

of (primary) valence, the elementary atoms still possess sufficient

chemical affinity to bind other seemingly also saturated atoms and

groups of atoms, under generation of clearly defined atomic bonds.

This doctrine has now been so amply confirmed experimentally by

investigations of a very large number of molecular compounds which

are now called complex compounds, that we can make it the

starting-point of further developments.”

Alfred Werner 1913 Nobel Prize Lecture

Complex Compounds

Page 2: 4/6/2015 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Ybchemistry.bd.psu.edu/jircitano/413ch111213b.pdf · Ligand Field Theory (LFT) 3. Crystal Field Theory (CFT) Carl Ballhausen Danish

4/6/2015

2

F– fluoro

Cl– chloro

Br– bromo

I– iodo

CN– cyano

1. anionic ligands a. most have –o ending:

NO2 – nitro

OCN– cyanato

SCN– thiocyanato

CO32– carbonato

C2O42– oxalato

CH3COO– acetato

S2O32– thiosulfato

OH– hydroxo

NCO– isocyanato

NCS– isothiocyanato

H– hydrido

N3– azido

O22– peroxo

NO3– nitrato

O2– oxo

S2– thio

SH– mercapto

N3– nitrido

acetylacetonato

2,4-pentanedionato

acac

dimethylglyoximato

DMG

Mn+

Mn+

Nomenclature

N N O HO

O-N-O – nitrito

nitrito - N nitrito - O

thiocyanato - S thiocyanato - N

cyanato - O cyanato - N

H

O O

CH3– methyl

C6H5– phenyl

CH2 = CH– enyl

b. hydrocarbon anion –yl ending

cyclopentadienyl Cp

pentamethylcyclopentadienyl Cp*

Nomenclature

1. anionic ligands

allyl

(– H+)

Page 3: 4/6/2015 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Ybchemistry.bd.psu.edu/jircitano/413ch111213b.pdf · Ligand Field Theory (LFT) 3. Crystal Field Theory (CFT) Carl Ballhausen Danish

4/6/2015

3

a. usually compound’s name

ethylenediamine en

N N

N N

bipyridine bipy

o-phenanthroline o-phen

H2O aqua

NH3 ammine

CO carbonyl

b. exceptions

NO nitrosyl

N2 dinitrogen

O2 dioxygen

H2N NH2

Nomenclature

2. neutral ligands

tri(R)phosphine

PPh3 P

R R

R

ethene (ethylene)

CH2

CH2

M

R = phenyl

PMe3 methyl

PtBu3 t-butyl

c. oxidation state

Roman numerals in parentheses: Stock notation

a. cationic or neutral complex

metal name unchanged

b. anionic complex

L form (usually like symbol) with –ate ending

cuprate ferrate aurate argenate

Alfred Stock

German

(1876-1946)

Nomenclature

3. metal

Cr3+

Fe2–

Ni

chromium(III)

nickel(0)

iron(–II)

no space!

Page 4: 4/6/2015 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Ybchemistry.bd.psu.edu/jircitano/413ch111213b.pdf · Ligand Field Theory (LFT) 3. Crystal Field Theory (CFT) Carl Ballhausen Danish

4/6/2015

4

6. # of each ligand type with prefixes

a. short names di, tri, tetra, penta

b. long names bis, tris, tetrakis, pentakis

4. order

a. cation, anion

b. ligands first; attach directly to metal name

c. alphabetical order

5. a. neutral ligand name in parentheses

except for H2O, NH3, CO, NO

b. short anions not in parentheses

c. long anions (4 syllables) in parentheses

d. bridging ligands (2 metal ions) μ- (mu) before name

Putting it Together

[Co(NH3)6](NO3)3

Na[PtCl3(NH3)]

[Ni(en)2]Cl2

[Ni(CH2CH2)2(NH3)2]2+

[Pt(NH3)2Cl2]

Naming Examples

Page 5: 4/6/2015 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Ybchemistry.bd.psu.edu/jircitano/413ch111213b.pdf · Ligand Field Theory (LFT) 3. Crystal Field Theory (CFT) Carl Ballhausen Danish

4/6/2015

5

( )

sepulchrate

tomb or burial chamber

L sepulcrum “to bury”

[Co(sep)] 3+

cryptate

L crypta “concealed”

burial vault

sepulchre

crypt

Laboratory Synthesis

Co

NH

NH

HN

HN

HN

HN

N

N

similar to VSEPR

2 linear

Ph3P

PPh3

PPh3

Pt

3 trigonal planar

L

M

L L

L

4 Td

common Ni2+, Pd2+, Pt2+, Cu2+

L

M L L

L

or square planar

L M L

L

L

L

5 square pyramid

or trigonal bipyramid

6 Oh or trigonal prism isomers…

Geometry

M L

L L

L

L

M L

L L

L

L

L

M

L L

L L

L

L

rare Pt0

[H3N–Ag–NH3]+

Page 6: 4/6/2015 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Ybchemistry.bd.psu.edu/jircitano/413ch111213b.pdf · Ligand Field Theory (LFT) 3. Crystal Field Theory (CFT) Carl Ballhausen Danish

4/6/2015

6

[Co(NH3)5NO2]2+ [Co(NH3)5ONO]2+

[Pd(PPh3)2(NCS)2] [Pd(PPh3)2(SCN)2]

Linkage Isomers

[PtBr2(NH3)4]Cl2

Coordination Isomers

[Co(NH3)5Br]SO4 [Co(NH3)5SO4]Br

[PtCl2(NH3)4]Br2

[Co(en)3][Cr(CN)6] [Cr(en)3][Co(CN)6]

[Pt(NH3)4][PtCl6] [Pt(NH3)4Cl2][PtCl4]

Page 7: 4/6/2015 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Ybchemistry.bd.psu.edu/jircitano/413ch111213b.pdf · Ligand Field Theory (LFT) 3. Crystal Field Theory (CFT) Carl Ballhausen Danish

4/6/2015

7

Geometrical Isomers

NH3

Pt NH3 Cl

Cl

Pt

Cl

Cl Cl

Cl

NH3

NH3

NH3

Pt Cl Cl

NH3

Pt

Cl

Cl NH3

NH3

Cl

Cl

Co

Cl

Cl Cl

NH3

NH3

NH3

Co

H3N

Cl Cl

NH3

NH3

Cl

Conformational Isomers

Ni

NC

NC CN

CN

CN

NC Ni

CN

CN

CN

CN

[Ni(CN)5]3–

[Cr(C2O4)3]3–

Optical Isomers

Cr

O

O O

O

O

O

O

O O

O

O

O

Cr

L D righthand helix lefthand helix

Page 8: 4/6/2015 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Ybchemistry.bd.psu.edu/jircitano/413ch111213b.pdf · Ligand Field Theory (LFT) 3. Crystal Field Theory (CFT) Carl Ballhausen Danish

4/6/2015

8

bis(ethylenediamine)nickel(II)

cis-di(ethylene)diamminenickel(II)

Formula Examples

sodium pentacyanonitrosylferrate(II)

sodium pentacyanonitrosylferrate(IV)

sodium pentacyanonitrosylferrate(III)

μ-hydroxobis[pentaamminechromium(III)] chloride

Bonding in Coordination Compounds

theory needs to explain special properties:

magnetism, spectroscopy (color), reactivity (labile, inert)

4. Ligand Field Theory (LFT)

3. Crystal Field Theory (CFT)

Carl Ballhausen

Danish

1950’s

John H. van Vleck

American

1932

starts with CFT, adds covalency

d orbitals

1. VB hybridization

2. MO most rigorous

assumes ionic bonding;

Page 9: 4/6/2015 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Ybchemistry.bd.psu.edu/jircitano/413ch111213b.pdf · Ligand Field Theory (LFT) 3. Crystal Field Theory (CFT) Carl Ballhausen Danish

4/6/2015

9

Oh Crystal Field Splitting

x

y

dxy

x

z

dxz dyz

x

y

dx2 – y2

x

z

dz2

x

y

z

y

z

3. nature of L

X very weak

S, O weak

N, P moderate

C very strong

Crystal Field Splitting: Magnitude of D

I– < Br– < OCrO32– < Cl– SCN– < N3

– < F– SSO32– urea (O)

< OCO22– < OCO2R

– < ONO– OH– < OSO32– < ONO2

– < O2CCO22–

< H2O < NCS– < glycine EDTA4– < pyridine NH3 < en < SO32–

< bipy < o-phen < NO2– < PPh3 < Cp < CN– < CO

[Cu

(OC

O2 P

h)

6 ]2+

[Cu

(H2 O

)6 ]

2+

[Cu

(ED

TA

)6 ]

2+

Spectrochemical Series

Page 10: 4/6/2015 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Ybchemistry.bd.psu.edu/jircitano/413ch111213b.pdf · Ligand Field Theory (LFT) 3. Crystal Field Theory (CFT) Carl Ballhausen Danish

4/6/2015

10

yz xz

z2

x2 – y2 xy

xy yz xz

x2 – y2 z2

xy

Other Geometries

linear

z2

yz xz

x2 – y2 xy

trigonal

yz xz

x2 – y2 xy

z2

tetrahedral square

planar

x2 – y2

trigonal

bipyramidal

z2

yz xz

square

pyramidal

x2 – y2

yz xz

z2

xy

octahedral

xy yz xz

x2 – y2 z2

center of

gravity

M M M M M M M

Crystal Field Stabilization Energy Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn

ΔH

La

ttic

e o

f M

Cl 2

(k

J/m

ole

)

d 0 d

1 d 2 d

3 d 4 d

5 d 6 d

7 d 8 d

9 d 10

d 0 d 1 d 2 d 3 d 4 d 5 d 6 d 7 d 8 d 9 d 10

80

85

90

95

100

105

110

115

Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn

M2

+ I

on

ic R

ad

ius

(pm

)

60

65

70

75

80

85

90

Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga

M3

+ I

on

ic R

ad

ius

(pm

)

d 0 d 1 d 2 d 3 d 4 d 5 d 6 d 7 d 8 d 9 d 10

–2900

–2800

–2700

–2600

–2500

–2400

–2300

–2200

Page 11: 4/6/2015 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Ybchemistry.bd.psu.edu/jircitano/413ch111213b.pdf · Ligand Field Theory (LFT) 3. Crystal Field Theory (CFT) Carl Ballhausen Danish

4/6/2015

11

“A non-linear molecule in a degenerate electronic state will … undergo

distortion to … lower symmetry and lower E thereby removing degeneracy."

particularly important: Cu2+ d 9

Cu(NH3)62+ 4 Cu-N 2.07 Å

2 Cu-N 2.62 Å

Cu(DMG)2(H2O)2 4 Cu-N 1.94 Å

2 Cu-O 2.43 Å

Jahn-Teller Effect in Cu2+

CuCl2 4 Cu-Cl 2.30 Å

2 Cu-Cl 2.95 Å H

Cu

N

N N

N

OH2

OH2

O O

O O

H

Edward Teller

Hungarian - American

Hermann A. Jahn

English 1937

Jahn-Teller Effect in Cu2+

D3 symmetry at Cu2+

z2

x2– y2 xy

xz yz

dynamic Jahn-Teller distortion

all Cu–N bonds same length

Cu(MeTRI)22+

N

N

N

Page 12: 4/6/2015 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Ybchemistry.bd.psu.edu/jircitano/413ch111213b.pdf · Ligand Field Theory (LFT) 3. Crystal Field Theory (CFT) Carl Ballhausen Danish

4/6/2015

12

M M M

M M M

Bonding Orbitals

A1g Eg

T1u

and dx2– y2) (M s) (M dz2

(M p)

absorption spectra from e– transitions between orbitals

d

s

p

t1u

a1g

eg

t2g

t1u*

a1g*

eg*

t2g

t1u

a1g

eg ligand

s SALC

t1u

a1g

eg

metal

orbitals

L M

M L

L L

d d TM color

Charge Transfer (CT)

IR-vis

UV-vis

intense: ε ≈ 104

M–L → M+L–

M–L → M–L+

UV

vis-UV

ligand e– structure Td Oh

ε ≈ 10–2 - 102 very weak:

Electronic Transitions TM complexes often highly colored: MO theory

Page 13: 4/6/2015 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Ybchemistry.bd.psu.edu/jircitano/413ch111213b.pdf · Ligand Field Theory (LFT) 3. Crystal Field Theory (CFT) Carl Ballhausen Danish

4/6/2015

13

CT t2g2eg

1 t2g3

4T2g 4A2g

4T1g 4A2g

2Eg 4A2g

magnified

200 400 600 λ (nm)

0

2

4

log

ε

(50 000 cm–1) (25 000 cm–1) (17 000 cm–1)

UV-vis Spectrum of d 3 [Cr(NH3)6]

3+

d d

d d

L M

hn > Do hn = Do Do

Ti(H2O)63+

hn < Do

d1

0

1.0

2.0

3.0

4.0

12500 17500 22500 27500 cm–1

A

400 700

450

500

550

600

650

Page 14: 4/6/2015 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Ybchemistry.bd.psu.edu/jircitano/413ch111213b.pdf · Ligand Field Theory (LFT) 3. Crystal Field Theory (CFT) Carl Ballhausen Danish

4/6/2015

14

d 2

1S

1G

3P

1D

3F

e2

t2e

t22

1A1 (1)

1E (2)

1T1 (3)

1T2 (3)

1A1 (1)

3T1 (9)

1E (2)

1T2 (3)

3A2 (3)

3T2 (9)

3T1 (9)

1A1 (1)

1E (2)

1T1 (3)

1T2 (3)

1A1 (1)

3T1 (9)

1E (2)

1T2 (3)

3A2 (3)

3T2 (9)

3T1 (9)

Spectroscopy

E/B

Ti V Cr Mn Fe Co Ni Cu

neutral: 560 580 790 720 805 780 1025

1+: 680 660 710 870 870 880 1040 1220

2+: 720 765 830 960 1060 1120 1080 1240

3+: 860 1030 1140

Zr Nb Mo Tc Ru Rh Pd Ag

250 300 460 600

450 260 440 670

540 530 620 830

Hf Ta W Re Os Ir Pt Au

280 350 370 850

440 480 470

Δo/B

Racah parameters

B DE terms of same

multiplicity

Δo

E

(45)

(1)

(9)

(9)

(5)

(21)

Yukito Satoru

Japanese

1954

Tanabe-Sugano Diagram

(6)

(15)

(24)

Do/B

E/B

0

10

20

30

40

50

60

70

80

0 10 20 30 40

d 2 Tanabe-Sugano Diagram

3A2g

3T1g

3T1g

1A1g

1T2g

1T1g

1Eg

3T2g

1T2g

1A1g 1Eg

3F

1D

3P

1G

1S

Page 15: 4/6/2015 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Ybchemistry.bd.psu.edu/jircitano/413ch111213b.pdf · Ligand Field Theory (LFT) 3. Crystal Field Theory (CFT) Carl Ballhausen Danish

4/6/2015

15

d 3 Tanabe-Sugano Diagram

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

Do/B

E/B

4T2g

4A2g

2T2g

2Eg

2A1g

2T1g

4T1g

4T1g 2A2g

4F

4P

2G

2F

d 4 Tanabe-Sugano Diagram

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

Do/B

E/B

3A1g

3T1g

3T2g

5Eg

5T2g

1A1g

1T1g

3A2g 1A2g

5D

3H

3F, 3G

3D, 1I

1F

3P

1Eg 1T2g

1A2g 3A2g

3Eg

5Eg

3T1g

Page 16: 4/6/2015 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Ybchemistry.bd.psu.edu/jircitano/413ch111213b.pdf · Ligand Field Theory (LFT) 3. Crystal Field Theory (CFT) Carl Ballhausen Danish

4/6/2015

16

d 5 Tanabe-Sugano Diagram

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

Do/B

E/B

2Eg

2T2g

2A2g, 2T1g

4A1g

4T1g

2A1g

4T1g 4A2g

4T2g

6A1g

6S

4G

2I

4F

4D

6A1g

2T2g

d 6 Tanabe-Sugano Diagram

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

Do/B

E/B

1T1g

1A1g

1Eg

3T1g

5T2g

3T2g

3T2g

5D

1F

3P

3H

5T2g

1A1g

3F, 3G

1G, 1I

1T2g

3A2g

1A1g 3A2g

1A2g

5Eg 3A2g

Page 17: 4/6/2015 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Ybchemistry.bd.psu.edu/jircitano/413ch111213b.pdf · Ligand Field Theory (LFT) 3. Crystal Field Theory (CFT) Carl Ballhausen Danish

4/6/2015

17

d 7 Tanabe-Sugano Diagram

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

Do/B

E/B

2Eg

4T2g

4T1g

2T2g

4F

2G

2F

4P

4A2g 2A2g

2A1g 4T1g

2T1g

4T1g

d 8 Tanabe-Sugano Diagram

0

10

20

30

40

50

60

70

80

0 10 20 30 40

Do/B

E/B

3A2g

1T1g

1A1g

3T1g

3F

1G

1D

3T2g

1T2g 1A1g

3T1g

1T2g

1Eg 3P

1S

1Eg

Page 18: 4/6/2015 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Ybchemistry.bd.psu.edu/jircitano/413ch111213b.pdf · Ligand Field Theory (LFT) 3. Crystal Field Theory (CFT) Carl Ballhausen Danish

4/6/2015

18

3A2g

3T1g

3T1g

1A1g

1T2g

1T1g

1Eg

3T2g

1T2g

1A1g 1Eg

3F

1D

3P

1G

1S

Do/B

E/B

0

10

20

30

40

50

60

70

80

0 10 20 30 40

0

1

2

3

4

5

6

7

8

9

10

10,000 15,000 20,000 25,000 30,000 35,000

cm–1

e

n1 n2

V(H2O)63+ d

2

absorbance bands:

n1 = 17,800 cm–1

n2 = 25,700 cm–1

(562 nm)

(389 nm)

Application of Tanabe-Sugano Diagram

Application of Tanabe-Sugano Diagram

Cr(H2O)63+ d

3

absorbance bands:

l1 = 578 nm

l2 = 406 nm

l3 = 300 nm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

250 300 350 400 450 500 550 600 650

nm

A

l2 l3 l1

(17,300 cm–1)

(24,600 cm–1)

(33,000 cm–1)

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

Do/B

E/B

4T2g

4A2g

2T2g

2Eg

2A1g

2T1g

4T1g

4T1g 2A2g

4F

4P

2G

2F

Page 19: 4/6/2015 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Ybchemistry.bd.psu.edu/jircitano/413ch111213b.pdf · Ligand Field Theory (LFT) 3. Crystal Field Theory (CFT) Carl Ballhausen Danish

4/6/2015

19

d 8 n2/n1 Ratio

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 5 10 15 20 25 30 35 40

Do/B

n2/n

1

magnified 0

2

4

log

ε

(50 000 cm–1) (25 000 cm–1) (17 000 cm–1)

UV-vis Spectrum of d 3 [Cr(NH3)6]

3+

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

Do/B

E/B

4T2g

4A2g

2T2g

2Eg

2A1g

2T1g

4T1g

4T1g 2A2g

4F

4P 2G

2F

200 400 600 λ (nm)

Page 20: 4/6/2015 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Ybchemistry.bd.psu.edu/jircitano/413ch111213b.pdf · Ligand Field Theory (LFT) 3. Crystal Field Theory (CFT) Carl Ballhausen Danish

4/6/2015

20

Summary of HS Oh, Td TM Spectroscopy

molar absorptivities, e

spin forbidden, Laporte forbidden (HS d 5) 0.1

spin allowed, Laporte forbidden (Oh) 10

spin allowed, Laporte relaxed (Td) 100

spin allowed, Laporte allowed (CT) 10,000

configuration example ground state allowed excited states #bands Δo

d 1 Oh, d

9 Td Ti(H2O)63+ 2T2

2E 1 E

d 2 Oh, d

8 Td V(H2O)63+ 3T1 (F) 3T2,

3T1(P), 3A2 3 usually ΔE3-1

d 3 Oh, d

7 Td Cr(H2O)63+ 4A2

4T2, 4T1(F), 4T1(P) 3 E1

d 4 Oh, d

6 Td Cr(H2O)62+ 5E 5T2

1 E

d 5 Oh, Td Mn(H2O)6

2+ 6A1 none 0 -

d 6 Oh, d

4 Td Fe(H2O)62+ 5T2

5E 1 E

d 7 Oh, d

3 Td Co(H2O)62+ 4T1(F) 4T2,

4T1(P), 4A2 3 usually ΔE3-1

d 8 Oh, d

2 Td Ni(H2O)62+ 3A2

3T2, 3T1(F), 3T1(P) 3 E1

d 9 Oh, d

1 Td Cu(NH3)62+ 2E 2T2 1 E

O

O

Cr O

O O

O

O

O

Effect of Reduced Symmetry

Cr

H2O

H2O OH2

OH2

OH2

H2O

Oh

D3

Cr(H2O)63+

Cr(C2O4)33–

similar field (both O)

> e; no i.

Cr(en)33+

stronger field (N vs O)

> e; no i.

D3

0

50

100

350 400 450 500 550 600 650 700

l (nm)

e

Cr H2N

H2N N

N

NH2

NH2

H2

H2

Cr

O

O O

O

O

O

Cr

N

N N

N

N

N

Page 21: 4/6/2015 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Ybchemistry.bd.psu.edu/jircitano/413ch111213b.pdf · Ligand Field Theory (LFT) 3. Crystal Field Theory (CFT) Carl Ballhausen Danish

4/6/2015

21

Effect of Reduced Symmetry

0.0

0.2

0.4

0.6

0.8

1.0

400 500 600 700 800

A

l (nm)

Ni(en)32+ (D3)

Ni(H2O)62+ (Oh)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

400 500 600 700 800

A

l (nm)

CuCl42– (Td)

Cu(H2O)62+ (D4h)

Ni H2O

H2O OH2

OH2

OH2

H2O

Cu

H2O

H2O OH2

OH2

OH2

H2O

Cl

Cu

Cl Cl Cl

Ni H2N

H2N N

N

NH2

NH2

H2

H2

Metal ion g k Ligand f h

Co2+ 9.3 0.24 Br– 0.76 2.3

Co3+ 19.0 0.35 Cl– 0.80 2.0

Cr3+ 14.1 0.21 F– 0.90 0.8

Fe3+ 14.0 0.24 CN– 1.7 2.0

Ir3+ 32 0.3 en 1.28 1.5

Mn2+ 8.5 0.07 H2O 1.00 1.0

Mn4+ 23 0.5 NH3 1.25 1.4

Mo3+ 24 0.15

Ni2+ 8.9 0.12

Pt4+ 36 0.5

Re4+ 35 0.2

Rh3+ 27.0 0.3

V2+ 12.3 0.08

Estimating B′ and D of Octahedral Complexes

Do = fg

B′ = B(1 – hk)

(in 103 cm–1)