4540 Chapter 3

download 4540 Chapter 3

of 52

Transcript of 4540 Chapter 3

  • 8/12/2019 4540 Chapter 3

    1/52

    Copyright Ned Mohan 2008 1

    First Course onPower Electronics

    Chapter 3

    Reference Textbook:First Course on Power Electronics by Ned Mohan,www.mnpere.com

  • 8/12/2019 4540 Chapter 3

    2/52

    Copyright Ned Mohan 2008 2

    Chapter 3 Switch-Mode DC-DC Converters: Switching Analysis, TopologySelection and Design

    3-1 DC-DC Converters

    3-2 Switching Power-Pole in DC Steady State

    3-3 Simplifying Assumptions

    3-4 Common Operating Principles

    3-5 Buck Converter Switching Analysis in DC Steady State

    3-6 Boost Converter Switching Analysis in DC Steady State

    3-7 Buck-Boost Converter Switching Analysis in DC Steady State

    3-8 Topology Selection

    3-9 Worst-Case Design

    3-10 Synchronous-Rectified Buck Converter for Very Low Output Voltages

    3-11 Interleaving of Converters

    3-12 Regulation of DC-DC Converters by PWM

    3-13 Dynamic Average Representation of Converters in CCM

    3-14 Bi-Directional Switching Power-Pole

    3-15 Discontinuous-Conduction Mode (DCM)References

    Problems

  • 8/12/2019 4540 Chapter 3

    3/52

    Copyright Ned Mohan 2008 3

    Regulated switch-mode dc power supplies

    Figure 3-1 Regulated switch-mode dc power supplies.

    inV oV

    ,o ref V controller

    dc-dcconverter topology

    ,in oV V

    ,in o I I

    (a) (b)

    inV oV

    ,o ref V controller

    dc-dcconverter topology

    ,in oV V

    ,in o I I

    (a) (b)

  • 8/12/2019 4540 Chapter 3

    4/52

    Copyright Ned Mohan 2008 4

    Switching power-pole as the building block of dc-dc converters

    Figure 3-2 Switching power-pole as the building block of dc-dc converters.

    inV Lv

    Li

    q

    A Lv

    Li

    t

    t

    B

    0

    0

    s DT

    sT

    ( )b( )a

    inV Lv

    Li

    q

    inV Lv

    Li

    q

    A Lv

    Li

    t

    t

    B

    0

    0

    s DT

    sT

    Lv

    Li

    t

    t

    B

    0

    0

    s DT

    sT

    ( )b( )a

  • 8/12/2019 4540 Chapter 3

    5/52

    Copyright Ned Mohan 2008 5

    In Steady State:

    ( ) ( ) L L si t i t T =

    Figure 3-2 Switching power-pole as the building block of dc-dc converters.

    inV

    Lv

    Li

    q

    A Lv

    Li

    t

    t

    B

    0

    0

    s DT sT

    ( )b( )a

    inV

    Lv

    Li

    q

    inV

    Lv

    Li

    q

    A Lv

    Li

    t

    t

    B

    0

    0

    s DT sT

    Lv

    Li

    t

    t

    B

    0

    0

    s DT sT

    ( )b( )a

    Waveform repeats with the Time-Period T s:

  • 8/12/2019 4540 Chapter 3

    6/52

    Copyright Ned Mohan 2008 6

    In Steady State, the average voltage across an inductor is zero :

    L L

    div L

    dt =

    0

    10

    sT

    L Ls

    V v dt T

    = =

    ( )

    (0)

    ( ) (0) 0 L s

    L

    i T

    L L s L

    i

    di i T i= =

    0

    10

    sT

    Lv dt

    L

    =

  • 8/12/2019 4540 Chapter 3

    7/52

    Copyright Ned Mohan 2008 7

    0

    area area

    1 0s s

    s

    DT T

    L L Ls DT

    A B

    V v d v d T

    = + =

    Figure 3-2 Switching power-pole as the building block of dc-dc converters.

    inV Lv

    Li

    q

    A Lv

    Li

    t

    t

    B

    0

    0

    s DT

    sT

    ( )b( )a

    inV Lv

    Li

    q

    inV Lv

    Li

    q

    A Lv

    Li

    t

    t

    B

    0

    0

    s DT

    sT

    Lv

    Li

    t

    t

    B

    0

    0

    s DT

    sT

    ( )b( )a

  • 8/12/2019 4540 Chapter 3

    8/52

    Copyright Ned Mohan 2008 8

    In Steady State, the average current through a capacitor is zero:

    C C

    dvi C

    dt =

    0

    10

    sT

    C C s

    I i dt T

    = =

    ( )

    (0)

    ( ) (0) 0C s

    C

    v T

    C C s C

    v

    dv v T v= =

    0

    10

    sT

    C i dt C

    =

  • 8/12/2019 4540 Chapter 3

    9/52

    Copyright Ned Mohan 2008 9

    In Steady State, KCL applies:

    0k k

    i =Instantaneous:

    0k k

    I = Average:

    0k k

    v =Instantaneous:

    0k k

    V = Average:

    In Steady State, KVL applies:

  • 8/12/2019 4540 Chapter 3

    10/52

    Copyright Ned Mohan 2008 10

    Example 3-1 If the current waveform in steady state in an inductor of 50 H is as

    shown in Fig. 3-3a, calculate the inductor voltage waveform ( ) Lv t .

    Solution During the current rise-time, (4 3) 13 3

    di Adt s

    = =

    . Therefore,

    150 16.67

    3 Ldi

    v L V dt

    = = = .

    During the current fall-time, (3 4) 1

    2 2

    di A

    dt s

    = =

    . Therefore,

    150 ( ) 25

    2 Ldi

    v L V dt

    = = = .

    Therefore, the inductor voltage waveform is as shown in Fig. 3-3b.

    Figure 3-3 Example 3-1.

    Li

    0

    3 A

    4 A

    3 s

    5 s

    16.67 V

    t

    Lv

    0 t

    25V

    ( )a

    ( )b

    Li

    0

    3 A

    4 A

    3 s

    5 s

    16.67 V

    t

    Lv

    0 t

    25V

    ( )a

    ( )b

  • 8/12/2019 4540 Chapter 3

    11/52

    Copyright Ned Mohan 2008 11Figure 3-4 Example 3-2.

    C i

    0

    0.5 A

    0.5 A

    t

    ,C ripplev

    0t

    ( )a

    ( )b

    3 s 2 s

    2.5 s

    1t 2t

    p pV

    Q

    C i

    0

    0.5 A

    0.5 A

    t

    ,C ripplev

    0t

    ( )a

    ( )b

    3 s 2 s

    2.5 s

    1t 2t

    p pV

    Q

    Example 3-2 The capacitor current C i , shown in Fig. 3-4a, is flowing through a

    capacitor of 100 F . Calculate the peak-peak ripple in the capacitor

    voltage waveform due to this ripple current.

    Solution For the given capacitor current waveform, the capacitor voltage waveform, as

    shown in Fig. 3-4b, is at its minimum at time 1t , prior to which the capacitor current has

    been negative. This voltage waveform reaches its peak at time 2t , beyond which the

    current becomes negative.

    The hatched area in Fig. 3-4a equals the charge Q 2

    1

    10.5 2.5 0.625

    2

    t

    C t

    Q i dt C = = =

    Using Eq. 3-6, the peak-peak ripple in the capacitor voltage is 6.25 p pQ

    V mV C

    = = .

  • 8/12/2019 4540 Chapter 3

    12/52

    Copyright Ned Mohan 2008 12

    Simplifying Assumptions

    Two-Step Process Common Operating Principles

  • 8/12/2019 4540 Chapter 3

    13/52

    Copyright Ned Mohan 2008 13

    BUCK CONVERTER SWITCHING ANALYSIS IN DC STEADY STATE

    o A inV V DV = =

    (1 )in o o L s sV V V

    i DT D T L L

    = =

    o L o

    V I I R

    = =

    ,( ) ( )C L ripplei t i t

    in L o I DI DI = =

    in in o oV I V I =

    Figure 3-5 Buck dc-dc converter.

    inV Li

    Av

    L in ov V V =

    LvoV

    1q =

    inV

    Li Av

    L ov V =

    oV

    0q = 0 Av =

    inV

    ini

    Li

    Av Lv

    oV

    q

    C i o I

    (a)

    (b)

    q

    Av

    Lv

    , L ripplei

    Li

    ini

    inV A oV V =

    ( )in oV V

    ( )oV

    Li

    L o I I =

    in I

    A

    B

    t

    t

    t

    t

    t

    t 0

    0

    0

    0

    0

    0

    1

    (c) (d)

    inV Li

    Av

    L in ov V V =

    LvoV

    1q =

    Li

    Av

    L in ov V V =

    LvoV

    1q =

    inV

    Li Av

    L ov V =

    oV

    0q = 0 Av =

    inV

    Li Av

    L ov V =

    oV

    0q = 0 Av =

    inV

    ini

    Li

    Av Lv

    oV

    q

    C i o I

    (a)

    (b)

    q

    Av

    Lv

    , L ripplei

    Li

    ini

    inV A oV V =

    ( )in oV V

    ( )oV

    Li

    L o I I =

    in I

    A

    B

    t

    t

    t

    t

    t

    t 0

    0

    0

    0

    0

    0

    1q

    Av

    Lv

    , L ripplei

    Li

    ini

    inV A oV V =

    ( )in oV V

    ( )oV

    Li

    L o I I =

    in I

    A

    B

    t

    t

    t

    t

    t

    t 0

    0

    0

    0

    0

    0

    1

    (c) (d)

  • 8/12/2019 4540 Chapter 3

    14/52

    Copyright Ned Mohan 2008 14

    Example 3-3 In the Buck dc-dc converter of Fig. 3-5a, 24 L H = . It is operating in

    dc steady state under the following conditions: 20inV V = , 0.6 D = , 14oP W = , and

    200s f kHz= . Assuming ideal components, calculate and draw the waveforms shown

    earlier in Fig. 3-5d.

    Solution With 200s f kHz= , 5sT s = and 3on sT DT s = = . 12o inV DV V = = .

    The inductor voltage Lv fluctuates between ( ) 8in oV V V = and ( ) 12oV V = , as shown inFig. 3-6.

    Li

    , L ripplei

    Lv

    Av

    q

    ini

    t

    t

    t

    t

    t

    t

    20inV = 12 A oV V V = =

    ( ) 8in oV V V =

    12oV V =

    Li

    1 L o I I A= =

    0.6in I A=

    3 s 5 s

    0

    1

    0

    0

    0

    0

    0

    1.5

    1.5

    0.5

    0.5

    0.5

    0.5

    Li

    , L ripplei

    Lv

    Av

    q

    ini

    t

    t

    t

    t

    t

    t

    20inV = 12 A oV V V = =

    ( ) 8in oV V V =

    12oV V =

    Li

    1 L o I I A= =

    0.6in I A=

    3 s 5 s

    0

    1

    0

    0

    0

    0

    0

    1.5

    1.5

    0.5

    0.5

    0.5

    0.5

    0.5 A

    0.5 A

    1 Li A =

    0 1.167 L I I A= =0.667 A

    1.667 A

    1.667 A

    0.667 A

    0.7in I A=

    Fig. 3-6

  • 8/12/2019 4540 Chapter 3

    15/52

  • 8/12/2019 4540 Chapter 3

    16/52

    Copyright Ned Mohan 2008 16

    Simulation Results

    Ti me

    450us 455us 460us 465us 470us 475us 480us 485us 490us 495us 500usI(C1) I(L1) V(L1:1,L1:2)

    -8

    -4

    0

    4

    8

    12

    16

  • 8/12/2019 4540 Chapter 3

    17/52

    Copyright Ned Mohan 2008 17

    BOOST CONVERTER SWITCHING ANALYSIS IN DC STEADY STATE

    Figure 3-7 Boost dc-dc converter.

    oV

    inV

    q p

    C Lv

    Li

    inV oV

    p

    C Lv

    q

    Li

    (a) (b)

    oV

    inV

    q p

    C Lv

    Li

    oV

    inV

    q p

    C Lv

    Li

    inV oV

    p

    C Lv

    q

    Li

    inV oV

    p

    C Lv

    q

    Li

    (a) (b)

  • 8/12/2019 4540 Chapter 3

    18/52

    Copyright Ned Mohan 2008 18

    Boost converter: operation and waveforms

    11

    o

    in

    V V D

    = ( )o inV V >

    (1 )in o in L s sV V V

    i DT D T L L

    = =

    in in o oV I V I =

    11 1

    o o o L in o

    in

    V I V I I I

    V D D R= = = =

    ,( ) ( )C diode ripple diode oi t i t i I =

    Figure 3-8 Boost converter: operation and waveforms.

    inV oV

    L inv V =

    Li 0 Av =

    1q =

    inV

    oV

    L in ov V V =

    Li

    0q =

    A ov V =

    Lv

    Av

    q

    , L ripplei

    Li

    diodei

    C i

    t

    t

    t

    t

    t

    t

    t 0

    0

    0

    0

    0

    0

    0

    oV A inv V =

    A

    B( )o inV V

    Li

    L I

    ( )diode o I I =

    inV

    (a)

    (b) (c)0( ) I

    inV oV

    L inv V =

    Li 0 Av =

    1q =

    inV oV

    L inv V =

    Li 0 Av =

    1q =

    inV

    oV

    L in ov V V =

    Li

    0q =

    A ov V =

    Lv

    Av

    q

    , L ripplei

    Li

    diodei

    C i

    t

    t

    t

    t

    t

    t

    t 0

    0

    0

    0

    0

    0

    0

    oV A inv V =

    A

    B( )o inV V

    Li

    L I

    ( )diode o I I =

    inV

    (a)

    (b) (c)0( ) I

  • 8/12/2019 4540 Chapter 3

    19/52

    Copyright Ned Mohan 2008 19

    Example 3-4 In a Boost converter of Fig. 3-8a, the inductor current has 2 Li A = . It

    is operating in dc steady state under the following conditions: 5inV V = , 12oV V = ,

    11oP W = , and 200s f kHz= . (a) Assuming ideal components, calculate L and draw the

    waveforms as shown in Fig. 3-8c.Solution From Eq. 3-19, the duty-ratio 0.583 D = . With 200s f kHz= , 5sT s = and

    2.917on sT DT s = = . Lv fluctuates between 5inV V = and ( ) 7o inV V V = . Using the

    conditions during the transistor on-time, from Eq. 3-21,

    7.29in s L

    V L DT H

    i = = .

    The average inductor current is ( ) / 2.2 L in in o in I I P P V A= = = = , and , L L L ripplei I i= + . Whenthe transistor is on, the diode current is zero; otherwise diode Li i= . The average diode

    current is equal to the average output current:

    (1 ) 0.917diode o in I I D I A= = = .

    The capacitor current is C diode oi i I = . When the transistor is on, the diode current is zeroand 0.917C oi I A= = . The capacitor current jumps to a value of 2.283 A and drops to1 0.917 0.083 A = .

  • 8/12/2019 4540 Chapter 3

    20/52

    Copyright Ned Mohan 2008 20Figure 3-9 Example 3-4.

    Li =

    Lv

    Av

    q

    , L ripplei

    ini

    diodei

    C i

    t 0

    0

    0

    0

    0

    0

    12oV V = 5 A inv V V = =

    ( ) 7o inV V V = 2 Li A =

    2.2 L I A=

    ( ) 0.917diode o I I A= =

    5inV V =

    3 s 5 s

    t

    t

    t

    t

    t

    t

    0

    1 A

    1 A

    0.917 A

    2.283 A

    0.283 A

    3.2 A

    1.2 A

    3.2 A

    1.2 A

    Lv

    Av

    q

    , L ripplei

    ini

    diodei

    C i

    t 0

    0

    0

    0

    0

    0

    12oV V = 5 A inv V V = =

    ( ) 7o inV V V = 2 Li A =

    2.2 L I A=

    ( ) 0.917diode o I I A= =

    5inV V =

    3 s 5 s

    t

    t

    t

    t

    t

    t

    0

    1 A

    1 A

    0.917 A

    2.283 A

    0.283 A

    3.2 A

    1.2 A

    3.2 A

    1.2 A

    2.917 s

  • 8/12/2019 4540 Chapter 3

    21/52

    Copyright Ned Mohan 2008 21

    PSpice Modeling: Boost.sch

  • 8/12/2019 4540 Chapter 3

    22/52

    Copyright Ned Mohan 2008 22

    Ti me

    1. 950ms 1. 955ms 1. 960ms 1. 965ms 1. 970ms 1. 975ms 1. 980ms 1. 985ms 1. 990ms 1. 995ms 2. 000msI (L1) V(L1:1,L1:2)

    -15

    -10

    -5

    0

    5

    10

    15

    Simulation Results

  • 8/12/2019 4540 Chapter 3

    23/52

    Copyright Ned Mohan 2008 23

    Boost converter: voltage transfer ratio

    Figure 3-10 Boost converter: voltage transfer ratio.

    0

    11 D

    , L crit I DCM CCM

    L I

    o

    in

    V V

    1

    0

    11 D

    , L crit I DCM CCM

    L I

    o

    in

    V V

    1

  • 8/12/2019 4540 Chapter 3

    24/52

    Copyright Ned Mohan 2008 24

    BUCK-BOOST CONVERTER ANALYSIS IN DCSTEADY STATE

    Figure 3-11 Buck-Boost dc-dc converter.

    q

    A

    Av Lv

    Li inV

    oV

    diodei

    o I Lv

    Av

    oV inV o I

    (a) (b)

    Li

    q

    A

    Av Lv

    Li inV

    oV

    diodei

    o I

    q

    A

    Av Lv

    Li inV

    oV

    diodei

    o I Lv

    Av

    oV inV o I

    (a) (b)

    Li

  • 8/12/2019 4540 Chapter 3

    25/52

    Copyright Ned Mohan 2008 25

    Buck-Boost converter: operation and waveforms

    1

    o

    in

    V D

    V D=

    (1 )in o L s sV V

    i DT D T L L

    = =

    L in o I I I = +

    in in o oV I V I =

    1

    oin o o

    in

    V D I I I

    V D

    = =

    1 11 1

    o L in o o

    V I I I I

    D D R= + = =

    ,( ) ( )C diode ripplei t i t

    Figure 3-12 Buck-Boost converter: operation and waveforms.

    ini

    L inv V =

    A in ov V V = +

    oV inV Li

    inV Li L ov V =

    0 Av =

    oV

    (a)

    (b)

    Lv

    Av

    q

    , L ripplei

    Li

    diodei

    C i

    t

    t

    t

    t

    t

    t

    t 0

    0

    0

    0

    0

    0

    0

    oV

    A

    B

    ( )in oV V +

    Li

    L I

    ( )diode o I I =

    inV

    (c)

    inio I

    o I

    s DT

    sT

    A oV V =

    0( ) I

    ini

    L inv V =

    A in ov V V = +

    oV inV Li L in

    v V =

    A in ov V V = +

    oV inV Li

    inV Li L ov V =

    0 Av =

    oV

    (a)

    (b)

    Lv

    Av

    q

    , L ripplei

    Li

    diodei

    C i

    t

    t

    t

    t

    t

    t

    t 0

    0

    0

    0

    0

    0

    0

    oV

    A

    B

    ( )in oV V +

    Li

    L I

    ( )diode o I I =

    inV

    (c)

    inio I

    o I

    s DT

    sT

    A oV V =

    0( ) I

  • 8/12/2019 4540 Chapter 3

    26/52

    Copyright Ned Mohan 2008 26

    Example 3-5 A Buck-Boost converter of 3-11b is operating in dc steady state under

    the following conditions: 14inV V = , 42oV V = , 21oP W = , 1.8 Li A = and 200s f kHz= .

    Assuming ideal components, calculate L and draw the waveforms as shown in Fig. 3-12c.

    Solution From Eq. 3-26, 0.75 D = . 1/ 5s sT f s = = and 3.75on sT DT s = = as shown in

    Fig. 3-13. The inductor voltage Lv fluctuates between 14inV V = and 42oV V = . UsingEq. 3-28

    29.17in s L

    V L DT H

    i = = .

    The average input current is ( ) / 1.5in in o in I P P V A= = = . / 0.5o o o I P V A= = . Therefore,2 L in o I I I A= + = . When the transistor is on, the diode current is zero; otherwise diode Li i= .

    The average diode current is equal to the average output current: 0.5diode o I I A= = . The

    capacitor current is C diode oi i I = . When the transistor is on, the diode current is zero and

    0.5C oi I A= = . The capacitor current jumps to a value of 2.4 A and drops to1.1 0.5 0.6 A = .

  • 8/12/2019 4540 Chapter 3

    27/52

    Copyright Ned Mohan 2008 27

    Figure 3-13 Example 3-5.

    Lv

    Av

    q

    , L ripplei

    Li

    diodei

    C i

    t

    t

    t

    t

    t

    t

    t 0

    0

    0

    0

    0

    0

    0

    42oV V =

    ( ) 56in oV V V + =

    1.8 Li A =

    2 L I A=

    ( ) 0.5diode o I I A= =

    14inV V =

    3.75 s 5 s

    42 A oV V V = =

    0.9 A

    0.9 A

    2.9 A

    1.1 A

    2.9 A

    1.1 A

    2.4 A

    0.5 A

    0.6 A

    Lv

    Av

    q

    , L ripplei

    Li

    diodei

    C i

    t

    t

    t

    t

    t

    t

    t 0

    0

    0

    0

    0

    0

    0

    42oV V =

    ( ) 56in oV V V + =

    1.8 Li A =

    2 L I A=

    ( ) 0.5diode o I I A= =

    14inV V =

    3.75 s 5 s

    42 A oV V V = =

    0.9 A

    0.9 A

    2.9 A

    1.1 A

    2.9 A

    1.1 A

    2.4 A

    0.5 A

    0.6 A

  • 8/12/2019 4540 Chapter 3

    28/52

    Copyright Ned Mohan 2008 28

    PSpice Modeling: Buck-Boost_Switching.sch

  • 8/12/2019 4540 Chapter 3

    29/52

    Copyright Ned Mohan 2008 29

    Simulation Results

    Ti me

    2. 950ms 2. 955ms 2. 960ms 2. 965ms 2. 970ms 2. 975ms 2. 980ms 2. 985ms 2. 990ms 2. 995ms 3. 000msI (L1) V(L1:1,L1:2)

    -30

    -20

    -10

    0

    10

    20

  • 8/12/2019 4540 Chapter 3

    30/52

    Copyright Ned Mohan 2008 30

    Buck-Boost converter: voltage transfer ratio

    Figure 3-14 Buck-Boost converter: voltage transfer ratio.

    0

    1 D

    D

    , L crit I DCM CCM L I

    o

    in

    V V

    0

    1 D

    D

    , L crit I DCM CCM L I

    o

    in

    V V

  • 8/12/2019 4540 Chapter 3

    31/52

    Copyright Ned Mohan 2008 31

    Other Buck-Boost Topologies

    SEPIC Converters (Single-Ended Primary Inductor Converters)

    Cuk Converters

  • 8/12/2019 4540 Chapter 3

    32/52

    Copyright Ned Mohan 2008 32

    SEPIC Converters (Single-Ended Primary Inductor Converters)

    (1 )in o DV D V = 1o

    in

    V DV D

    =

    Figure 3-15 SEPIC converter.

    inV 2 Li

    q

    C v

    oV

    Li diodei

    2 Lv(a)

    inV

    C v

    oV

    2 L C v v=1q =

    2 Lv oV inV

    0q =

    C v

    2 Lv

    2 L ov V =

    (b) (c)

    inV 2 Li

    q

    C v

    oV

    Li diodei

    2 Lv(a) inV 2 Li

    q

    C v

    oV

    Li diodei

    2 LvinV 2 Li

    q

    C v

    oV

    Li diodei

    2 Lv(a)

    inV

    C v

    oV

    2 L C v v=1q =

    2 Lv oV inV

    0q =

    C v

    2 Lv

    2 L ov V =

    (b) (c)inV

    C v

    oV

    2 L C v v=1q =

    2 LvinV

    C v

    oV

    2 L C v v=1q =

    2 Lv oV inV

    0q =

    C v

    2 Lv

    2 L ov V =

    oV inV

    0q =

    C v

    2 Lv

    2 L ov V =

    (b) (c)

  • 8/12/2019 4540 Chapter 3

    33/52

    Copyright Ned Mohan 2008 33

    Cuk Converter

    (1 )o in DI D I = 1in

    o

    I D I D

    = 1

    o

    in

    V DV D

    =

    Figure 3-16 Cuk converter.

    inV

    q

    C v

    oV

    Li oi

    o I

    C 1 L 2 L

    (a)

    inV

    1q =

    C v

    oV ini o

    i

    inV

    0q =

    C v

    oV ini oi

    (b) (c)

    inV

    q

    C v

    oV

    Li oi

    o I

    C 1 L 2 L

    (a) inV

    q

    C v

    oV

    Li oi

    o I

    C 1 L 2 L

    inV

    q

    C v

    oV

    Li oi

    o I

    C 1 L 2 L

    (a)

    inV

    1q =

    C v

    oV ini o

    i

    inV

    0q =

    C v

    oV ini oi

    (b) (c)

  • 8/12/2019 4540 Chapter 3

    34/52

    Copyright Ned Mohan 2008 34

    TOPOLOGY SELECTION

    Criterion Buck Boost Buck-Boost

    Transistor V inV oV ( )in oV V +

    Transistor I o I in I in o I I +

    rms I Transistor o DI in DI ( )in o D I I + Transistor o DI in DI ( )in o D I I + avg I Diode (1 ) o D I (1 ) in D I ( )(1 ) in o D I I +

    L I o I in I in o I I +

    Effect of L on C significant little little

    Pulsating Current input output both

  • 8/12/2019 4540 Chapter 3

    35/52

  • 8/12/2019 4540 Chapter 3

    36/52

    Copyright Ned Mohan 2008 36

    SYNCHRONOUS-RECTIFIED BUCK CONVERTER FORVERY LOW OUTPUT VOLTAGES

    Figure 3-17 Buck converter: synchronous rectified.

    inV

    oV Av

    T +

    T

    q +

    q

    Li

    ( )a

    q + q

    Av

    Li

    t

    t

    t

    0t =

    s DT sT

    inV

    oV 0

    0

    0

    0 L I

    ( )b

    inV

    oV Av

    T +

    T

    q +

    q

    Li

    ( )a

    inV

    oV Av

    T +

    T

    q +

    q

    Li

    ( )a

    q + q

    Av

    Li

    t

    t

    t

    0t =

    s DT sT

    inV

    oV 0

    0

    0

    0 L I

    ( )b

    q + q

    Av

    Li

    t

    t

    t

    0t =

    s DT sT

    inV

    oV 0

    0

    0

    0 L I

    ( )b

  • 8/12/2019 4540 Chapter 3

    37/52

    Copyright Ned Mohan 2008 37

    INTERLEAVING OF CONVERTERS

    Figure 3-18 Interleaving of converters.

    1q2q

    1q

    2q

    0

    0

    t

    t

    (a) (b)

    inV

    +

    +

    oV

    1 Li

    2 Li

    1q2q

    1q

    2q

    0

    0

    t

    t

    (a) (b)

    inV

    +

    +

    oV

    1 Li

    2 Li

  • 8/12/2019 4540 Chapter 3

    38/52

    Copyright Ned Mohan 2008 38

    REGULATION OF DC-DC CONVERTERS BY PWM

    ( )( )

    c

    r

    v t d t V =

    Figure 3-19 Regulation of output by PWM.

    inV oV

    ,o ref V controller

    dc-dcconverter

    topology

    (a) (b)

    0sd T

    sT t

    r V

    ( )cv t

    t

    r v

    ( )q t

    0

    1

    inV oV

    ,o ref V controller

    dc-dcconverter

    topology

    (a) (b)

    0sd T

    sT t

    r V

    ( )cv t

    t

    r v

    ( )q t

    0

    1

  • 8/12/2019 4540 Chapter 3

    39/52

    Copyright Ned Mohan 2008 39

    DYNAMIC AVERAGE REPRESENTATION OF

    CONVERTERS IN CCM

    ( ) ( ) ( )cp vpv t d t v t =

    ( ) ( ) ( )vp cpi t d t i t =

    cp vpV DV =

    vp o I D I =

    Figure 3-20 Average dynamic model of a switching power-pole.

    ( )q t

    ( )r v t

    ( )cv t

    vpv

    cpv

    cpi

    vpi

    vpV cpV

    cp I vp I

    1: D

    cpv

    1: ( )d t

    ( )cv t ^

    1

    r V (c)(a) (b)

    vpi

    vpv

    cpi

    ( )q t

    ( )r v t

    ( )cv t

    vpv

    cpv

    cpi

    vpi

    vpV cpV

    cp I vp I

    1: D

    cpv

    1: ( )d t

    ( )cv t ^

    1

    r V (c)(a) (b)

    vpi

    vpv

    cpi

  • 8/12/2019 4540 Chapter 3

    40/52

    Copyright Ned Mohan 2008 40

    Average dynamic models of three converters

    Figure 3-21 Average dynamic models: Buck (left), Boost (middle) and Buck-Boost (right).

    q

    inV ov L

    v

    Li

    oV inV

    q p

    A A

    qoV

    inV

    inV

    1: ( )d t

    inV

    1: (1 ( ))d t p 1: ( )d t

    inV

    (a)

    (b)

    Li

    Li Li

    Li Li

    ov ov

    ov

    q

    inV ov L

    v

    Li

    oV inV

    q p

    A A

    qoV

    inV

    inV

    1: ( )d t

    inV

    1: (1 ( ))d t p 1: ( )d t

    inV

    (a)

    (b)

    Li

    Li Li

    Li Li

    ov ov

    ov

  • 8/12/2019 4540 Chapter 3

    41/52

    Copyright Ned Mohan 2008 41

    PSpice Modeling: Buck-Boost_Avg_CCM.sch

  • 8/12/2019 4540 Chapter 3

    42/52

    Copyright Ned Mohan 2008 42

    PSpice Modeling: Buck-Boost_Switching_LoadTransient.sch

  • 8/12/2019 4540 Chapter 3

    43/52

    Copyright Ned Mohan 2008 43

    Simulation Results

    Ti me

    0s 0. 5ms 1. 0ms 1. 5ms 2. 0ms 2. 5ms 3. 0ms 3. 5ms 4. 0ms 4. 5ms 5. 0msI(L1) V(L1:1,L1:2)

    -40

    -20

    0

    20

    40

  • 8/12/2019 4540 Chapter 3

    44/52

    Copyright Ned Mohan 2008 44

    BI-DIRECTIONAL SWITCHING POWER-POLE

    Figure 3-22 Bi-directional power flow through a switching power-pole.

    q

    inV

    Li

    Buck Boost

    (1 )q q =

    inV

    1q =

    0q =

    Buck

    0( 1)q q = =

    1( 0)q q = =inV

    Boost

    (a) (b) iL = positive (c) iL = negative

    q qq q

    q

    inV

    Li

    Buck Boost

    (1 )q q =

    inV

    1q =

    0q =

    Buck

    0( 1)q q = =

    1( 0)q q = =inV

    Boost

    (a) (b) iL = positive(b) iL = positive (c) iL = negative(c) iL = negative

    q qq q

  • 8/12/2019 4540 Chapter 3

    45/52

    Copyright Ned Mohan 2008 45

    Average dynamic model of the switching power-pole with

    bi-directional power flow

    Figure 3-23 Average dynamic model of the switching power-pole with bi-directional power flow.

    q

    inV

    Li

    Buck Boost

    (1 )q q = 1: d

    Li

    inV

    (a) (c)(b)

    Li

    q

    1q =

    q

    inV

    Li

    Buck Boost

    (1 )q q = 1: d

    Li

    inV

    (a) (c)(b)

    Li

    q

    1q =

  • 8/12/2019 4540 Chapter 3

    46/52

    Copyright Ned Mohan 2008 46

    DISCONTINUOUS-CONDUCTION MODE (DCM)

    Figure 3-24 Inductor current at various loads; duty-ratio is kept constant.

    1 Li

    2 Li, L crii

    1 L I 2 L I , L crit I

    t

    Li

    0

    1 Li

    2 Li, L crii

    1 L I 2 L I , L crit I

    t

    Li

    0

  • 8/12/2019 4540 Chapter 3

    47/52

    Copyright Ned Mohan 2008 47

    , , , , - 2in

    L crit Boost L crit Buck Boost s

    V I I D

    Lf = =

    , , (1 )2in

    L crit Buck s

    V I D D

    Lf =

    Critical Inductor Currents

    and Load Resistances

    ,

    , 2

    , 2

    2(1 )

    2(1 )2

    (1 )

    scrit Buck

    scrit Boost

    s

    crit Buck Boost

    Lf R D

    Lf R

    D D Lf

    R D

    = =

    =

  • 8/12/2019 4540 Chapter 3

    48/52

    Copyright Ned Mohan 2008 48

    Buck converter in DCM

    Figure 3-25 Buck converter in DCM.

    Li L I s

    t T

    Av

    oV inV

    0

    0

    D ,1off D ,2off D1

    o

    in

    V V

    , L crit I DCM CCM

    L I

    (a)

    0

    D

    1

    s

    t T

    (b)

    Li L I s

    t T

    Av

    oV inV

    0

    0

    D ,1off D ,2off D1

    o

    in

    V V

    , L crit I DCM CCM

    L I

    (a)

    0

    D

    1

    s

    t T

    (b)

  • 8/12/2019 4540 Chapter 3

    49/52

    Copyright Ned Mohan 2008 49

    Boost Converters in DCM

    Figure 3-26 Boost converter in DCM.

    Li L I

    s

    t T

    AvoV

    inV

    0

    0 D ,1off D ,2off D

    1

    (a)

    0

    11 D

    , L crit I DCM CCM L I

    o

    in

    V V

    1

    (b)

    s

    t T

    Li L I

    s

    t T

    AvoV

    inV

    0

    0 D ,1off D ,2off D

    1

    (a)

    0

    11 D

    , L crit I DCM CCM L I

    o

    in

    V V

    1

    (b)

    s

    t T

  • 8/12/2019 4540 Chapter 3

    50/52

    Copyright Ned Mohan 2008 50

    Buck-Boost converter in DCM

    Figure 3-27 Buck-Boost converter in DCM.

    Li L I s

    t T

    Av

    oV in oV V +

    0

    0 D ,1off D ,2off D

    1(a)

    0

    1 D

    D

    , L crit I DCM CCM L I

    o

    in

    V V

    (b)s

    t T

    Li L I s

    t T

    Av

    oV in oV V +

    0

    0 D ,1off D ,2off D

    1(a)

    0

    1 D

    D

    , L crit I DCM CCM L I

    o

    in

    V V

    (b)s

    t T

  • 8/12/2019 4540 Chapter 3

    51/52

  • 8/12/2019 4540 Chapter 3

    52/52

    Copyright Ned Mohan 2008 52

    Summary

    ApplicationUse of Switching Power PoleVarious DC-DC Converters

    Steady State Operation Average Representation forDynamic Operation

    Design ConsiderationsDCM Operating Mode