42755571-33954404-Dispositivos+electrónicos+de+potencia

14
Dispositivos electrónicos de potencia [1] ABB, “Thermal design and temperature ratings of IGBT modules.” Application Note 5SYA 2093-00. [2] U. Schlapbach, M. Rahimo, C. von Arx, A. Mukhitdinov, and S. Linder, “1200V IGBTs operating at 200°C? An investigation on the potentials and the design constraints,” in Proceedings of the 19th International Symposium on Power Semiconductor Devices and IC’s, 2007, pp. 9–12. [3] Y. A. Çengel, Heat & Mass Transfer: A Practical Approach, 3rd ed. McGraw-Hill, 2007, p. 901. [4] A. Wintrich, U. Nicolai, W. Tursky, and T. Reimann, Application Manual Power Semiconductors, 1st ed. SEMIKRON International GmbH, 2011, p. 466. [5] H. Ludwig, “Application Note, V1.0, 2010 Technical Information IGBT modules Use of Power Cycling curves for IGBT 4.” pp. 1–6, 2010. [6] P. Roussel, “SiC market and industry update,” in Int. SiC Power Electron. Appl. Workshop, 2011. [7] J. L. (Regional P. Marketing), “Infineon IGBT/Modules,” Infineon. . [8] “Power Electronics for Wind Turbines,” 2012. [Online]. Available: http://www.i-micronews.com/upload/Rapports/Yole_Super_ Wind_Turbine_sample_January_2012.pdf. [Accessed: 03- Jul-2014]. [9] T. Y. Horio M, Nashida N, Iizuka Y, Ikeda Y, “New power module structure with low thermal impedance and high reliability for SiC devices,” in PCIM Europe, 2011.

description

42755571-33954404-Dispositivos+electrónicos+de+potencia.docx

Transcript of 42755571-33954404-Dispositivos+electrónicos+de+potencia

Dispositivos electrnicos de potencia

[1]ABB, Thermal design and temperature ratings of IGBT modules. Application Note 5SYA 2093-00.[2]U. Schlapbach, M. Rahimo, C. von Arx, A. Mukhitdinov, and S. Linder, 1200V IGBTs operating at 200C? An investigation on the potentials and the design constraints, in Proceedings of the 19th International Symposium on Power Semiconductor Devices and ICs, 2007, pp. 912.[3]Y. A. engel, Heat & Mass Transfer: A Practical Approach, 3rd ed. McGraw-Hill, 2007, p. 901.[4]A. Wintrich, U. Nicolai, W. Tursky, and T. Reimann, Application Manual Power Semiconductors, 1st ed. SEMIKRON International GmbH, 2011, p. 466.[5]H. Ludwig, Application Note, V1.0, 2010 Technical Information IGBT modules Use of Power Cycling curves for IGBT 4. pp. 16, 2010.[6]P. Roussel, SiC market and industry update, in Int. SiC Power Electron. Appl. Workshop, 2011.[7]J. L. (Regional P. Marketing), Infineon IGBT/Modules, Infineon. .[8]Power Electronics for Wind Turbines, 2012. [Online]. Available: http://www.i-micronews.com/upload/Rapports/Yole_Super_Wind_Turbine_sample_January_2012.pdf. [Accessed: 03-Jul-2014].[9]T. Y. Horio M, Nashida N, Iizuka Y, Ikeda Y, New power module structure with low thermal impedance and high reliability for SiC devices, in PCIM Europe, 2011.[10]R. R. Siepe D, Bayerer R, The future of wire bonding is? Wirebonding!, in Nuremberg/Germany: Infineon Technologies AG, 2010.[11]K. Weidner and M. Kaspar, Planar Interconnect Technology for Power Module System Integration, in CIPS 2012, 2012, pp. 68.[12]S. U. S. elektronik G. & C. KG., Reliability of Planar SKiN interconnect Technology, in Chips, 2012.[13]O. M., Extending the power capacity of IGBT modules., in PCIM-Europe, 2008.[14]N. A. Nagaune F, Adachi S, Hitachi T, Gohara H, Morozumi A, High thermal conductivity and reliability, EVS 26. Calif. Fuji Electr. Co., Ltd., 2012.[15]Curamik, Ceramic Substrates, specification Si3N4. Version 4.12 EN I 1/2c.[16]M. Horio, Y. Iizuka, Y. Ikeda, E. Mochizuki, and Y. Takahashi, Ultra compact and high reliable SiC MOSFET power module with 200C operating capability, in 2012 24th International Symposium on Power Semiconductor Devices and ICs, 2012, pp. 8184.[17]M. Horio, Y. Iizuka, Y. Ikeda, E. Mochizuki, and Y. Takahashi, Ultra compact and high reliable SiC MOSFET power module with 200C operating capability, in 2012 24th International Symposium on Power Semiconductor Devices and ICs, 2012, pp. 8184.[18]H. Kon, K. Nakayama, S. Yanagisawa, J. Miwa, and Y. Uetake, The 4500 V-750 A planar gate press pack IEGT, in Proceedings of the 10th International Symposium on Power Semiconductor Devices and ICs. ISPSD98 (IEEE Cat. No.98CH36212), 1998, pp. 8184.[19]Y. Uchida, Y. Seki, Y. Takahashi, and M. Ichijoh, Development of high power press-pack IGBT and its applications, in 2000 22nd International Conference on Microelectronics. Proceedings (Cat. No.00TH8400), 2000, vol. 1, pp. 125129.[20]S. Kaufmann and F. Zwick, 10 kV IGBT press pack modules with series connected chips, in Proceedings of the 14th International Symposium on Power Semiconductor Devices and Ics, 2002, pp. 8992.[21]A. Golland and F. Wakeman, Application of press-pack IGBTs in traction refurbishment, in Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005., 2005, vol. 3, pp. 20302035.[22]V. K. Khanna, Insulated Gate Bipolar Transistor IGBT Theory and Design, Electronics, pp. 2384523845, 2003.[23]C. Busca, R. Teodorescu, and F. Blaabjerg, Lifetime prediction of high-power press-pack IGBTs in wind power applications, no. November. pp. 123, 2013.[24]C. Busca, R. Teodorescu, F. Blaabjerg, L. Helle, and T. Abeyasekera, Dynamic thermal modelling and analysis of press-pack IGBTs both at component-level and chip-level, in IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, 2013, pp. 677682.[25]C. J. M. Lasance, Heat Spreading: Not a Trivial Problem, Electron. Cool., p. 8, 2008.[26]Heat spreader options and materials, Qpedia, vol. 8, no. 2, p. 3, 2013.[27]C. Busca, R. Teodorescu, F. Blaabjerg, S. Munk-Nielsen, L. Helle, T. Abeyasekera, and P. Rodriguez, An overview of the reliability prediction related aspects of high power IGBTs in wind power applications, Microelectron. Reliab., vol. 51, no. 911, pp. 19031907, Sep. 2011.[28]M. Ciappa, Selected failure mechanisms of modern power modules, Microelectron. Reliab., vol. 42, no. 45, pp. 653667, Apr. 2002.[29]Fuji Electric, Chapter 11 Reliability of power module, 6th-Generation V-Series IGBT Modul. Appl. Man., pp. 111.[30]S. Ramminger, N. Seliger, and G. Wachutka, Reliability model for Al wire bonds subjected to heel crack failures, Microelectron. Reliab., vol. 40, no. 810, pp. 15211525, Aug. 2000.[31]C. Busca, Modeling lifetime of high power IGBTs in wind power applications - An overview, in 2011 IEEE International Symposium on Industrial Electronics, 2011, pp. 14081413.[32]P. Dietrich, Trends in automotive power semiconductor packaging, Microelectron. Reliab., vol. 53, no. 911, pp. 16811686, Sep. 2013.[33]K. Ma, M. Liserre, and F. Blaabjerg, Reactive power control methods for improved reliability of wind power inverters under wind speed variations, in 2012 IEEE Energy Conversion Congress and Exposition (ECCE), 2012, pp. 31053112.[34]T. Wu and A. Castellazzi, Temperature adaptive IGBT gate-driver design, in Proceedings of the 2011 14th European Conference on Power Electronics and Applications, EPE 2011, 2011.[35]Improved Thermal Cycle Life Reliablity Benefits for EV Powerex. [Online]. Available: http://www.docstoc.com/docs/131260444/Improved-Thermal-Cycle-Life-Reliablity-Benefits-for-EV-Powerex. [Accessed: 03-Jul-2014].[36]M. Ikonen, Power cycling lifetime estimation of igbt power modules based on chip temperature modeling. 2012, p. 120.[37]Z. Topolosky, Reliability Analysis of Springs Used as Interconnects in Press-pack Power Electronic Modules. University of Maryland, College Park, 2002.[38]G. F. Wakeman and A. G. Li, New family of 4.5kV Press-pack IGBTs, in PCIM05 Conference proceedings, 2005, pp. 16.[39]R. Bayerer, Advanced packaging yields higher performance and reliability in power electronics, Microelectron. Reliab., vol. 50, no. 911, pp. 17151719, Sep. 2010.[40]M. Ikonen, Power cycling lifetime estimation of igbt power modules based on chip temperature modeling. p. 120, 2012.[41]R. Bayerer, Higher Junction Temperature in Power Modules a demand from hybrid cars, a potential for the next step increase in power density for various Variable Speed Drives, PCIM, pp. 17, 2008.[42]R. Bayerer, Advanced packaging yields higher performance and reliability in power electronics, Microelectron. Reliab., vol. 50, no. 911, pp. 17151719, Sep. 2010.[43]G. Miller, New semiconductor technologies challenge package and system setups. pp. 16, 2010.[44]Next Generation of internal Module Packaging Technology, 2011. [Online]. Available: http://www.tecnoimprese.it/user/0900_Doc/20121019165032XT_Technology and TIM - Power Fortronic 2012.pdf. [Accessed: 19-Nov-2014].[45]Y. Nishimura, E. Mochizuki, and Y. Takahashi, Development of a next-generation IGBT module using a new insulation substrate, Fuji Electr. Rev., vol. 51, no. 2, pp. 5256, 2005.[46]T. Stockmeier, From Packaging to Un -Packaging - Trends in Power Semiconductor Modules, Int. Symp. Power Semicond. Devices ICs, vol. 20, pp. 1219, 2008.[47]Dieter Liesabeths - CREE, SiC Transistor & Diodes - Technical training. 2014.[48]A. Prez-Toms, P. Brosselard, J. Hassan, X. Jord, P. Godignon, M. Placidi, A. Constant, J. Milln, and J. P. Bergman, Schottky versus bipolar 3.3 kV SiC diodes, Semicond. Sci. Technol., vol. 23, no. 12, p. 125004, 2008.[49]http://www.genesicsemi.com/. .[50]H. Niwa, G. Feng, J. Suda, and T. Kimoto, Breakdown characteristics of 1220 kV-class 4H-SiC PiN diodes with improved junction termination structures, in 2012 24th International Symposium on Power Semiconductor Devices and ICs, 2012, pp. 381384.[51]H. Niwa, J. Suda, and T. Kimoto, 21.7 kV 4H-SiC PiN Diode with a Space-Modulated Junction Termination Extension, Applied Physics Express, vol. 5, no. 6. p. 064001, 2012.[52]Infineon Technologies, 1200V SiC thinQ! TM Generation 5 Schottky Diodes 1200V SiC thinQ! TM Generation 5 Schottky Diodes New level of efficiency and reliability in single-phase and 3-phase applications, 2014.[53]D. Stephani, Todays and tomorrows industrial utilization of silicon carbide power devices, in 10th Eur. Conf. Power Electron. Appl., Toulouse, France, 2003, p. 1199.[54]R. J. Callanan, A. Agarwal, A. Burk, M. Das, B. Hull, F. Husna, A. Powell, and J. Richmond, Recent progress in SiC DMOSFETs and JBS diodes at Cree, in 2008 34th Annual Conference of IEEE Industrial Electronics, 2008, pp. 28852890.[55]http://www.cree.com. .[56]http://www.rohm.com. .[57]R. A. Wood and T. E. Salem, Evaluation of a 1200-V, 800-A All-SiC Dual Module, Power Electron. IEEE Trans., vol. 26, no. 9, pp. 25042511, 2011.[58]S.-H. R. S.-H. Ryu, S. Krishnaswami, B. Hull, J. Richmond, A. Agarwal, and A. Hefner, 10 kV, 5A 4H-SiC Power DMOSFET, 2006 IEEE Int. Symp. Power Semicond. Devices ICs, 2006.[59]S.-H. Ryu, C. Capell, C. Jonas, L. Cheng, M. OLoughlin, A. Burk, A. Agarwal, J. Palmour, and A. Hefner, Ultra high voltage (>12 kV), high performance 4H-SiC IGBTs, in 2012 24th International Symposium on Power Semiconductor Devices and ICs, 2012, pp. 257260.[60]D. A. Marckx, Breakthrough in power electronics from SiC, 2006.[61]S. Krishnaswami, A. Agarwal, J. Richmond, T. P. Chow, B. Geil, K. Jones, and C. Scozzie, 4 kV, 10 A Bipolar Junction Transistors in 4H-SiC, in 2006 IEEE International Symposium on Power Semiconductor Devices & ICs, 2006, pp. 14.[62]and M. O. ] B. Buono, R. Ghandi, M. Domeij, B. G. Malm, C.-M. Zetterling, Current gain degradation in 4H-SiC power BJTs, in Mater. Sci. Forum, 2011, pp. vol. 679680, pp. 702705.[63]Y. Sugawara, Y. Miyanagi, K. Asano, A. Agarwal, S. Ryu, J. Palmour, Y. Shoji, S. Okada, S. Ogata, and T. Izumi, 4.5 kV 120A SICGT and Its PWM Three Phase Inverter Operation of 100kVA class, 2006 IEEE Int. Symp. Power Semicond. Devices ICs, 2006.[64]A. Tanaka, S. Ogata, T. Izumi, K. Nakayama, T. Hayashi, Y. Miyanagi, and K. Asano, Reliability investigation of SiC bipolar device module in long time inverter operation, in 2012 24th International Symposium on Power Semiconductor Devices and ICs, 2012, pp. 233236.[65]J. Liu, K. L. Wong, S. Allen, and J. Mookken, Performance Evaluations of Hard-Switching Interleaved DC / DC Boost Converter with New Generation Silicon Carbide MOSFETs, CREE, 2012.[66]J. Mookken, B. Agrawal, and J. Liu, Efficient and Compact 50kW Gen2 SiC Device Based PV String Inverter, in PCIM Europe, 2014, no. May, pp. 2022.[67]Y. Sugawara, S. Ogata, T. Izumi, K. Nakayama, Y. Miyanagi, K. Asano, A. Tanaka, S. Okada, and R. Ishi, Development of a 100 kVA SiC inverter with high overload capability of 300 kVA, in 2009 21st International Symposium on Power Semiconductor Devices & ICs, 2009, pp. 331334.[68]B. De Jaeger, M. Van Hove, D. Wellekens, X. Kang, H. Liang, G. Mannaert, K. Geens, and S. Decoutere, Au-free CMOS-compatible AlGaN/GaN HEMT processing on 200 mm Si substrates, in Proceedings of the International Symposium on Power Semiconductor Devices and ICs, 2012, pp. 4952.[69]A. P. Zhang, G. T. Dang, F. Ren, H. Cho, K. P. Lee, S. J. Pearton, J. I. Chyi, T. E. Nee, C. M. Lee, and C. C. Chuo, Comparison of GaN P-I-N and Schottky rectifier performance, IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 407411, 2001.[70]A. P. Zhang, J. W. Johnson, F. Ren, J. Han, A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, J. M. Redwing, K. P. Lee, and S. J. Pearton, Lateral AlxGa1-xN power rectifiers with 9.7 kV reverse breakdown voltage, Appl. Phys. Lett., vol. 78, no. 6, pp. 823825, 2001.[71]M. Placidi, A. Prez-Toms, A. Constant, G. Rius, N. Mestres, J. Milln, and P. Godignon, Effects of cap layer on ohmic Ti/Al contacts to Si+ implanted GaN, in Applied Surface Science, 2009, vol. 255, no. 12, pp. 60576060.[72]M. Asif Khan, J. N. Kuznia, D. T. Olson, W. J. Schaff, J. W. Burm, and M. S. Shur, Microwave performance of a 0.25 um gate AlGaN/GaN heterostructure field effect transistor, Appl. Phys. Lett., vol. 65, no. 9, pp. 11211123, 1994.[73]and N. I. S. Yoshida, J. Li, H. Takehara, H. Kambayashi, Fabrication of AlGaN/GaN HFET with a high breakdown voltage of over 1050 V, in Int. Symp. Power Semicond. Devices ICs, 2006, pp. 317320.[74]E. Bahat-Treidel, F. Brunner, O. Hilt, E. Cho, J. Wrfl, and G. Trankle, AlGaN/GaN/GaN:C back-barrier HFETs with breakdown voltage of over 1 kV and low RON A, IEEE Trans. Electron Devices, vol. 57, no. 11, pp. 30503058, 2010.[75]P. Srivastava, J. Das, D. Visalli, M. Van Hove, P. E. Malinowski, D. Marcon, S. Lenci, K. Geens, K. Cheng, M. Leys, S. Decoutere, R. P. Mertens, and G. Borghs, Record breakdown voltage (2200 V) of GaN DHFETs on Si with 2-um buffer thickness by local substrate removal, in IEEE Electron Device Letters, 2011, vol. 32, no. 1, pp. 3032.[76]Y. Uemoto, D. Shibata, M. Yanagihara, H. Ishida, H. Matsuo, S. Nagai, N. Batta, M. Li, T. Ueda, T. Tanaka, and D. Ueda, 8300V blocking voltage AlGaN/GaN power HFET with thick poly-AIN passivation, in Technical Digest - International Electron Devices Meeting, IEDM, 2007, pp. 861864.[77]W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura, Recessed-gate structure approach toward normally off high-voltage AlGaN/GaN HEMT for power electronics applications, IEEE Trans. Electron Devices, vol. 53, no. 2, pp. 356362, 2006.[78]Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, Control of threshold voltage of AlGaN/GaN HEMTs by fluoride-based plasma treatment: From depletion mode to enhancement mode, IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 22072214, 2006.[79]T. Palacios, C. S. Suh, A. Chakraborty, S. Keller, S. P. DenBaars, and U. K. Mishra, High-performance e-mode AlGaN/GaN HEMTs, IEEE Electron Device Lett., vol. 27, no. 6, pp. 428430, 2006.[80]X. Hu, G. Simin, J. Yang, M. Asif Khan, R. Gaska, and M. S. Shur, Enhancement mode AlGaN/GaN HFET with selectively grown pn junction gate, Electronics Letters, vol. 36, no. 8. p. 753, 2000.[81]and J. W. O. Hilt, E. Bahat-Treidel, E. Cho, S. Singwald, Impact of buffer composition on the dynamic on-state resistance of high-voltage AlGaN/GaN HFETs, Int. Symp. Power Semicond. Devices ICs, pp. 345348, 2012.[82]http://epc-co.com/epc. .[83]C. J. M. Lasance, Advances In High-Performance Cooling For Electronics Electronics Cooling Magazine - Focused on Thermal Management, TIMs, Fans, Heat Sinks, CFD Software, LEDs/Lighting Electronics Cooling Magazine Focused on Thermal Management, TIMs, Fans, Heat Sinks, 2005. [Online]. Available: http://www.electronics-cooling.com/2005/11/advances-in-high-performance-cooling-for-electronics/. [Accessed: 03-Jul-2014].[84]Mersen, Cooling of Power Electronics, pp. 133, 2012.[85]S. S. Kang, Advanced Cooling for Power Electronics. pp. 18, 2012.[86]Z. Ling, Z. Zhang, G. Shi, X. Fang, L. Wang, X. Gao, Y. Fang, T. Xu, S. Wang, and X. Liu, Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules, Renew. Sustain. Energy Rev., vol. 31, pp. 427438, Mar. 2014.[87]Thermal Buffer Heat Sink for Time-Averaged Operating Conditions. [Online]. Available: http://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/2007_apeem_report.pdf. [Accessed: 03-Jul-2014].[88]D. B. Tuckerman and R. F. W. Pease, HIGH-PERFORMANCE HEAT SINKING FOR VLSI., vol. EDL-2, no. 5. 1981, pp. 126129.[89]B. W. Williams, High Performance Cooling for Power Electronics, in Principles and elements of power electronics: devices, drivers, applications, and passive components, 2007, pp. 179250.[90]Custom Cold Plate Design - Application Note - Lytron Inc. [Online]. Available: http://www.lytron.com/Tools-and-Technical-Reference/Application-Notes/Designing-Custom-Cold-Plates. [Accessed: 03-Jul-2014].[91]Cold Plates - Standard Performance-Fin CP30 Cold Plates - Lytron Inc. [Online]. Available: http://www.lytron.com/Cold-Plates/Standard/Cold-Plates-Performance-Fin. [Accessed: 03-Jul-2014].[92]Microchannel Liquid Cooling - Mikros Manufacturing - Pushing the Limits of Liquid Cooling. [Online]. Available: http://www.mikrosmanufacturing.com/. [Accessed: 03-Jul-2014].[93]Liquid Cooling - The Best Heat Transfer Fluids for Liquid Cooling Application Note - Lytron Inc. [Online]. Available: http://www.lytron.com/Tools-and-Technical-Reference/Application-Notes/The-Best-Heat-Transfer-Fluids-for-Liquid-Cooling. [Accessed: 03-Jul-2014].[94]K. Sasaki and M. Hiyoshi, Small size, Low Thermal Resistance and high reliability packaging Technologies of IGBT Module for Wind Power Applications, Hitachi Ltd. [Online]. Available: http://www.hitachi-power-semiconductor-device.co.jp/en/product/igbt/pdf/pcim_mbm600f17d.pdf. [Accessed: 03-Jul-2014].[95]T. Hitachi, H. Gohara, and F. Nagaune, Direct Liquid Cooling IGBT Module for Automotive Applications, Fuji Electr. Rev., vol. 58, no. 2, pp. 5559, 2012.[96]D. Moreno, J.; Reeves, M.; Beucher, P.; Loong, S.-J.; Bono, Pushing the Limits of liquid Cooling: Design and Analysis of a direct liquid Cooling System for Power Modules, in PCIM POWER ELECTRONICS CONFERENCE, 2012, pp. 519524.[97]33mm X 34mm Cold Plate Information | Mikros Manufacturing | Pushing the Limits of Liquid Cooling. [Online]. Available: http://www.mikrosmanufacturing.com/sample-cold-plate/. [Accessed: 03-Jul-2014].[98]R. L. Webb, High-performance, low-cost liquid micro-channel cooler. Microcool, pp. 17.[99]Liquid Cooling | Thermal Management | Pumped Liquid | ACT - Advanced Cooling Technologies. [Online]. Available: http://www.1-act.com/advanced-technologies/pumped-liquid-cooling/oscillating-liquid-cooling/. [Accessed: 03-Jul-2014].[100]D. L. Saums, Vaporizable dielectric fluid cooling for IGBT power semiconductors. pp. 17, 2010.[101]R. Hannemann and S. Mackey, Design and Performance of Meso-Scale Evaporative Cold Plates, in Proceedings, Binghamton University/GE Global Research Electronics Packaging Symposium, 2007.[102]E. Cetegen, S. Dessiatoun, and M. M. Ohadi, FORCE FED BOILING AND CONDENSATION FOR HIGH HEAT FLUX APPLICATIONS, in VII Minsk International Seminar Heat Pipes, Heat Pumps, Refrigerators, Power Sources, 2008, pp. 482489.[103]B. Agostini, M. Fabbri, J. E. Park, L. Wojtan, J. R. Thome, and B. Michel, State of the Art of High Heat Flux Cooling Technologies, Heat Transf. Eng., vol. 28, no. 4, pp. 258281, Apr. 2007.[104]K. Olesen, R. Bredtmann, and R. Eisele, ShowerPower New Cooling Concept for Automotive Applications, in Automotive Power Electronics, 2006, pp. 19.[105]M. Reeves, J. Moreno, P. Beucher, S. Loong, and D. Bono, Pushing the limits of liquid cooling: Design and analysis of a direct liquid cooling system for power modules Design of a direct liquid system for power modules.[106]IGBT Cooling. pp. 124.[107]T. enyldz, R. Eisele, and K. Olesen, THERMAL MANAGEMENT CONCEPTS FOR POWER ELECTRONIC MODULES, Danfoss Silicon Power GmbH. [Online]. Available: http://www.emo.org.tr/ekler/800149d2f947ad4_ek.pdf. [Accessed: 03-Jul-2014].[108]S. Kang, Cooling for EV and HEV applications, 2014. [Online]. Available: http://www.apec-conf.org/wp-content/uploads/2014/03/IS2-3-1.pdf. [Accessed: 03-Jul-2014].[109]curamik Micro-Channel Coolers. [Online]. Available: http://www.rogerscorp.com/pes/curamik/producttypes/2/curamik-Micro-Channel-Coolers.aspx. [Accessed: 03-Jul-2014].[110]Advantages & Benefits of 2-Phase Immersion Cooling. [Online]. Available: http://www.allied-control.com/immersion-cooling. [Accessed: 03-Jul-2014].[111]E. N. Wang, L. Zhang, L. Jiang, J.-M. Koo, J. G. Maveety, E. A. Sanchez, K. E. Goodson, and T. W. Kenny, Micromachined Jets for Liquid Impingement Cooling of VLSI Chips, J. Microelectromechanical Syst., vol. 13, no. 5, pp. 833842, Oct. 2004.[112]THERMAL CONTACT RESISTANCE. [Online]. Available: http://www.thermopedia.com/content/1188/. [Accessed: 04-Jul-2014].