42 PRES OTEC 2004 AdvancedStrategies

download 42 PRES OTEC 2004 AdvancedStrategies

of 50

Transcript of 42 PRES OTEC 2004 AdvancedStrategies

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    1/50

    Profs: Arthur Helmicki, Victor Hunt, James Swanson,

    Douglas Nims

    Students: Xiaoyi Wang, Scott J. Kangas, Divyachapan

    Padur, Lei Lu i, Balram Chamaria

    Advanced Strategies and Recent Results on Health

    Monitoring and Condition Assessment of Bridges

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    2/50

    UCII Ohio bridge field test program

    24 "Healthy" Steel Stinger Bridges

    16 Tested to Date

    10 "Low Rated" Steel Stringer Bridges

    8 Tested to Date

    District 8:

    HAM-27(x2),HAM-126(x3),CLE-52(x3),BUT-732, PRE-725,PRE-503, CLI-132

    District 7:

    AUG-75,MOT-70(x2),MOT-75

    District 12:

    LAK-90(x2),CUY-77(x2)

    District 3:

    RIC-30(x3)

    District 10:

    ATH-356

    District 5:

    LIC-184,FAI-33

    District 11:

    TUS-212,TUS-751

    District 6:

    MAD-70(x2),MAD-40

    RIC-30-1384 7001320 3

    RIC-30-1438 7001479 3

    RIC-30-1638 7001517 3

    FAI-33-7.31 2301067 5

    MAD-70-1555L 4902858 6

    MAD-70-1555R 4902882 6

    MOT-70-2210 5706270 7

    MOT-75-0776 5706939 7

    HAM-126-1279 3104850 8

    HAM-126-1317 3105172 8

    TUS-212-1509 7904533 11

    TUS-751-0420 7906307 11

    CUY-77-0645L 1806181 12

    CUY-77-0645R 1806211 12

    LAK-90-1641L 4304624 12

    LAK-90-1641R 4304659 12

    BUT-732-1043 903841 8

    PRE-725-0880 6804209 8

    CLE-52-0498L 1301535 8

    CLE-52-0498R 1301594 8

    HAM-27-1550L 3101746 8HAM-27-1550R 3101770 8

    LIC-158-0164 4505379 5

    MAD-40-0745 4901290 6

    MOT-70-0553 5704952 7

    AUG-75-0201 601926 7

    CLE-52-0142 1301357 8

    CLI-132-0083 1402587 8

    PRE-503-1170 6803660 8

    ATH-356-0459 504203 10

    2 More to Test

    8 More to Test

    24 Bridge Project

    Low Rated Bridge Project

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    3/50

    Project Goals and Tasks

    Develop database of experimental resultsfor more diverse population of steel-stringer

    bridgesField Test 24 "Healthy" Bridges

    Field Test 10 "Low Rated" Bridges

    Demonstrate practicality and usefulness of

    field test toolsStreamline On-site Test Capabilities

    Modal Impact Test (Global Information)Crawl Speed Truck-load Test (Local Information)

    Develop Software Tools

    Efficient FE model generation

    Efficient calibration techniques

    Efficient rating calculations

    Investigate Bridge Condition on StatisticalBasis

    Analytical vs. Experimental Flexibility

    AF N SB RQPMLKJIH

    GEDC

    1

    OT

    U

    2

    34

    5

    A B C D E H I J K L M P Q R SF N T U

    -0.012-0.011

    -0.010-0.009

    -0.008-0.007

    -0.006-0.005

    -0.004-0.003-0.002-0.0010.000

    Deflection(in.)

    Calibrated ModelImpact Test

    - non-posted condition

    - 0.7 - 0.8 span ratio

    - built after 1950

    - # of spans

    - skew

    - composite/noncomp.

    - stub or integral abut.

    - max. span length

    - bridge width

    - mainline route

    - ADTT>2500

    Field Test 40 (6+24+10) Bridges

    x bridges in eachfamily

    statistical database for family

    90% or 95% conf. interval

    Stress(ksi)fromTr

    uckLoad

    Truckload Response, West Lane Path

    Front Axle Location (feet)

    North

    Pier

    South

    Pier

    South

    Abutment

    North

    Abutment

    0 20 40 60 80 100 120 140 160 180 200-1.3

    1.3

    -1

    -0.5

    0

    0.5

    1

    NorthSpan,Beam3 MiddleSpan,Beam3 SouthSpan,Beam3South Pier, Beam 3

    NorthSpan,Beam4 Middle Span, Beam 4 South Span, Beam 4

    Girder 1

    Girder 2

    Girder 3

    Girder 4

    Girder 5

    BUT-732-1043SN

    4 Spaces

    @ 8'-4.5"

    = 33'-6"PathTruck Load

    60'-0" 75'-0" 60'-0"

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    4/50

    UCII Field-Test-Based Rating Strategy

    BridgeRecord

    Data

    Truckload

    Test Data

    ModalTest

    Data

    UCIIPost-Processing

    Algorithms

    UCIIPost-Processing

    Algorithms

    Analyticaland

    Engineering

    Calculations

    Rating

    Calculations

    FE Modeling

    Simulation, Rating,Condition Assessment,

    Statistics, etc

    Analytically-Based

    RatingsField-Test-Based Ratings

    and Other Results

    Material/Sample

    Test Data

    Capacity, Dead Load, and Live Load

    Actual Live LoadStresses andUnit InfluenceLines

    Flexibility, ModeShape, andFrequency

    Estimates of Capacity,

    Live Load, and Dead Load

    Exist ing Rating

    Approach

    UCII Field-Test-Bas ed

    Approach

    Actual MaterialStrengths, Modulusof Elasticity, andother Properties

    Model

    Calibration

    Nominal FEModel

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    5/50

    Bridge Modeler Software

    3 Span Bridge:

    2571 Joints

    1928 shell elements

    1633 frame elements

    3D FE Model4 Span Bridge:

    3755 Joints 2820 shell elements

    2125 frame elements

    Bridge Modeler

    Some Other Bridges:

    More Joints

    More elements

    No. of Nodes and Elements

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    6/50

    3D FE Modeling Strategy

    Cross-Section of Super Structure

    Rigid Links

    Support Links

    Supports

    Steel Girders

    Abuts/Piers

    Concrete Deck

    Elevation of Bridge

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    7/50

    Strain/Stress Responses - UIL

    -0.01

    -0.005

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0.035

    Stress(ksi)

    Span 1 Span 2 Span 3

    Stress Response

    Unit Axle Load

    Velocity

    Stress Responses - UIL

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    8/50

    Mode Shapes - Mode Types

    B-111-OO

    T-111-OO

    F-111-OO

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    9/50

    Identifying Modes of Bridge

    Complex Mode Indicator Function (CMIF) assimilates all accel responses into 1 plotEach line represents a unique impact location (6 impact pts = 6 lines)

    Frequency, (Hz)

    0 5 10 15 20 25 3010

    -9

    10-8

    10

    -7

    10-6

    Complex Mode Indicator Function Plot

    LogMag

    Drop Hammer Accelerometer

    Bridge

    -37

    -34

    -31

    -28

    -25

    -22

    -19

    -16

    -13

    0 20 40 60 80 100 120 140 160 180 200

    Frequency (Hz)

    Time (sec)

    -20

    0

    20

    40

    60

    80

    100

    -0.029 0.971 1.97 2.97 3.97

    Input Signal Output Response

    -1.00

    -0.80

    -0.60

    -0.40

    -0.20

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    -0.06 0.94 1.94 2.94 3.94 4.94 5.94 6.94 7.94

    Time (sec)

    1.E-03

    1.E-02

    1.E-01

    1.E+00

    0 10 20 30 40 50 60LogMagnitude(g/lbf)

    Frequency (Hz)

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    10/50

    o a r er verage on r u on

    1st 9 mode shapes have been found to be common to 3-span, 5-girder bridges

    These 9 modes dominate dynamic behavior (providing approx 90% of response)

    0 25 50 75 100 125 150 175 200

    F-111-OO 4.97 Hz

    -0.6

    -0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0 25 50 75 100 125 150 175 200

    T-111-OO 5.54 Hz

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0 25 50 75 100 125 150 175 200

    F-121-OO 7.26 Hz

    5

    4

    3

    2

    1

    0

    1

    2

    3

    4

    0 25 50 75 100 125 150 175 200

    T-121-OO 8.21 Hz

    -0.3

    -0.25

    -0.2

    -0.15

    -0.1

    -0.05

    0

    0 25 50 75 100 125 150 175 200

    F-111-II 8.62 Hz

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0 25 50 75 100 125 150 175 200

    T-111-II 9.39 Hz

    0 25 50 75 100 125 150 175 200

    B-111-OO 11.86 Hz

    -0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0 25 50 75 100 125 150 175 200

    B-121-OO 14.19 Hz

    -0.45

    -0.4

    -0.35

    -0.3

    -0.25

    -0.2

    -0.15

    -0.1

    -0.05

    0

    0 20 40 60 80 100 120 140 160 180 200

    B-111-II 14.70 Hz

    1 2 3 4 5 6 7 8 9

    F-111-OO T-111-OO F-121-OO T-121-OO F-111-II T-111-II B-111-OO B-121-OO B-111-II8.78 2.89 2.41 2.50 45.46 16.71 2.09 1.40 11.74Contribution (%)

    Mode #

    Mode Type

    Girder 3Girder 4

    F - Flexural

    T - Torsional

    B - Butterfly

    I - In Phase

    O - Out of Phase

    1 - 1 peak in Span

    2 - 2 Peaks in Span

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    11/50

    2

    Truckload Testing

    Data acquisition system Moving load weighed dump truck Strain gage

    Truckload test measures the static response of a bridge

    Local behavior of a bridge can be identified

    The stress response obtained from the tests is used for bridge rating

    A loaded dump truck with known axle weights is run at crawl speed, instead of static

    test

    Truck runs are conducted on all the lanes of the bridge

    Truckload tests are conducted with minimum disturbance to the traffic

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    12/50

    2

    Calibration Diagram

    -0.4

    -0.2

    0

    0.2

    0.4

    0 50 100 150 200 250

    Mode #3 (6.0536 Hz,2.2014

    Test data: Modal + Truckload

    Nominal modelCalibration program

    Calibrated model

    Before calibration During calibration After calibration

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    13/50

    4

    Advantages of Automatic Calibration

    Hours: The weeks

    work of calibration is

    shortened to within 48hours.

    Parameters: More FE

    parameters are

    calibrated, provide a

    better data-fit to thereality.

    0

    100

    200

    300

    400

    500

    600

    manual calibration computer calibration

    Auto-Calibration Advantages

    hours

    parameters

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    14/50

    6

    Objective Function

    UILUILFreqFreqMACMACBGCIBGCI OFwOFwOFwOFwGOF +++=

    Calibration Process Diagram

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0 100 200 300 400

    Calibration Iterations

    O

    bjectiveFunctio

    ns'Values

    Global OF

    BGCI OF

    MAC OF

    Frequency OF

    UIL OF

    Calibration is started from nominal model Calibration is done, Tuned Model

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    15/50

    7

    Calibration Parameters

    All the parametersare set with limitationto have realisticvalues.

    10-6 ~ 1061Moment of Inertia of Rigid Links (IRL), in4

    27000~3100029000Modulus of Elasticity of Steel (ES), ksi

    6~11From planThickness of Deck (TD), in

    2000~60004750Modulus of Elasticity of Concrete (EC), ksi

    10-4 ~ 1051Moment of Inertia of Support Links (ISL), in4

    10-2 ~ 1053000Area of Support Links (ASL), in2

    Calibration

    Limitation

    Nominal

    Value

    Parameters

    Flexible Support

    Composite Action

    IRL

    EC,TD

    ASL,ISLES

    G l I f ti f P t d B id

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    16/50

    General Information of Parameters and Bridges

    Parameter Summary Parameter Value

    Parameter NameNominal Value Calibration Limitations

    Area of Support Links (ASL), in2 3000 10-2 105

    Moment of Inertia of Support Links (ISL), in4 1 10-4 105

    Modulus of Elasticity of Concrete (EC), ksi 4750 2000 6000Thickness of Concrete Deck (TD), in From bridge plan 6

    11

    Modulus of Elasticity of Steel (ES), ksi 29000 27000 31000

    Moment of Inertia of Rigid Links (IRL), in4 1 10-6 106

    Bridge IntroductionBridge Overall

    Length (ft.)YearBuilt

    No. ofSupports

    No. ofGirders

    Skew Angle(Deg.)

    DeckThickness (in.)

    BUT-732-1043 195 1952 4 5 0 8.5

    PRE-725-0800 192 1968 4 5 -10 7.75

    HAM-27-1550L 175.5 1970 4 5 -9 9

    HAM-27-1550R 195 1970 4 5 -9 9

    CLE-52-0498L 221 1965 4 6 0 8.75

    CLE-52-0498R 221 1965 4 6 0 8.75RIC-30-1438 221.5 1971 5 6 0 8.5

    A f S t Li k V ti l Stiff

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    17/50

    Areas of Support Links-Vertical Stiffness

    Support Links(Elevation) Bearing Conditions

    0.001

    0.01

    0.1

    1

    10

    100

    1000

    10000

    100000

    1000000

    BUT PRE HAM-L HAM-R CLE-L CLE-R RIC

    Bridge

    Area(in^2)

    Cal Support1 Cal Support2 Cal Support3 Cal Support4

    Cal Support5 Nom Max Min

    Distribution of Areas of Support Links

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    18/50

    Modulus of Elasticity of Concrete

    Concrete Stripes (Plan) Road Surface Conditions

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    BUT PRE HAM-L HAM-R CLE-L CLE-R RIC

    Bridge

    ModulusofElastic

    ity(ksi.)

    Cal Girder1 Cal Girder2 Cal Girder3 Cal Girder4 Cal Girder5

    Cal Girder6 Nom Max Min

    Distribution of Modulus of Elasticity of Concrete

    M t f I ti f Ri id Li k C it A ti

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    19/50

    Moment of Inertia of Rigid Links-Composite Action

    Steel Girders (Elevation) Composite Action Levels

    0.0000001

    0.00001

    0.001

    0.1

    10

    1000

    100000

    10000000

    BUT PRE HAM-L HAM-R CLE-L CLE-R RIC

    Bridge

    M

    omentofInertia(in^4)

    Cal Girder1 Cal Girder2 Cal Girder3 Cal Girder4 Cal Girder5

    Cal Girder6 Nom Max Min

    Distribution of Moment of Inertia of Rigid Links

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    20/50

    Bridge Rating Statistics

    BARS, Trucktest, FE Model Load Rating Comparison

    0

    0.5

    1

    1.5

    2

    2.5

    3

    Rating

    BARS 1.05 0.95 1.4 1.2

    TRUCK TEST 1.63 1.6 2.54 2.56

    Nominal Model 1.73 1.65 2.52 2.38

    Tuned Model 1.35 1.66 2.64 2.66

    BUT 732 PRE 725 CLE 52L HAM 27L

    HS20 Truckload Rating

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    21/50

    1.52 1.52

    1.36

    1.73

    1.261.22

    1.16

    1.42

    1.06

    0.92

    0.77

    0.82

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    0903841 6804209 1301535 3101746

    Butler Preble Clermont Hamilton

    DF, ASD DF, LRFD DF, UCII

    Distribution Factors for Similar Stringer Bridges

    Distrib

    utionFactor,WheelLiveload,TwoLan

    es

    1.0

    3

    2.06.0

    125.975.0,

    +=

    S

    g

    Lt

    K

    L

    SSLRFDDF

    5.5,

    SASDDF =

    BARSM

    UCIIMASDDFUCIIDF

    LL

    LL

    ,

    ,,, =

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    22/50

    30.47

    39.34

    43.21

    52.35

    10.83

    12 12.25

    13

    2.24

    10.61

    14.10

    15.66

    6

    7 7

    8

    0

    10

    20

    30

    40

    50

    60

    0903841 6804209 1301535 3101746

    Butler Preble Clermont Hamilton

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    %Reduction LL Crossframe Spacing (feet) Effective Deck Width (feet) General Appraisal (0-9)

    Relationship of Design and Condition Parametersto the Reduction of BARS Liveload

    ParameterValue

    ,asgivenintheKeybelow

    RecuctionofBARSLive

    load(%)

    Can we use Inspection to Scale BARS LL?

    An Effect of Xframe spacing?

    An Effect of Unintended Composite Action?

    Where is the increasing difference from BARS LL coming from?

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    23/50

    CONCLUSIONS TO DATE

    Impact and truck-load testing can be performed pract ical ly andeff ic ient lylane-by-lane "rapid" multi-reference impact testing

    lane-by-lane truck tests

    Modal and truck-load tests provide rel iable, accur ate, us efulinformation on

    bridge condition

    Calibrated 3D FE models can be readily obtained and help establish more

    realistic load-rating and safe load-carrying capacity

    Objective methods meant to complement inspection and load-rating

    NOT REPLACENOT REPLACE

    US Grant Bridge: SCI 23 0000US Grant Bridge: SCI-23-0000

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    24/50

    View of construction site as of November 12, 2003(taken from OH side)

    Digital rendering of completed structure(viewed from KY)

    US Grant Bridge: SCI-23-0000US Grant Bridge: SCI-23-0000

    View of construction site as of November 7, 2003(taken from KY tower)

    P t ti l B fitP t ti l B fit

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    25/50

    Potential BenefitsPotential Benefits

    Formation of a team with theknowledge and expertise to

    support ODOT's efforts toeffectively manage thesestructures.

    Support inspection efforts

    Provide hard data forrecommendations on actions takenthroughout bridge life-cycle:construction and service.

    Development of a databaseof objective field informationon these structures.

    Translate an understanding of USGrant behavior.

    Better understanding ofmaintenance issues.

    Track USG structural performance.

    Deeper understanding of thegeneral behavior andperformance of cable stayedbridges in general.

    EVENTS LOAD EFFECTS

    DEAD LOADS

    INTRINSIC

    FORCES

    LIVE LOADS

    CAPACITY

    REDUCTION

    CONSTRUCTION

    ERECTION

    FABRICATION

    ACCIDENT

    FLOOD

    DETERIORATION

    EARTHQUAKE

    SEASONAL SOILCONDITION

    ENVIRONMENTALCHANGES

    LONG-TERM CLIMATE

    AMBIENT CONDITIONCHANGES

    TRAFFIC

    HYDROLOGICAL

    Safety?

    Serviceability?

    Overall Monitor ArchitectureOverall Monitor Architecture

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    26/50

    WeatherStation

    CR-10Network

    VW Gages

    Thermistors

    Low Speed/EnvironmentalMonitor

    Traffic Monitor

    OPTIM

    ResistiveGages

    Accelerometers

    Main cabinetw/PC

    ResearchLabs/ODOT

    Web/Phone/ModemRemote Connection

    Vibration Monitor

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    27/50

    Criterion Stay Cable

    WORST RATING 1S, 1N

    MAX LOAD FORCE 1S, 1N

    MAX DEAD STRESS 8N

    SUMMARY PLAN FOR INSTRUMENTATION OF

    STAY CABLES 1, 8, & 16

    4B 16A16B

    INSTRUMENTED SECTION

    COAXIAL and OTHER CABLE

    MAIN COMPUTER CABINET

    CSAT3 WIND SENSOR

    NEMA Cabinet, 2 x 3 x 6 feetwith 120VAC, 15A power,

    analog phone, and air vents

    Computer with modem

    (1) Campbell Scientific:

    CSAT3 Wind Sensor

    CR10X-2M datalogger

    MD9 Multidrop

    ENC 16/18 EnclosurePS12LA Power Supply

    CSAT3 Wind Sensor

    Optim Electronics:

    continuous 200 samples per second

    stores data crossing pre-set thresholds

    (1) 3415 MEGADAC system

    (8) AD808, 8-channel cards

    Campbell Scientific:

    (1) CR10X-2M datalogger

    (1) MD9 Multidrop

    (1) ENC 16/18 Enclosure

    (1) AVW1 Interface

    1N16N16S1S

    KEY

    From Page 166

    of Bridge Plans

    STAY CABLE CONTAINMENT INSTRUMENTATION

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    28/50

    STAY CABLE CONTAINMENT INSTRUMENTATION

    Geokon Model VCE-4200

    (16) Geokon Vibrating Wiresampled every 15 minutes

    STRAIN GAGE PAIR

    PVC CONDUIT

    DATA SYSTEM

    Strain gage pairs installed with steel clampto the rebar cage of the concrete

    containment.

    Strain gage cables routed through rebarcage to the data system cabinet.

    Data system cabinet is embedded within orattached upon the pylon wall.

    Strain gage pairs installed in aT or cross pattern in order to

    measure radial and longitudinalstrains and deformations in the

    containment immediately

    adjacent to the cradle sheathfor the stay cable

    KEY

    Campbell Scientific:

    (1) AM416 Multiplexer

    (1) AM ENC Enclosure

    Data System

    From Page 111

    of Bridge Plans

    SECTION INSTRUMENTATION PLAN (S ti l Vi )

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    29/50

    Stay Cable Instrumentation:

    (2) PCB Piezotronics

    Capacitive Accelerometers (3701)

    Note: roved to various

    instrumented sections

    Concrete Embedment Sensors:

    (4) MM Resistive Foil

    sampled during semi-annual tests

    or connected to Vibration Monitor

    Concrete Embedment Sensors:

    (4) Geokon Vibrating Wire

    sampled every 15 minutes

    SECTION INSTRUMENTATION PLAN (Sectional View)

    Geokon Model VCE-4200

    Micro Measurements ModelEGP-5-120

    Steel Tag-Welded Sensors:

    (8) TM Resistive Foil Strainsampled during semi-annual tests

    or connected to Vibration Monitor

    Steel Epoxied Sensors:

    (8) Geokon Vibrating Wire

    sampled every 15 minutes

    Geokon Model VSM-4000

    Texas Measurements AWC-8B

    PCB Model 3701

    Campbell Scientific:(1) AM416 Multiplexer

    (1) AM ENC Enclosure

    Optim Electronics:

    (2) AD808FB/120

    Data System

    STRAIN GAGE PAIRS:

    Steel Foil and VWG

    Concrete Foil and VWG

    ACCELEROMETER

    PVC CONDUIT

    DATA SYSTEM

    KEY

    Close-up Sectional View of

    CIP Joint over Fascia Girder

    Not Shown: Longitudinal PVC Conduit in Exterior Traffic BarrierFrom Page 106

    of Bridge Plans

    From Page 162

    of Bridge Plans

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    30/50

    Load Factor Inventory Rating Factors

    [using HNTB section properties]

    0.1

    1

    10

    100

    1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

    Station (feet), KY Tower at 1487 feet, OH Tower at 2362 feet

    Ptv LL Moment (composite section) Neg LL Moment (noncomposite section)

    Potential Sections to be Instrumented

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    31/50

    EXAMPLE SENSOR PLAN FOR AMBIENT MONITORING

    DYNAMIC MODE SHAPES

    US Grant Bridge Superstructure

    PCB Piezotronics

    Capacitive Accelerometers (3701)

    Sensors installed in both

    the Y and Z coordinates to

    observe vertical and lateral modes

    **MODE 1 FREQ 0.2918 CYC/SEC

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    32/50

    EXAMPLE SENSOR PLAN FOR AMBIENT MONITORING

    DYNAMIC MODE SHAPES

    US Grant Bridge Superstructure

    PCB Piezotronics

    Capacitive Accelerometers (3701)

    Sensors installed in both ? (as high up as possible)

    the X and Y coordinates to

    observe longitudinal & lateral modes at stay anchor

    **MODE 1 FREQ 1.0 3.0 CYC/SEC (not accounting for sag)

    m

    T

    Lf

    2

    1=

    OH Tower InstrumentationOH Tower Instrumentation Environmentalloads

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    33/50

    At approxEL 600'

    N

    Erec

    tion

    loa

    ds

    View of tower rebar cage

    OH Tower @ EL 600 Moment and Axial Forces During Erection (B&T)

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    34/50

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    1 4 710

    13

    16

    19

    22

    25

    28

    31

    34

    37

    40

    43

    46

    49

    52

    55

    58

    61

    64

    67

    70

    73

    76

    79

    82

    85

    88

    91

    94

    97

    100

    103

    106

    109

    112

    115

    Erection Stage

    AxialForce(kip)

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0

    10

    Moment(1000kip-ft)

    P M

    Towerpour

    SegmentErection

    Temporary bent

    Creep,

    Shrinkage,etc.

    Opening Day

    Maumee River CrossingMaumee River Crossing

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    35/50

    Recent view of construction site

    Digital rendering of completed structure

    Maumee River CrossingMaumee River Crossing

    Instrumented Segment in Storage in Casting Yard

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    36/50

    Segment SelectionSegment Span 27-4 Span 27-41 Span 28-3 Span 28-28

    In-Service

    Highpoints

    All bottom RFs low, Top

    temp. RF low, Top LL is close

    to abs. max., Segment

    between two longest stays.

    Good LL response, Bottom

    RFs are high. Top RFs are low.

    Near the center of back-span.

    Low RFs. Both 27-67 and 28-

    3 are near the shortest stays.

    RFs are lower than 28-34. Best

    bottom LL response and Low top

    RFs.

    In-Construction

    Highpoints

    Low max. stress, Not very

    responsive to construction until

    phase 210+ (Day 559).

    Low max. stress, Responsive to

    construction after phase 24

    (Day350), Responsive to pier

    removal, Stresses uniform

    throughout the length.

    Good construction response,

    Uniform stress throughout

    segment length.

    Responsive through the end of

    construction, Peaks pronounced

    and good magnitude, Uniform

    stress.

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    37/50

    TYPICAL SEGMENT

    INSTRUMENTATION LAYOUT

    STRA IN G AGE PAI RS:

    LONG ITUDINAL

    LATER AL

    ACCELE ROMETER

    PV C CON DU IT

    JUNCTIO N BO X

    Strain gag e pairs installed in r ebar cage by URT at time o f casting

    Strain gage cables r outed by URT through r ebar cage to the junction boxes.

    Junction boxes installed by con tractor within the concrete Je rsey barr ie rs.

    Con duit with 3" inner diameter installed by contr actor to connect the junction boxes.

    Geoko n Mode l VCE -420 0

    Mic ro Me asure ment s Mode lEGP -5-35 0

    MM Res istive FoilS tr ain Gage:

    sampled during semi-annual tests

    or connec tedto Vibration Moni tor

    Geokon Vibr ating WireS tr ain Gage:

    sampled every 15minutes

    Campbell Scientific :

    (1) C R10X-2Mdatalogger

    (1) MD 9Multidrop

    (1) ENC 16/18 Enc losure

    (1) PS12LA Power Supply

    (1) AM416 M ultipl exer

    (1) AVW1 Inter face

    Ca mpbe ll Sci entif i c

    Mod el CR -10X- 2M

    Note : The fo ur such sege ments of t he MRC wil l be instr umented. The a bovediagram is sim ply a repr esentation of the instrum entation plan . All conduit a ndcables to be provided concurrent with section e rection, with installation to t heJersey bar rier concu rrent with ba rrier con struction and with installation of1 20VAC power concur rent with othe r bridge electrical wo rk.

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    38/50

    VIEWS OF EMBEDMENT GAGE

    INSTALLATIONS

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    39/50

    VIEWS OF INSTRUMENTED

    SEGMENTS

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    40/50

    1

    2 2

    1

    Instrumentation plan

    One vibrating wire and one sister bar at each location

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    41/50

    Delta frame Storage and vertical lifting position

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    42/50

    Delta frame Tensioning tendons layout

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    43/50

    Post-tensioning sequenceData Collection

    Stage #1 DF2 tensioned (2pm)

    Stage #2 DF3 tensioned (2:26pm)

    Stage #3 DF1 tensioned (2:42pm)

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    44/50

    Strain gage readingsGage readings during t he process of tensioning

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    80

    100

    Time

    1100

    1115

    1130

    1145

    1200

    1215

    1230

    1245

    1300

    1315

    1330

    1345

    1400

    1415

    1430

    1445

    1500

    1515

    1530

    1545

    1600

    1615

    1630

    1645

    Time (hrs)

    Readings(micr

    ostrains)

    18BVNTO

    18BSNTO

    18BSNBI

    18BVSTO

    18BSSTO

    18BVSBI

    18BSSBI

    Prestressing

    begins

    DF2 tensioned

    DF3 tensioned

    DF1 tensioned

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    45/50

    Modeling in BD2

    2D dimensional stiffness method

    Can model post-tensioning losses

    Other losses like elastic shortening are also modeled

    Good for staged loading

    Time dependent properties like shrinkage and creep can also be

    modeled, but not considered in this analysis as the process takesplace over a span of only one hour.

    Duct properties used as provided by the consultant

    Jacking forces and seating loss obtained by PT stressing log

    Used for change in strains due to tensioning of tendons

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    46/50

    Modeling in BD2

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    47/50

    Test-Model CorrelationAssumptions:

    Plane section remains plane

    Homogeneous materials No cracks in the bottom chord

    Strain gages not dislocated and measurement in the rightdirection

    No affect in accuracy of gages due to temperature The gage represents its centerline strains

    Linear noise can be separated by simple arithmetic's

    Immediate force transfer

    No effect of shrinkage, creep and temperature (over a shortperiod of 1 hr)

    No effect of dead load deformations

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    48/50

    Comparison: Normalized strains

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    49/50

    Comparison: Normalized strains

    Great match after

    normalizing.

    Analytical and

    experimental resultsagree well at all three

    stages.

  • 7/25/2019 42 PRES OTEC 2004 AdvancedStrategies

    50/50

    Conclusion

    No crack in bottom chord Very good agreement between analytical

    and experimental results

    Eccentricity is an issue while using 2D

    models

    Losses and other design assumptions arefairly accurate