4172013 AdriaVidovic Thesis - Duke University

67
On the Feasibility of a Novel InVivo Dosimeter for Brachytherapy by Adria Katarina Vidovic Graduate Program in Medical Physics Duke University Date:_______________________ Approved: ___________________________ Mark Oldham, Supervisor ___________________________ Oana Craciunescu ___________________________ Justus Adamson ___________________________ Robert Reiman Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Graduate Program in Medical Physics in the Graduate School of Duke University 2013

Transcript of 4172013 AdriaVidovic Thesis - Duke University

Page 1: 4172013 AdriaVidovic Thesis - Duke University

 

i

v  

 

 

On  the  Feasibility  of  a  Novel  In-­‐‑Vivo  Dosimeter  for  Brachytherapy  

by  

Adria  Katarina  Vidovic  

Graduate  Program  in  Medical  Physics  Duke  University  

 

Date:_______________________  Approved:  

 ___________________________  Mark  Oldham,  Supervisor  

 ___________________________  

Oana  Craciunescu    

___________________________  Justus  Adamson  

 ___________________________  

Robert  Reiman        

 

Thesis  submitted  in  partial  fulfillment  of    the  requirements  for  the  degree  of  Master  of  Science  in  the    

Graduate  Program  in  Medical  Physics    in  the  Graduate  School  of    

Duke  University    

2013    

 

Page 2: 4172013 AdriaVidovic Thesis - Duke University

 

i

v  

 

ABSTRACT  

On  the  Feasibility  of  a  Novel  In-­‐‑Vivo  Dosimeter  for  Brachytherapy  

by  

Adria  Katarina  Vidovic  

Graduate  Program  in  Medical  Physics  Duke  University  

 

Date:_______________________  Approved:  

 ___________________________  Mark  Oldham,  Supervisor  

 ___________________________  

Oana  Craciunescu    

___________________________  Justus  Adamson  

 ___________________________  

Robert  Reiman          

An  abstract  of  a  thesis  submitted  in  partial  fulfillment  of    the  requirements  for  the  degree  of  Master  of  Science  in  the    

Graduate  Program  in  Medical  Physics    in  the  Graduate  School  of  

Duke  University    

2013  

Page 3: 4172013 AdriaVidovic Thesis - Duke University

 

 

 

                                                                       

Copyright  by  Adria  Katarina  Vidovic  

2013    

Page 4: 4172013 AdriaVidovic Thesis - Duke University

 

   

iv  

 

Abstract Purpose:  Clinical  brachytherapy  systems  are  capable  of  delivering  very  high  doses  with  

high  dose  gradients.  It  is  important  therefore  to  be  able  to  accurately  verify  the  doses  

calculated  by  brachytherapy  treatment  planning.  Current  dose  verification  methods  are  

limited  by  poor  resolution,  and  in  the  presence  of  large  dose  gradients,  may  give  non-­‐‑

representative  results  [1].  This  thesis  aims  to  evaluate  the  feasibility  of  a  novel  

radiochromic  dosimetry  system  for  in-­‐‑vivo  dose  verification  in  organs  at  risk  (bladder  

and  rectum)  in  high  dose  rate  (HDR)  intracavitary  gynecological  brachytherapy  through  

a  comparison  with  a  gold  standard.  

Methods:  A  novel  dosimeter  PRESAGE®-­‐‑IV  designed  for  in-­‐‑vivo  dosimetry  is  

investigated.  PRESAGE®-­‐‑IV  dosimeters  are  small  cylinders  4mm  in  diameter  by  20mm  

in  height.  When  irradiated,  the  dosimeters  change  color  in  proportion  to  the  local  

absorbed  dose.  The  dosimeters  were  irradiated  to  doses  between  1-­‐‑15  Gy.  Two  methods  

were  investigated  for  readout  of  this  radiochromic  response:  (i)  a  volume  averaged  

readout  by  conventional  spectrophotometer,  and  (ii)  a  line  profile  readout  by  a  novel  2D  

projection  imaging  method  utilizing  a  high-­‐‑resolution  (50  micron)  telecentric  optical  

system.  Method  (i)  is  considered  the  gold  standard,  as  it  is  has  been  extensively  used  

with  PRESAGE®  in  well-­‐‑defined  optical-­‐‑cuvettes.    The  feasibility  of  PRESAGE®-­‐‑IV  was  

evaluated  by  comparison  to  standard  PRESAGE®  in  optical-­‐‑cuvettes.    The  feasibility  of  

the  high-­‐‑resolution  readout  (method  ii)  was  evaluated  by  direct  comparison  against  

Page 5: 4172013 AdriaVidovic Thesis - Duke University

 

   

v  

 

method  (i).      Dosimeters  were  also  tested  in-­‐‑vivo  on  six  patients  undergoing  Iridium-­‐‑192  

HDR  intracavitary  brachytherapy  treatments  and  dose  measurements  were  compared  to  

EclipseTreatment  Planning  System  (Varian  Medical  Systems).    

Results:  When  compared  to  the  gold  standard  (optical-­‐‑cuvettes),  the  sensitivity  and  

noise  of  PRESAGE®-­‐‑IV  shows  a  linear  relationship  in  sensitivity  between  1-­‐‑15  Gy  with  a  

95%  confidence  interval  in  the  slope  (0.8703  +/-­‐‑  0.0192).  The  feasibility  of  the  high-­‐‑

resolution  readout  (method  ii)  evaluated  by  direct  comparison  against  method  (i)  

resulted  in  a  sensitivity  of  0.0136  ±  0.0002  and  for  the  spectrophotometer  0.0135 ±  0.0002,  

which  is  a  0.74%  difference  in  sensitivity  within  the  95%  confidence  interval.  

Examination  of  patient  data  showed  large  differences,  and  on  average  gave  19%  and  

22%  differences  in  measured  doses  vs.  Eclipse  measurements  in  the  bladder  and  rectum,  

respectively.  

Conclusions:  Results  show  that  a  novel  radiochromic  dosimetry  system  for  in-­‐‑vivo  dose  

verification  in  organs  at  risk  is  feasible.  The  conventional  spectrophotometer  readout  

method  had  the  limitation  that  it  averages  the  change  in  optical  density  over  a  10  mm  

area  of  the  dosimeter.    The  novel,  high-­‐‑resolution  2D  readout  technique  was  found  to  

have  the  advantage  of  producing  images  that  could  be  further  analyzed  through  line  

profiles  in  any  area  of  the  dosimeter.    Due  to  the  large  differences  in  measured  doses  for  

organs  at  risk,  further  work  is  needed  to  validate  dosimeter-­‐‑positioning  technique.  

Page 6: 4172013 AdriaVidovic Thesis - Duke University

 

   

vi  

 

Dedication

To  my  fiancé  Adam,  and  my  family  for  all  the  encouragement  and  support.  

Page 7: 4172013 AdriaVidovic Thesis - Duke University

 

   

vii  

 

Contents

Abstract  ..........................................................................................................................................  iv  

List  of  Tables  .................................................................................................................................  ix  

List  of  Figures  ................................................................................................................................  x  

List  of  Abbreviations  .................................................................................................................  xiii  

Acknowledgements  ...................................................................................................................  xiv  

1.  Introduction  ...............................................................................................................................  1  

1.1  Gynecological  HDR  Intracavitary  brachytherapy  .......................................................  1  

1.2  HDR  Intracavitary  brachytherapy  treatment  applicators  and  packing  systems  ....  2  

1.3  Imaging  in  HDR  intracavitary  brachytherapy  .............................................................  5  

1.4  Limitations  in  HDR  intracavitary  brachytherapy  ........................................................  5  

1.5  Current  in-­‐‑vivo  dose  verification  techniques.  ..............................................................  6  

1.6  PRESAGE®  as  an  in-­‐‑vivo  dosimeter  ...............................................................................  8  

1.7  Scope  and  aims  .................................................................................................................  9  

2.  Methods  ....................................................................................................................................  11  

2.1  Characterization  of  PRESAGE®-­‐‑IV  dosimeters  ..........................................................  11  

2.1.1  Gold  standard  method  using  optical  cuvettes  ......................................................  11  

2.1.2  Dose  response  ............................................................................................................  12  

2.1.3  Energy  response  ........................................................................................................  13  

2.1.4  Temporal  stability  .....................................................................................................  15  

2.1.5  Temperature  stability  ................................................................................................  15  

2.1.6  Effect  of  cuvette  material  on  PRESAGE®-­‐‑IV  ..........................................................  16  

Page 8: 4172013 AdriaVidovic Thesis - Duke University

 

   

viii  

2.2  Investigating  the  feasibility  of  readout  by  comparison  to  gold  standard  ..............  18  

2.2.1  Cuvette  and  dosimeter  irradiation  ..........................................................................  19  

2.3  2D  optical  scanning  and  spectrophotometer  reading  ...............................................  20  

2.3.1  Spectrophotometer  technique  ..................................................................................  21  

2.3.2  2D  optical  scanning  technique  .................................................................................  22  

2.3.3  2D  optical  scanner  image  registration  ......................................................................  24  

2.3.4  Quantitative  comparison  between  the  spectrophotometer  and  2D  optical  scanner  ...................................................................................................................................  25  

2.4  Patient  treatment  ............................................................................................................  26  

2.4.1  Eclipse  dose  verification  ...........................................................................................  28  

3.  Results  and  Discussion  ...........................................................................................................  30  

3.1  PRESAGE®  Sensitivity  and  stabilities  .........................................................................  31  

3.1.1  Dose  response  ............................................................................................................  31  

3.1.2  Energy  Response  .......................................................................................................  32  

3.1.3  Temporal  stability  .....................................................................................................  35  

3.1.4  Temperature  stability  ................................................................................................  36  

3.1.5  Effect  of  the  cuvette  material  on  PRESAGE®-­‐‑IV  ...................................................  37  

3.2  Results  of  the  feasibility  of  readout  by  comparison  to  gold  standard  ....................  38  

3.3  Quantitative  comparison  between  the  2D  optical  scanner  and  spectrophotometer  .................................................................................................................................................  39  

3.4  Patient  treatment  ............................................................................................................  40  

4.  Conclusions  ..............................................................................................................................  49  

References  ....................................................................................................................................  51  

Page 9: 4172013 AdriaVidovic Thesis - Duke University

 

   

ix  

List of Tables Table  1:  Monitor  units  delivered  to  1.5%  DEA  formulation  dosimeters  and  cuvettes  .....  20  

Table  2:  Overview  of  PRESAGE®-­‐‑IV  dosimeters  irradiated  in  this  work.  ..........................  30  

 

 

Page 10: 4172013 AdriaVidovic Thesis - Duke University

 

   

x  

 

List of Figures Figure  1:  45°  T&R  Applicator  (Varian  Medical  Systems)  [22]  ................................................  3  

Figure  2:  Stump  Cylinder  Applicator  (Varian  Medical  Systems)  [22]  ...................................  3  

Figure  3:  Capri  Applicator  (Varian  Medical  Systems)  [22]  .....................................................  4  

Figure  4:  PRESAGE®-­‐‑IV  dosimeters  pre-­‐‑irradiation  (left)  and  post-­‐‑irradiation  15  Gy  (right).  .............................................................................................................................................  9  

Figure  5:  1x1x4  cm3  cuvette  (left)  and  Genesys®  20,  ThermoSpectronic®  spectrophotometer  (right).  .........................................................................................................  12  

Figure  6:  PRESAGE®  filled  cuvettes  irradiated  with  a  6MV  photon  beam  to  doses  of  0-­‐‑15  Gy.  .................................................................................................................................................  13  

Figure  7:  Axial  Cross  Section  of  Applicator  with  Dosimeters  Visible  with  Beekley  CT-­‐‑  Spots®  Localizers  (left)  and  Sagittal  Cross  Section  of  Applicator  with  One  Dosimeter  Visible.  ..........................................................................................................................................  14  

Figure  8:  Water  Bath  containing  Source  Guide  Tube  and  Applicator  with  Dosimeters  (left)  and  the  Treatment  Set  Up  (right).  ...................................................................................  15  

Figure  9:  Example  of  the  PRESAGE®  molds  in  the  shape  of  cuvettes.  ................................  17  

Figure  10:  PRESAGE®-­‐‑Filled  Cuvette  (left)  and  PRESAGE®  Mold  (right).  .........................  18  

Figure  11:  PRESAGE®-­‐‑Filled  Cuvette  (left)  and  Cuvette  with  PRESAGE®-­‐‑IV  (right)  .......  19  

Figure  12:  Side  View  of  the  Standard  Treatment  Set-­‐‑Up  ......................................................  20  

Figure  13:  From  left  to  right:  Cuvette  filled  with  mineral  oil,  Styrofoam  holder  and  dosimeter,  holder  in  cuvette,  cuvette  holder,  spectrophotometer.  ......................................  22  

Figure  14:  Diagram  of  the  DMicrOS  System  [15].  ..................................................................  23  

Figure  15:  Diagram  of  the  jig  (designed  during  this  thesis  work)  that  holds  in-­‐‑vivo  dosimeters  in  tank.  ......................................................................................................................  23  

Figure  16:  An  Example  of  a  Line  Profile  of  Two  Dosimeters  Irradiated  to  10  Gy  Using  the  Standard  Treatment  Setup  Described  in  Section  2.2.1.  The  Line  Profile  Was  Taken  Along  

Page 11: 4172013 AdriaVidovic Thesis - Duke University

 

   

xi  

the  Center  of  Each  Dosimeter  to  Measure  the  Change  in  Optical  Density  at  Approximately  the  Same  Length  (10  mm)  and  Location  (3  mm  from  the  Bottom  of  the  Dosimeter)  as  the  Spectrophotometer.  .....................................................................................  25  

Figure  17:  PRESAGE®-­‐‑IV  dosimeter  with  and  without  Tegaderm™  and  Beekley  CT-­‐‑  Spots®  localizers.  .........................................................................................................................  26  

Figure  18:    Example  of  Dosimeter  Placed  on  Alatus  Balloon  Packing  System  (top)  and  Dosimeters  In-­‐‑Vivo  Near  OARs  in  T&R  Treatment  (left  and  right)  ....................................  27  

Figure  19:  Example  of  Dosimeters  Placed  on  Cylinder  Applicator  Axial  (left)  and  Sagittal  (right)  Views.  ...............................................................................................................................  28  

Figure  20:  Example  of  Dosimeter  Placed  inside  Capri  Applicator  Channel  Axial  (left)  and  Coronal  View  of  Dosimeter  with  Point  Doses  (right).  ...........................................................  28  

Figure  21:  Dose  Response  (Sensitivity)  of  All  Five  Formulations.  .......................................  32  

Figure  22:  The  Sensitivity  for  the  1.5%  O-­‐‑MeO-­‐‑DEA  (2/14/13)  Dosimeter  Formulation.  .  34  

Figure  23:  Dosimeter  Dose  Measurement  of  a  KV  Brachytherapy  Source  Using  a  MV  Calibration  Curve.  .......................................................................................................................  35  

Figure  24:  Dose  Response  (Sensitivity)  Temporal  Stability  of  the  1.7%  O-­‐‑MeO-­‐‑DEA  (11/27/12)  Formulation.  ..............................................................................................................  36  

Figure  25:  Change  in  OD  with  Temperature  for  the  D21  Formulation.  ..............................  37  

Figure  26:  The  Change  in  Optical  Density  of  the  Molds  vs.  Cuvettes  for  the  1.5%  O-­‐‑MeO-­‐‑DEA  Formulation  (1/31/13).  .......................................................................................................  38  

Figure  27:  The  Change  in  Optical  Density  of  the  Dosimeters  vs.  Cuvettes  for  the  1.5%  O-­‐‑MeO-­‐‑DEA  Formulation  (2/14/13).  ............................................................................................  39  

Figure  28:  The  Comparison  in  Sensitivity  of  the  DmicrOS  system  and  the  Spectrophotometer  for  the  1.5%  O-­‐‑MeO-­‐‑DEA  Formulation  (2/14/13).  ...............................  40  

Figure  29:  Dose  Response  (Sensitivity)  of  the  D21  Formulation  at  Body  Temperature.  ..  41  

Figure  30:  T&R  Patient  6  Treatment  Dose  Measurement  Using  the  D21  Formulation.  ....  42  

Figure  31:  Capri  Patient  1  fx  1  Dose  Measurement  Using  the  D21  Formulation.  ..............  43  

Page 12: 4172013 AdriaVidovic Thesis - Duke University

 

   

xii  

Figure  32:  Capri  Patient  1  fx  1  Dose  Measurement  Using  the  D21  Formulation.  ..............  43  

Figure  33:  Capri  Patient  1  fx  3    Dose  Measurement  Using  the  D21  Formulation.  .............  44  

Figure  34:  Dose  Response  (Sensitivity)  of  the  2%  O-­‐‑MeO-­‐‑DMA  Formulation  at  Body  Temperature.  ................................................................................................................................  45  

Figure  35:  T&R  Patient  2  fx  1  Dose  Measurement  (2%  O-­‐‑MeO-­‐‑DMA)  ...............................  46  

Figure  36:  T&R  Patient  2  fx  2  Dose  Measurement  (2%  O-­‐‑MeO-­‐‑DMA)  ...............................  46  

Figure  37:  Stump  Patient  3  Dose  Measurement  (2%  O-­‐‑MeO-­‐‑DMA)  ...................................  47  

Figure  38:  Stump  Patient  4  Dose  Measurement  (2%  O-­‐‑MeO-­‐‑DMA)  ...................................  48  

Figure  39:  Cylinder  Patient  5  Dose  Measurement  (2%  O-­‐‑MeO-­‐‑DMA)  ...............................  48  

 

 

 

 

 

Page 13: 4172013 AdriaVidovic Thesis - Duke University

 

   

xiii  

List of Abbreviations HDR-­‐‑  High  Dose  Rate    

CT-­‐‑  Computed  Tomography  

MRI-­‐‑  Magnetic  Resonance  Imaging  

T&R-­‐‑  Tandem  and  Ring  

T&O-­‐‑  Tandem  and  Ovoid  

OAR-­‐‑  Organ  at  Risk  

DVH-­‐‑  Dose  Volume  Histogram  

TPS-­‐‑  Treatment  Planning  System  

TLD-­‐‑  Thermoluminescent  Dosimeter  

MOSFET-­‐‑  Metal  oxide  semiconductor  field  effect  transistor  detectors  

O-­‐‑MeO-­‐‑DEA-­‐‑  2-­‐‑methoxy-­‐‑N,  N-­‐‑diethylamine  

O-­‐‑MeO-­‐‑DMA-­‐‑  2-­‐‑methoxy-­‐‑N,  N-­‐‑dimethylamine  

LED-­‐‑Light  Emitting  Diode  

CCD-­‐‑  Charged-­‐‑Coupled  Device  

DMicrOS-­‐‑  Duke  Micro  Optical  Scanner  

DLOS-­‐‑  Duke  Large  Field  of  View  Optical-­‐‑CT  Scanner  

 

 

Page 14: 4172013 AdriaVidovic Thesis - Duke University

 

   

xiv  

Acknowledgements I  would  like  to  acknowledge  the  support  of  my  advisor  Dr.  Mark  Oldham  for  his  

endless  advice  and  support.  I  would  also  like  to  give  a  special  thanks  to  Titania  Juang  

for  her  help  throughout  my  work  and  specifically  in  collecting  patient  data,  performing  

the  temperature  dependence  experiment,  and  creating  a  jig  for  the  dosimeters.  I  would  

like  to  thank  my  committee  members  Dr.  Oana  Craciunescu,  Dr.  Justus  Adamson,  and  

Dr.  Robert  Reiman,  for  their  time  and  effort.  I  would  also  like  to  thank  Dr.  Junzo  Chino,  

Beverly  Steffey,  and  Dr.  Sheridan  Meltsner  who  were  involved  in  helping  me  collect  

clinical  data.  Last,  but  not  least  I  would  like  to  thank  Dr.  John  Adamovics  and  Heuris  

Pharma  LLC  for  providing  our  lab  with  PRESAGE®-­‐‑IV  dosimeters.

Page 15: 4172013 AdriaVidovic Thesis - Duke University

 

   

1  

1. Introduction

1.1 Gynecological HDR Intracavitary brachytherapy

Gynecological  intracavitary  brachytherapy  is  the  clinical  use  of  small,  

encapsulated  radioactive  sources  placed  in  the  uterus,  uterine  cervix,  or  vagina  directly  

on  a  target  volume  for  irradiation  of  malignant  tumors  or  nonmalignant  lesions  [2].  The  

principle  advantage  of  brachytherapy  is  the  superior  localization  of  dose  to  the  tumor  

volume  and  the  rapid  dose  fall-­‐‑off  in  accordance  to  the  inverse  square  law.    

High  Dose  Rate  (HDR)  brachytherapy  is  a  special  method  of  delivering  

brachytherapy  at  doses  greater  than  12  Gy/hour  that  employs  computer  controlled  

remotely  driven  sources  known  as  a  remote  afterloader.  This  eliminates  the  potential  for  

exposure  to  clinical  staff,  and  has  the  ability  to  tailor  radiation  delivery  to  maximize  

dose  within  a  target  volume  and  minimize  dose  in  adjacent  normal  structures  [3].  The  

HDR  brachytherapy  program  at  Duke  Medical  Center  uses  a  Varian®  GammaMed™plus  

iX  remote  afterloader  for  intracavitary  brachytherapy  treatments.  This  remote  

afterloader  delivers  an  Iridium-­‐‑192  source  and  treatment  plans  are  based  on  a  10  Curie  

activity  and  an  Air  Kerma  Rate  of  0.063  Gy/hour  (±5%)  for  555  GBq  at  1  meter.  

The  HDR  delivery  procedure  involves  adequate  sedation  of  the  patient  that  can  

include  general,  spinal,  or  IV  conscious  sedation.  The  patient  is  kept  under  anesthesia  

during  the  duration  of  applicator  insertion  and  treatment  delivery,  which  takes  

approximately  two  to  four  hours  [8].  The  remote  afterloader  delivers  sources  through  

Page 16: 4172013 AdriaVidovic Thesis - Duke University

 

   

2  

source  guide  tubes  that  are  connected  to  treatment  applicators  that  are  inserted  into  the  

body  cavity.  At  Duke,  these  applicators  (Section  1.2)  are  imaged  by  computed  

tomography  (CT)  and  magnetic  resonance  (MR)  to  ensure  correct  positioning.  The  

images  of  the  patient  with  the  applicators  in  situ  are  imported  into  treatment  planning  

software  and  the  patient  is  brought  into  a  dedicated  shielded  room  for  treatment.  The  

treatment  plan  is  then  optimized  and  delivered  using  the  remote  afterloader.  On  

completion  of  treatment,  the  applicators  are  carefully  removed  from  the  body.  

1.2 HDR Intracavitary brachytherapy treatment applicators and packing systems

Applicator  selection  is  important  in  brachytherapy  in  order  to  customize  

treatment  delivery  for  each  individual.  Treatment  applicators  can  serve  many  functions:  

positioning  the  source  with  respect  to  the  anatomy,  shaping  the  anatomy,  determining  

the  penetration  of  the  dose,  adding  space  between  normal  tissue  and  the  sources,  and  

shielding  normal  structures  [4].  The  applicators  used  in  this  thesis  are  all  CT/MRI  

compatible  Varian®  Tandem  and  Ring  (T&R),  Stump  Cylinder,  Cylinder  and  the  

multichannel  Capri™.    

The  T&R  applicator  is  intended  for  treatment  of  the  cervix,  cervix  canal  and  

uterus  (Figure  1).  It  consists  of  an  intrauterine  titanium  tube  known  as  a  ‘tandem’  that  

guides  the  remote  afterloading  sources,  and  a  ring  around  the  tandem  shields  in  the  

apparatus  to  reduce  the  radiation  exposure  to  the  bladder  and  rectum.  The  tandem  can  

Page 17: 4172013 AdriaVidovic Thesis - Duke University

 

   

3  

come  in  three  different  curvatures  (15°,  30°  or  45°)  to  allow  for  non-­‐‑cylindrical  dose  

shaping  relative  to  the  vaginal  axis.  

 

Figure  1:  45°  T&R  Applicator  (Varian  Medical  Systems)  [22]  

A  Stump  Cylinder  applicator  is  used  for  post-­‐‑operative  treatment  of  the  vaginal  

cuff  (Figure  2).  A  vaginal  cylinder  applicator  is  used  to  treat  cancer  of  the  vagina.  It  is  a  

smooth,  plastic  cylinder,  measuring  about  one  inch  in  diameter,  with  a  single  channel  

where  the  radioactive  source  can  travel  and  the  distance  between  its  tip  and  the  source  

remains  constant  ensuring  a  targeted,  homogenous  treatment  dose.    

 

Figure  2:  Stump  Cylinder  Applicator  (Varian  Medical  Systems)  [22]  

A  Capri™  applicator  is  used  to  treat  cancer  of  the  vagina  (Figure  3).  It  has  a  soft  

Page 18: 4172013 AdriaVidovic Thesis - Duke University

 

   

4  

foam  core  with  13  channels,  and  offers  flexible  dosimetry  designed  to  help  provide  

patient  comfort.  With  its  inflatable  design,  it  offers  flexible  sizing  to  accommodate  a  

large  range  of  patient  sizes.  Multichannel  applicators  like  Capri™  facilitate  better  dose  

optimization  and  reduction  of  the  dose  to  the  OARs  [3].  

 

Figure  3:  Capri  Applicator  (Varian  Medical  Systems)  [22]  

Use  of  intracavitary  applicators  requires  appropriate  vaginal  packing  to  secure  

applicators  and  displace  the  rectum  and  bladder  away  from  the  radiation  source  to  

minimize  side  effects  and  complications.  Typically,  this  is  done  via  gauze  packing,  rectal  

retractor,  and/or  Foley  balloon  or  packing  balloon  systems  such  as  the  Radiadyne®  

Alatus™  Vaginal  Balloon  Packing  System  [17].  The  Radiadyne®  Alatus™  Vaginal  Balloon  

Packing  System  offers  several  benefits  over  traditional  gauze  packing,  including  

decreased  risk  of  vaginal  laceration  during  packing,  greater  reproducibility  among  

fractions,  and  the  ability  to  easily  reposition  the  applicators  after  the  packing  is  in  place  

[18].  After  treatment  applicators  have  been  inserted  and  secured,  the  patient-­‐‑applicator  

geometry  is  imaged  using  CT  and  MR.  

Page 19: 4172013 AdriaVidovic Thesis - Duke University

 

   

5  

1.3 Imaging in HDR intracavitary brachytherapy

In  the  mid-­‐‑1990’s,  3D  brachytherapy  planning  systems  started  to  emerge  with  the  

use  of  CT  and  MR  imaging.  CT/MR-­‐‑based  planning  provides  the  potential  for  rapid  3D  

rendering  and  Dose  Volume  Histogram  (DVH)  generation,  providing  more  realistic  

calculation  of  dose  within  the  tumor  and  adjacent  OARs  versus  conventional  orthogonal  

film-­‐‑based  treatment  planning  [3].  CT  is  widely  available,  provides  good  spatial  

resolution,  the  ability  to  discern  objects  on  the  basis  of  electron  density,  and  has  good  

organ  delineation  [3].  MR  has  the  ability  to  better  depict  target  volumes  than  CT  and  

allows  adequate  depiction  of  size,  location  and  paracervical  involvement  of  the  tumor  

and  its  relations  to  an  applicator  [20].    

The  positive  attributes  of  both  imaging  modalities  can  be  displayed  through  the  

use  of  image  registration.  CT  is  used  for  visualization  of  the  treatment  applicator,  and  

MR  is  optimal  for  the  delineation  process  [3].  Imaging  in  brachytherapy  is  often  

performed  prior  to  each  fraction,  and  all  the  information  in  the  image  studies  acquired  at  

different  points  in  time  should  ideally  be  combined  to  assess  the  total  treatment  

delivered  to  the  patient.  However,  the  use  of  MR  prior  to  each  fraction  is  costly,  so  a  

compromise  is  usually  made  to  image  prior  to  the  first  fraction  only,  given  that  the  

applicator  type  is  consistent  and  that  overall  treatment  duration  is  short  [3].    

1.4 Limitations in HDR intracavitary brachytherapy

The  recent  advances  in  brachytherapy  planning  software,  MRI-­‐‑compatible  

Page 20: 4172013 AdriaVidovic Thesis - Duke University

 

   

6  

applicators,  and  image-­‐‑guided  brachytherapy  have  lead  to  more  complex  treatments  

and  a  subsequent  need  for  improved  quality-­‐‑assurance  procedures  [7].  One  of  the  main  

challenges  in  brachytherapy  imaging  is  image  registration  of  image  sets  taken  at  

different  points  in  time  [3].    

Not  only  does  organ  motion  increase  or  decrease  the  tumor  volume,  but  

transportation  of  the  patient  from  one  location  to  another  my  influence  the  relative  

positioning  of  applicators  and  organs.  The  localization,  dose  calculation,  and  the  

treatment  delivery  for  HDR  intracavitary  brachytherapy  can  take  two  to  four  hours,  and  

uncertainties  in  treatment  can  easily  occur  without  detection  [5].  Clinically  related  

uncertainties  include  target  volume  definition  and  contouring,  applicator  positioning,  

organ  motion,  and  inter-­‐‑  and  intra-­‐‑fraction  applicator  movement  [6].  These  clinical  

uncertainties  can  be  verified,  and  minimized  with  the  use  of  in-­‐‑vivo  dosimetry.  

1.5 Current in-vivo dose verification techniques.

In-­‐‑vivo  dosimetry  can  help  identify  errors  from  applicators  or  afterloader  

malfunctions  during  the  first  fraction  of  treatment  to  resolve  discrepancies  and  can  

provide  dose  verification  to  OARs,  such  as  the  bladder  and  the  rectum.  A  number  of  

systems  have  been  used  and  are  being  developed,  such  as  lithium  fluoride  

thermoluminescent  dosimeters  (TLDs),  diamond  detectors,  Metal  oxide  semiconductor  

field  effect  transistor  detectors  (MOSFETS),  and  a  novel  scintillation  detector  

BrachyFOD™.  

Page 21: 4172013 AdriaVidovic Thesis - Duke University

 

   

7  

TLDs  have  been  frequently  applied  as  an  in-­‐‑vivo  dosimeter  for  HDR  

brachytherapy  because  they  are  tissue  equivalent,  have  a  small  sensitive  volume,  and  

can  be  reused  [8].  Diamond  detectors  have  a  small  sensitive  volume  of  a  sensitive  

volume  of  6  mm3  and  are  sensitive  enough  for  HDR  brachytherapy  dosimetry,  but  have  

a  much  larger  physical  size  than  TLDs,  MOSFETs,  and  scintillation  dosimeters  [21].  

MOSFETS  are  attractive  due  to  their  small  sensitive  volume  and  direct  readout  [9].  The  

RADPOS  system  (Best  Medical,  Canada)  consists  of  a  MOSFET  dosimeter  physically  

coupled  to  a  position-­‐‑sensing  probe,  which  deduces  its  3D  position  in  static  magnetic  

fields  generated  by  a  transmitter,  shown  to  be  accurate  within  0.5  to  1.0mm  [10].  A  novel  

scintillation  detector,  BrachyFOD™  has  a  sensitive  measuring  volume  of  1  mm  by  5  mm  

(Bicron  BC400  scintillator)  coupled  to  a  0.98  mm  core  polymethyl  methacrylate  optical  

fiber.  It  was  found  to  be  accurate  to  within  3%  for  distances  of  10  to  100  mm  from  an  

HDR  Iridium-­‐‑192  brachytherapy  source  in  water,  and  it  has  an  angular  dependence  of  

less  than  2%  [21].  Only  the  BrachyFOD™  and  the  MOSFET  are  capable  of  real-­‐‑time  

measurements  and  are  small  enough  for  insertion  into  the  urethra  [21].  

Although  TLDs  are  most  commonly  used,  they  have  the  inability  of  real-­‐‑time  

readings,  depth  dependent  sensitivity  [6],  and  measure  the  dose  only  at  a  single  point  

[1].  Diamond  detectors  were  found  to  have  dose  rate  dependence  whose  relative  

response  decreases  with  increasing  dose  rate  as  well  as  its  large  rigid  structure  that  

prevents  it  from  being  inserted  in-­‐‑vivo  [21].  MOSFETS,  including  the  RADPOS  system  

Page 22: 4172013 AdriaVidovic Thesis - Duke University

 

   

8  

that  reduces  positional  uncertainty,  still  contain  uncertainties  in  angular  dependence  

and  are  prone  to  calibration  drift  [9].  The  ideal  in-­‐‑vivo  dose  verification  method  would  

have  the  ability  to  be  inserted  into  cavities  without  disruption  to  treatment,  ability  to  

provide  high  resolution  dose  profiles  along  steep  dose  gradients  and  provide  fast  

acquisition  read  out  time  for  a  high  patient  load  [12].    

1.6 PRESAGE® as an in-vivo dosimeter

PRESAGE®  is  a  three-­‐‑dimensional  dosimetry  material  that  has  the  potential  to  be  

an  ideal  dosimeter  for  in-­‐‑vivo  dose  verification.  PRESAGE®  consists  of  an  optically  clear  

polyurethane  matrix  containing  a  leuco  dye  that  exhibits  a  linear  radiochromic  response  

when  exposed  to  ionizing  radiation.  A  number  of  potential  advantages  accrue  over  other  

gel  dosimeters,  including  insensitivity  to  oxygen,  radiation  induced  light  absorption  

contrast  rather  than  scattering  contrast,  water  equivalency  (~1.05  g/cm3)  and  a  solid  

texture  amenable  to  machining  to  a  variety  of  shapes  and  sizes  without  the  requirement  

of  an  external  container  [11].  As  the  sensitivity,  or  optical  density  change  per  Gray,  is  

dependent  on  the  concentration  of  leuco  dye  added  to  the  polymer,  each  formulation  of  

PRESAGE®  has  a  slightly  different  sensitivity  [13],  [14].    In  addition,  PRESAGE®  has  

been  previously  tested  as  a  3D  verification  dosimeter  near  a  brachytherapy  source  (Ir-­‐‑

192)  and  has  shown  to  have  no  evidence  of  energy  response  [23].  

These  qualities,  and  the  pressing  need  for  in-­‐‑vivo  dose  verification  in  

brachytherapy,  prompted  the  development  of  PRESAGE®-­‐‑In-­‐‑Vivo,  or  PRESAGE®-­‐‑IV.  

Page 23: 4172013 AdriaVidovic Thesis - Duke University

 

   

9  

Supplied  by  Heuris  Pharma  LLC,  PRESAGE®-­‐‑IV  was  specifically  developed  for  the  

purpose  of  in-­‐‑vivo  dose  verification  for  organs  at  risk  such  as  the  bladder  and  rectum.  

PRESAGE®-­‐‑IV  dosimeters  are  small  cylinders  4mm  in  diameter  by  20mm  in  height.  

When  irradiated,  the  dosimeters  change  color  in  proportion  to  the  local  absorbed  dose  as  

seen  in  Figure  4  where  the  dosimeter  on  the  left  has  not  been  exposed  to  radiation  and  

the  dosimeter  on  the  right  has  been  exposed  to  15  Gy.  

 

Figure  4:  PRESAGE®-­‐‑IV  dosimeters  pre-­‐‑irradiation  (left)  and  post-­‐‑irradiation  15  Gy  (right).  

1.7 Scope and aims

This  thesis  aims  to  evaluate  the  feasibility  of  a  novel  dosimetry  readout  system  

for  PRESAGE®-­‐‑IV  dosimeters  and  to  demonstrate  its  utility  as  an  in-­‐‑vivo  dosimeter  for  

brachytherapy  treatment.  The  feasibility  is  investigated  by  delivering  a  range  of  doses  to  

dosimeters,  measuring  the  change  in  optical  density  using  spectrophotometry  and  a  

novel  2D  optical  scanning  technique,  and  comparing  the  change  in  optical  density  to  a  

gold  standard.  To  demonstrate  its  utility  as  a  dosimeter  for  in-­‐‑vivo  dose  verification,  

Page 24: 4172013 AdriaVidovic Thesis - Duke University

 

   

10  

dose  measurements  from  PRESAGE®-­‐‑IV  dosimeters  will  be  compared  to  dose  line  

profiles  created  in  Eclipse®  treatment  planning  system  (TPS)  for  OARs  in  patient  

treatments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 25: 4172013 AdriaVidovic Thesis - Duke University

 

   

11  

2. Methods The  characterization  of  PRESAGE®-­‐‑IV  dosimeters  including  a  description  of  the  

gold  standard,  dose  response,  energy  response,  temporal  and  temperature  stabilities  and  

the  effect  of  cuvette  material  on  PRESAGE®-­‐‑IV  are  introduced  in  Section  2.1.  The  

feasibility  of  a  dosimetry  system  for  PRESAGE®-­‐‑IV  dosimeters  tested  against  the  gold  

standard  is  introduced  in  Section  2.2.  The  feasibility  was  verified  by  two  dose  readout  

techniques  (i)  a  volume  averaged  readout  by  spectrophotometer  introduced  in  Section  

2.3.1,  and  (ii)  a  2D  projection  imaging  in  a  high-­‐‑resolution  (50  micron)  telecentric  optical  

system  introduced  in  Sections  2.3.2-­‐‑2.3.3.  The  quantitative  comparison  between  the  2D  

optical  scanning  technique  and  the  spectrophotometer  is  described  in  Section  2.3.4.  The  

applicability  of  PRESAGE®-­‐‑IV  dosimeters  in-­‐‑vivo  was  tested  in  six  HDR  intracavitary  

gynecological  brachytherapy  treatments  described  in  Section  2.4  and  compared  to  

Eclipse  TPS  dose  estimations  in  Section  2.4.1.  

2.1 Characterization of PRESAGE®-IV dosimeters

The  characterization  of  PRESAGE®-­‐‑IV  dosimeters  including  a  description  of  the  

gold  standard,  dose  response,  energy  response,  temporal  and  temperature  stabilities  and  

the  effect  of  cuvette  material  on  PRESAGE®-­‐‑IV  are  introduced  in  this  section.  

2.1.1 Gold standard method using optical cuvettes

A  cuvette  is  a  small  tube  of  square  cross  section,  sealed  at  one  end  and  made  of  

Page 26: 4172013 AdriaVidovic Thesis - Duke University

 

   

12  

clear  plastic  designed  to  hold  samples  for  spectroscopic  experiments.  A  

spectrophotometer  measures  intensity  as  a  function  of  the  light  source  wavelength  and  

is  commonly  used  for  the  measurement  of  transmittance  of  solutions,  and  transparent  or  

opaque  solids  (Figure  5).  The  spectrophotometer’s  simple,  convenient,  and  reliable  

readout  over  a  precise  and  standardized  distance  and  the  ability  to  choose  a  specific  

wavelength  made  it  a  perfect  choice  for  measuring  the  change  in  optical  density  of  

PRESAGE®  material.  PRESAGE®  prepared  in  1x1x4  cm3  cuvettes  has  been  investigated  

and  provides  reliable  linear  optical  response  to  radiation  dose,  reproducibility,  and  

temporal  stability  [11].  

 

Figure  5:  1x1x4  cm3  cuvette  (left)  and  Genesys®  20,  ThermoSpectronic®  spectrophotometer  (right).  

2.1.2 Dose response

To  measure  the  dose  response,  a  standard  calibration  treatment  (Section  2.2.1)  

was  delivered  to  three  formulations  of  PRESAGE®.  The  sensitivity  of  each  formulation  

was  determined  by  irradiating  1  x  1  cm  plastic  cuvettes  filled  with  PRESAGE®  with  a  

6MV  photon  beam,  to  doses  in  the  range  of  dose  per  fraction  used  in  HDR  

Page 27: 4172013 AdriaVidovic Thesis - Duke University

 

   

13  

brachytherapy  (1-­‐‑15  Gy)  (Figure  6)  using  a  standard  treatment  set  up.  In  gynecology,  the  

typical  range  of  dose  per  fraction  can  be  between  5.5-­‐‑6  Gy  [3].  A  Genesys®  20,  

ThermoSpectronic®  spectrophotometer  was  used  to  measure  the  optical  density  of  each  

sample,  using  an  empty  cuvette  as  a  zero.  Cuvettes  were  scanned  prior  to  the  treatment  

and  irradiated  to  various  known  doses  before  being  re-­‐‑scanned.  A  linear  calibration  

curve  was  calculated  by  relating  the  delivered  dose  to  the  optical  density  change  with  

the  slope  being  the  sensitivity.  

 

Figure  6:  PRESAGE®  filled  cuvettes  irradiated  with  a  6MV  photon  beam  to  doses  of  0-­‐‑15  Gy.  

2.1.3 Energy response

To  measure  energy  response  from  brachytherapy  sources,  three  PRESAGE®-­‐‑IV  

dosimeters  were  taped  onto  a  3.5  cm  diameter  stump  cylinder  applicator  and  irradiated  

to  7  Gy  at  a  lateral  distance  of  1.95  cm  from  (2  mm  to  the  center  of  PRESAGE®-­‐‑IV  

diameter)  by  a  7.046  Curie  Ir-­‐‑192  source  (Figure  7).  The  PRESAGE®-­‐‑IV  dosimeters  were  

wrapped  in  two  layers  of  Tegaderm™  film  dressings.  Two  Beekley  CT-­‐‑  Spots®  skin  

markers  2.3mm  and  4mm  in  diameter  were  placed  on  either  end  of  the  dosimeter  for  CT  

localization.  The  applicator  was  placed  in  a  water  bath  at  room  temperature  23°C  and  a  

Page 28: 4172013 AdriaVidovic Thesis - Duke University

 

   

14  

source  guide  tube  was  attached  to  the  applicator  through  the  lid  of  the  water  bath,  

securing  the  applicator  position.  The  Ir-­‐‑192  source  was  delivered  by  a  Varian®  

GammaMed™plus  iX  remote  afterloader  (Figure  8).  In  order  to  verify  the  dose  in  the  

Eclipse  Brachytherapy  TPS,  the  dosimeters  were  read  using  the  spectrophotometer  

technique  described  in  Section  2.3.1  and  the  2D  optical  scanning  technique  described  in  

Section  2.3.2.  

 

 

Figure  7:  Axial  Cross  Section  of  Applicator  with  Dosimeters  Visible  with  Beekley  CT-­‐‑  Spots®  Localizers  (left)  and  Sagittal  Cross  Section  of  Applicator  with  

One  Dosimeter  Visible.  

 

Page 29: 4172013 AdriaVidovic Thesis - Duke University

 

   

15  

 

Figure  8:  Water  Bath  containing  Source  Guide  Tube  and  Applicator  with  Dosimeters  (left)  and  the  Treatment  Set  Up  (right).  

2.1.4 Temporal stability

Since  previous  formulations  of  PRESAGE®  have  been  known  to  drift  in  optical  

density  over  time,  the  optical  density  of  each  PRESAGE®-­‐‑filled  cuvette  was  tested  for  

temporal  stability.  Using  a  spectrophotometer,  the  optical  density  was  measured  

immediately  after  treatment  delivery,  a  half  hour,  hour  and  every  three  days  for  9  days  

to  test  stability.  Cuvettes  were  stored  in  a  refrigerator  (3  to  5°C)  to  improve  stability  by  

minimizing  kinetic  effects  that  could  lead  to  optical  density  drift.  To  avoid  direct  

temperature  dependence  effects  while  measuring  optical  density,  cuvettes  were  taken  

out  of  the  refrigerator  1-­‐‑2  hours  prior  to  being  scanned  each  day.  

2.1.5 Temperature stability

Because  the  dosimeters  will  be  placed  in-­‐‑vivo,  it  was  important  to  test  the  

Page 30: 4172013 AdriaVidovic Thesis - Duke University

 

   

16  

dosimeters  for  temperature  stability.  To  determine  the  change  in  optical  density  in  

relation  to  temperature  at  the  time  of  irradiation,  dosimeters  were  placed  in  a  water  tank  

at  body  temperature,  37°C  and  ±5°C  and  ±10°C  from  body  temperature  (27°C,  32°C,  

42°C,  47°C).  Two  in-­‐‑vivo  dosimeters  were  placed  side-­‐‑by-­‐‑side  in  a  1  cm  thick  sheet  of  

bolus  material  and  treated  with  a  10x10  field  at  100  cm  SSD  and  a  depth  of  1.5  cm  below  

the  water  surface.  They  were  placed  on  top  of  a  5  cm  of  solid  water  to  allow  for  

backscatter.  The  treatment  was  delivered  using  6  MV  photons  and  a  dose  rate  of  500  

monitor  units/min.  With  the  field  size  and  SSD  set  to  calibration  conditions,  scatter  

factors  were  1.00  and  only  the  percent  depth  dose  table  was  necessary  to  calculate  the  

monitor  units  for  the  desired  dose  at  1.5  cm  depth.    

2.1.6 Effect of cuvette material on PRESAGE®-IV

In  order  to  make  sure  there  was  no  interaction  between  the  cuvette  material  and  

PRESAGE®-­‐‑IV  and  its  effects  on  the  sensitivity  of  PRESAGE®-­‐‑IV,  a  batch  of  PRESAGE®-­‐‑

filled  cuvettes  and  PRESAGE®  molds  in  the  shape  of  cuvettes  had  been  created  (Figure  

9).  

Page 31: 4172013 AdriaVidovic Thesis - Duke University

 

   

17  

 

Figure  9:  Example  of  the  PRESAGE®  molds  in  the  shape  of  cuvettes.  

 Since  the  path  length  through  PRESAGE®-­‐‑filled  cuvettes  is  smaller  (1  cm)  than  

PRESAGE®  molds  (1.2  cm)  (Figure  10),  a  quantitative  comparison  needed  to  be  made  

between  the  optical  densities  of  the  molds  and  cuvettes.  The  sensitivity  of  PRESAGE®-­‐‑

filled  cuvettes  and  PRESAGE®  molds  was  determined  by  irradiation  to  doses  1,  2.5,  5  

and  8  Gy  using  a  standard  treatment  set  up  (Section  2.2.1).  The  molds  and  cuvettes  were  

read  using  the  spectrophotometer  technique  described  in  Section  2.3.1.  A  plot  between  

the  change  in  optical  density  of  the  molds  versus  the  cuvettes  was  created  and  the  

change  in  optical  density  of  the  molds  was  multiplied  by  a  factor  of  1/1.2  cm  to  account  

for  the  difference  in  path  length  between  the  molds  and  cuvettes.  A  linear  slope  would  

indicate  that  the  change  in  optical  density  with  dose  between  the  molds  and  cuvettes  

was  comparable,  and  that  there  was  no  effect  on  the  sensitivity  of  PRESAGE®  from  the  

cuvette  material.  

Page 32: 4172013 AdriaVidovic Thesis - Duke University

 

   

18  

 

Figure  10:  PRESAGE®-­‐‑Filled  Cuvette  (left)  and  PRESAGE®  Mold  (right).  

2.2 Investigating the feasibility of readout by comparison to gold standard

Since  the  path  length  through  PRESAGE®-­‐‑filled  cuvettes  is  larger  than  

PRESAGE®-­‐‑IV  dosimeters  read  in  mineral  oil,  a  quantitative  comparison  needed  to  be  

made  between  the  optical  densities  of  the  dosimeters  and  cuvettes  (Figure  11).  The  

sensitivity  of  PRESAGE®-­‐‑filled  cuvettes  and  PRESAGE®-­‐‑IV  dosimeters  was  determined  

by  irradiation  to  different  doses  using  a  standard  treatment  set  up  (Section  2.2.1).  The  

dosimeters  and  cuvettes  were  read  using  the  spectrophotometer  technique  described  in  

Section  2.3.1.  A  plot  between  the  change  in  optical  density  of  the  dosimeters  versus  the  

cuvettes  was  created  and  the  change  in  optical  density  of  the  dosimeters  was  multiplied  

by  a  factor  of  1/.4  cm  to  account  for  the  difference  in  path  length  between  the  dosimeters  

and  cuvettes.  A  linear  slope  would  indicate  that  the  change  in  optical  density  with  dose  

between  the  dosimeters  and  cuvettes  was  comparable,  and  that  a  novel  dosimetry  

system  for  PRESAGE®-­‐‑IV  dosimeters  is  feasible.  

Page 33: 4172013 AdriaVidovic Thesis - Duke University

 

   

19  

 

Figure  11:  PRESAGE®-­‐‑Filled  Cuvette  (left)  and  Cuvette  with  PRESAGE®-­‐‑IV  (right)  

2.2.1 Cuvette and dosimeter irradiation

Pairs  of  PRESAGE®-­‐‑IV  dosimeters  and  cuvettes  were  placed  side-­‐‑by-­‐‑side  and  

treated  with  a  10  x  10  cm  field  at  100  cm  SSD  and  a  depth  of  5.5  cm  (Figure  12)  between  

doses  of  1-­‐‑15  Gy  (Table  1).  The  treatment  was  delivered  using  6  MV  photons  from  a  

Varian  Clinac®  600C/D  and  a  dose  rate  of  600  monitor  units/min.  The  dosimeters  and  

cuvettes  were  placed  in  a  1  cm  thick  sheet  of  bolus  material,  with  two  1  cm  thick  sheets  

of  bolus  material  below  to  reduce  any  air  gap  created  by  the  difference  in  thicknesses  of  

the  cuvettes  and  dosimeters.  10  cm  of  solid  water  was  placed  below  to  allow  backscatter  

and  5  cm  of  solid  water  above  to  achieve  the  5.5  cm  depth  to  the  center  of  the  4mm  

dosimeters  and  1  cm  cuvettes.  With  the  field  size  and  SSD  set  to  calibration  conditions,  

scatter  factors  were  1.00  and  only  the  percent  depth  dose  table  was  necessary  to  calculate  

the  monitor  units  for  the  desired  dose  at  5.5  cm  depth.  

Page 34: 4172013 AdriaVidovic Thesis - Duke University

 

   

20  

 

Figure  12:  Side  View  of  the  Standard  Treatment  Set-­‐‑Up  

Table  1:  Monitor  units  delivered  to  1.5%  DEA  formulation  dosimeters  and  cuvettes  

Cuvette  and  

Dosimeter  

1   2   3   4   5   6   7   8  

Dose  (Gy)   0   1   2.5   5   8   10   12   15  MU   0   119   297   593   949   1186   1423   1779  

2.3 2D optical scanning and spectrophotometer reading

The  change  in  optical  density  of  each  dosimeter  is  proportional  to  dose  [11].  To  

determine  the  change  in  optical  density,  each  dosimeter  must  be  scanned  before  and  

after  irradiation.  PRESAGE®-­‐‑IV  dosimeters  were  scanned  to  measure  optical  density  

using  a  2D  projection  telecentric  optical  system  developed  in  house:  the  Duke  Micro  

Optical  scanner  (DMicrOS)  and  a  spectrophotometer  (Genesys®  20,  ThermoSpectronic®).  

The  DMicrOS  uses  visible  light  and  a  CCD  camera  to  take  single  projection  images  at  50-­‐‑

Page 35: 4172013 AdriaVidovic Thesis - Duke University

 

   

21  

micron  resolution.  The  spectrophotometer  measures  the  absorbance  at  the  peak  

absorption  wavelength  of  633  nm.    

2.3.1 Spectrophotometer technique

To  avoid  direct  temperature  dependence  effects  while  measuring  optical  density,  

cuvettes  were  taken  out  of  the  refrigerator  1-­‐‑2  hours  prior  to  being  scanned  each  day  

and  the  Genesys®  20,  ThermoSpectronic®  was  turned  on  1  hour  before  performing  the  

scan  to  let  the  light  source  warm  up.  The  spectrophotometer  was  then  set  to  the  peak  

absorption  wavelength  of  633  nm.  An  empty  cuvette  is  used  as  a  zero,  and  a  cuvette  

filled  with  mineral  oil  was  read  before  and  after  each  scan  to  ensure  no  fluctuation  in  

absorbance  affected  the  readings.  The  dosimeter  is  placed  in  a  holder  and  immersed  in  a  

1x1x4  cm  cuvette  filled  with  mineral  oil,  which  matches  the  refractive  index  of  the  

dosimeter  to  minimize  bending  of  the  light  at  the  dosimeter-­‐‑fluid  interface.  The  cuvette  

is  placed  in  the  spectrophotometer  and  the  absorbance  is  read,  which  is  directly  

proportional  to  the  thickness  of  the  sample  and  to  the  concentration  of  the  absorbing  

material  in  the  sample  (Figure  13).  A  Kimwipe®  with  ethanol,  following  a  dry  Kimwipe®  

is  used  to  remove  any  residual  oil  that  may  appear  outside  of  the  cuvette  between  

readings.  

Page 36: 4172013 AdriaVidovic Thesis - Duke University

 

   

22  

 

Figure  13:  From  left  to  right:  Cuvette  filled  with  mineral  oil,  Styrofoam  holder  and  dosimeter,  holder  in  cuvette,  cuvette  holder,  spectrophotometer.  

2.3.2 2D optical scanning technique

The  DMicrOS  system,  a  modified  version  of  the  Duke  Large  field  of  view  

Optical-­‐‑CT  Scanner  (DLOS)  [15]  illustrated  in  Figure  15,  uses  a  2W  LED  light  source  

behind  a  narrow  band  filter,  giving  the  source  a  uniform  flood  field  with  wavelength  of  

633  nm.  A  79  mm  diameter  telecentric  lens  provided  a  central  region  of  parallel  light  

where  the  dosimeter  can  be  imaged  free  of  object  magnification  effects.  The  imaging  lens  

has  a  magnification  of  0.25X  and  collimates  any  light  with  more  than  a  0.1-­‐‑degree  

deviation  from  the  optical  axis,  effectively  minimizing  scattered  light  contributions.  A  

1608  x  1208  CCD  based  Basler  camera  is  used  for  imaging.    

Page 37: 4172013 AdriaVidovic Thesis - Duke University

 

   

23  

 

Figure  14:  Diagram  of  the  DMicrOS  System  [15].  

A  jig  (Figure  15)  was  created  during  the  time  of  this  thesis  work  to  hold  two  

PRESAGE®-­‐‑IV  dosimeters  in  a  fluid  bath  with  a  matched  refractive  index  to  minimize  

bending  of  the  light.  The  jig  fits  onto  the  tank  of  the  optical  system  in  only  one  

orientation,  guaranteeing  registration  between  pre  and  post  scans.  

 

Figure  15:  Diagram  of  the  jig  (designed  during  this  thesis  work)  that  holds  in-­‐‑vivo  dosimeters  in  tank.  

One  projection  was  taken  and  to  reduce  noise,  each  projection  was  captured  100  

times  and  averaged.  After  removing  the  dosimeter  from  the  system,  an  image  of  the  

flood  field  was  captured  with  100  averages.  The  light  source  was  then  blocked  to  acquire  

Page 38: 4172013 AdriaVidovic Thesis - Duke University

 

   

24  

a  dark  field  with  100  averages.  The  optical  density  of  the  scan  was  calculated  by  

subtracting  out  the  background  (dark)  and  normalizing  by  the  flood  to  remove  

inhomogeneity,  as  shown  in  the  equation  below:  

 

2.3.3 2D optical scanner image registration

A  graphical  user  interface  (GUI)  was  created  in  MATLAB  in  order  to  ensure  

registration  between  the  pre  and  post  scan  images.  The  DMicrOS  Image  Registration  

GUI  reads  in  the  pre  and  post  scan  images  and  converts  them  to  the  change  in  optical  

density.  The  GUI  displays  the  pre  and  post  scan  images  and  the  change  in  optical  

density  between  the  two  images.  The  GUI  allows  the  user  to  move  the  post  scan  image  

over  the  pre  scan  image  through  rotation  and  translation  in  order  to  visually  observe  the  

image  registration.  

After  the  images  are  registered,  a  line  profile  is  taken  along  the  center  of  each  

dosimeter  to  measure  the  change  in  optical  density  at  approximately  the  same  length  (10  

mm)  and  location  (3  mm  from  the  bottom  of  the  dosimeter)  as  the  spectrophotometer  

(Figure  16).  The  mean  of  the  line  profile  is  calculated  for  each  dosimeter  and  the  average  

of  the  two  dosimeters  is  taken  to  get  an  average  optical  density  reading.  

Page 39: 4172013 AdriaVidovic Thesis - Duke University

 

   

25  

 

Figure  16:  An  Example  of  a  Line  Profile  of  Two  Dosimeters  Irradiated  to  10  Gy  Using  the  Standard  Treatment  Setup  Described  in  Section  2.2.1.  The  Line  Profile  Was  Taken  Along  the  Center  of  Each  Dosimeter  to  Measure  the  Change  in  Optical  Density  at  Approximately  the  Same  Length  (10  mm)  and  Location  (3  mm  from  the  Bottom  of  

the  Dosimeter)  as  the  Spectrophotometer.  

2.3.4 Quantitative comparison between the spectrophotometer and 2D optical scanner

To  verify  the  2D  optical  scanning  technique  (Section  2.3.2)  with  the  

spectrophotometer  technique  (Section  2.3.1)  a  quantitative  comparison  needed  to  be  

made  between  the  optical  densities  of  the  dosimeters.  The  sensitivity  of  PRESAGE®-­‐‑IV  

dosimeters  was  determined  by  irradiation  to  doses  between  1-­‐‑12  Gy  using  a  standard  

treatment  set  up  (Section  2.2.1).  The  dosimeters  were  read  within  minutes  of  each  other  

using  the  spectrophotometer  and  2D  optical  scanning  techniques.  A  linear  calibration  

Page 40: 4172013 AdriaVidovic Thesis - Duke University

 

   

26  

curve  was  calculated  by  relating  the  delivered  dose  to  the  optical  density  change  with  

the  slope  being  the  sensitivity.    

2.4 Patient treatment

PRESAGE®-­‐‑IV  dosimeters  were  tested  on  their  ability  for  in-­‐‑vivo  dose  

verification  for  the  bladder  and  rectum  in  six  patients  undergoing  gynecologic  

intracavitary  HDR  brachytherapy  treatment.  Dosimeters  were  taken  out  of  the  

refrigerator  one  hour  before  being  delivered  to  the  physician  for  use  in  patient  

treatment.  To  ensure  no  direct  contact  with  patient  tissue,  PRESAGE®-­‐‑IV  dosimeters  

were  wrapped  with  two  layers  of  Tegaderm™  film  dressings.  Two  Beekley  CT-­‐‑  Spots®  

skin  markers  2.3mm  and  4mm  in  diameter  were  placed  on  either  end  of  the  dosimeter  

for  CT  localization  (Figure  17).    

 

Figure  17:  PRESAGE®-­‐‑IV  dosimeter  with  and  without  Tegaderm™  and  Beekley  CT-­‐‑  Spots®  localizers.  

Dosimeter  attachment  is  applicator  dependent.  For  the  T&R  treatment,  the  

physician  taped  the  dosimeters  on  a  Radiadyne®  Alatus™  Vaginal  Balloon,  one  facing  the  

Page 41: 4172013 AdriaVidovic Thesis - Duke University

 

   

27  

bladder  and  the  other  facing  the  rectum  and  inserted  the  treatment  applicator  into  the  

patient  (Figure  18).  For  cylinder  and  stump  treatments  the  physician  taped  the  

dosimeters  directly  on  the  applicator  nearest  to  the  OARs  (Figure  19).  For  the  

multichannel  Capri™  applicator,  the  physician  placed  the  dosimeters  in  the  channels  

facing  the  OARs  (Figure  20).  After  treatment,  the  dosimeters  were  removed  by  the  

physician  and  taken  back  to  the  lab  and  read  on  the  spectrophotometer  using  the  

method  described  in  section  2.3.1.  The  time  from  end  of  treatment  to  the  first  reading  

was  approximately  10  minutes.  

 

Figure  18:    Example  of  Dosimeter  Placed  on  Alatus  Balloon  Packing  System  (top)  and  Dosimeters  In-­‐‑Vivo  Near  OARs  in  T&R  Treatment  (left  and  right)  

Page 42: 4172013 AdriaVidovic Thesis - Duke University

 

   

28  

 

Figure  19:  Example  of  Dosimeters  Placed  on  Cylinder  Applicator  Axial  (left)  and  Sagittal  (right)  Views.  

 

Figure  20:  Example  of  Dosimeter  Placed  inside  Capri  Applicator  Channel  Axial  (left)  and  Coronal  View  of  Dosimeter  with  Point  Doses  (right).  

2.4.1 Eclipse dose verification

In  order  to  verify  the  dose  measured  by  the  dosimeter,  a  dose  line  profile  was  

taken  along  the  length  of  the  dosimeter  in  the  Eclipse  Brachytherapy  TPS  (Figures  18-­‐‑

19).  Since  the  spectrophotometer  takes  an  average  absorbance  reading  3mm  from  the  

bottom  and  10mm  along  the  height  of  the  dosimeter,  the  dose  profile  in  Eclipse  was  

Page 43: 4172013 AdriaVidovic Thesis - Duke University

 

   

29  

taken  along  the  same  dimensions  to  keep  measurement  consistency.  The  dose  profile  

from  Eclipse  was  then  averaged  and  compared  to  the  measured  dose.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 44: 4172013 AdriaVidovic Thesis - Duke University

 

   

30  

3. Results and Discussion Results  reported  in  this  section  include  the  sensitivities  of  the  five  formulations  

of  PRESAGE®  used  in  this  experiment  (Section  3.1)  using  the  techniques  described  in  

Sections  2.2  and  2.3.  The  dose  response,  energy  response,  temporal  and  temperature  

stabilities,  and  the  effect  of  the  cuvette  material  on  PRESAGE®  are  reported  in  Section  3.1  

as  well.  Proof  of  feasibility  of  novel  in-­‐‑vivo  dosimeters  compared  to  the  gold  standard  

cuvettes  is  reported  in  Section  3.2.  Comparison  between  the  2D  optical  scanning  and  

spectrophotometer  technique  results  are  reported  in  Section  3.3.  Finally,  the  results  of  

the  comparison  between  the  measured  doses  from  the  PRESAGE®-­‐‑IV  dosimeters  and  

Eclipse  TPS  in  patient  treatments  is  reported  in  Section  3.4.  Table  2  reports  the  

formulations  of  the  dosimeters  irradiated  in  this  thesis.  

Table  2:  Overview  of  PRESAGE®-­‐‑IV  dosimeters  irradiated  in  this  work.  

Date  Manufactured   Formulation   Dose  (Gy)  

Sensitivity  Rank  

Change  in  OD  Over  Time  

10/28/2011   D21   2.36,  5,  7.50   2   Increase  

05/04/2012  2%  O-­‐‑MeO-­‐‑DMA  

1.003,  2.504,  5,  8.002   1   Stable  

10/01/2012  1.7%  O-­‐‑MeO-­‐‑DMA   2.504,  8.002   6   Stable  

11/27/2012  1.7%  O-­‐‑MeO-­‐‑DEA  

1.003,  2.504,  5,  8.002   5   Stable  

01/31/2013  1.5%  O-­‐‑MeO-­‐‑DEA  

1.003,  2.504,  5,  8.002   3   Stable  

02/14/2013  1.5%  O-­‐‑MeO-­‐‑DEA  

1,  2.5,  5,  8,  10,  12,  15   4   Stable  

 

Page 45: 4172013 AdriaVidovic Thesis - Duke University

 

   

31  

3.1 PRESAGE® Sensitivity and stabilities

The  D21  formulation  and  four  formulations  (2%  O-­‐‑MeO-­‐‑DMA,  1.7%  O-­‐‑MeO-­‐‑

DMA,  1.7%  O-­‐‑MeO-­‐‑DEA  and  1.5%  O-­‐‑MeO-­‐‑DEA)  [16]  were  irradiated  as  described  in  

Section  2.2.1.  In  Section  3.1.1,  the  dose  response,  or  sensitivity,  of  each  formulation  are  

reported.  In  Section  3.1.2,  the  KV  energy  response  of  the  experiment  described  in  Section  

2.1.3  is  reported.  The  temporal  stability  and  temperature  stability  is  reported  in  Sections  

3.1.3  and  3.1.4,  respectively.  The  results  of  the  effect  of  the  cuvette  material  on  

PRESAGE®-­‐‑IV  is  reported  in  Section  3.1.5.    

3.1.1 Dose response

The  sensitivity  changes  for  all  five  formulations  are  presented  in  Figure  21.  The  

2%  O-­‐‑MeO-­‐‑DMA  formulation  had  the  highest  sensitivity  with  a  slope  of  0.0494  ±  0.0007  

change  in  OD/Gy/cm.  Next  was  the  D21  formulation,  which  had  a  sensitivity  of  0.0375  ±  

0.001  change  in  OD/Gy/cm.  The  1.5%  O-­‐‑MeO-­‐‑DEA  (1/31/13)  formulation  had  a  

sensitivity  of  0.0356  ±  0.0015  change  in  OD/Gy/cm.  The 1.5% O-MeO-DEA (2/14/13)

formulation had a sensitivity of 0.0299 ± 0.0005 change in OD/Gy/cm, and 83% of the

sensitivity of the 1.5% O-MeO-DEA (1/31/13) formulation. The  1.7%  O-­‐‑MeO-­‐‑DEA  

(11/27/12)  formulation  had  a  sensitivity  of  0.0179  ±  0.0002  change  in  OD/Gy/cm  and  the  

1.7%  O-­‐‑MeO-­‐‑DMA  (10/1/12)  formulation  had  a  sensitivity  of  0.0073  ±  8.9E-­‐‑05  change  in  

OD/Gy/cm  and  14.8%  of  the  sensitivity  of  the  2%  O-­‐‑MeO-­‐‑DMA  formulation.  All  were  

within  the  95%  confidence  level.    

Page 46: 4172013 AdriaVidovic Thesis - Duke University

 

   

32  

 

Figure  21:  Dose  Response  (Sensitivity)  of  All  Five  Formulations.  

3.1.2 Energy Response

The  sensitivity  for  the  1.5%  O-­‐‑MeO-­‐‑DEA  (2/14/13)  dosimeter  formulation  is  

presented  in  Figure  22  with  a  sensitivity  slope  of  0.0136  ±  0.0002  change  in  OD/Gy/cm.  

This  formulation  was  calibrated  using  a  6  MV  photon  beam  using  the  technique  

described  in  Section  2.2.1,  and  the  slope  of  this  sensitivity  curve  was  used  to  calculate  

the  dose  measured  by  the  dosimeters  irradiated  by  a  KV  Iridium-­‐‑192  brachytherapy  

source  (Figure  23).    

A  dose  of  7  Gy  was  delivered  to  the  center  of  three  dosimeters,  with  an  8.4  Gy  

isodose  line  at  the  applicator/dosimeter  wall  indicating  a  1.4  Gy  dose  drop  off  in  2  mm.  

The  average  measurement  using  the  spectrophotometer  was  7.05  ±  0.11  Gy  (0.66%  

Page 47: 4172013 AdriaVidovic Thesis - Duke University

 

   

33  

difference),  and  the  average  measurement  using  a  line  profile  in  the  2D  optical  scanning  

method  read  a  dose  of  7.18  ±  0.32  Gy  (2.6%  difference).  The  difference  between  the  

Eclipse  dose  and  the  measured  dose  using  the  spectrophotometer  reading  technique  

shows  that  the  overestimation  of  dose  is  within  the  dose  fall  off  range  of  1.4  Gy  with  a  

value  of  1.35  Gy.  The  2D  Optical  scanning  technique  has  a  larger  difference  of  2.6%  and  

the  overestimation  of  dose  is  also  within  the  dose  fall  off  range  of  1.4  Gy  with  a  value  of  

1.22  Gy.  The  higher  dose  is  indicative  of  its  slightly  (0.74%)  greater  sensitivity  than  the  

spectrophotometer  method,  but  the  main  reason  could  have  been  due  to  the  reading  

technique.  The  change  in  optical  density  line  profile  was  taken  in  the  center  of  the  

dosimeter,  but  the  positioning  of  the  dosimeter  in  the  jig  could  have  allowed  it  to  be  

read  on  the  side  that  had  been  exposed  to  the  larger  dose.  

Page 48: 4172013 AdriaVidovic Thesis - Duke University

 

   

34  

 

Figure  22:  The  Sensitivity  for  the  1.5%  O-­‐‑MeO-­‐‑DEA  (2/14/13)  Dosimeter  Formulation.  

 

Page 49: 4172013 AdriaVidovic Thesis - Duke University

 

   

35  

 

Figure  23:  Dosimeter  Dose  Measurement  of  a  KV  Brachytherapy  Source  Using  a  MV  Calibration  Curve.  

3.1.3 Temporal stability

In  Figure  24,  the  results  show  that  the  1.7%  O-­‐‑MeO-­‐‑DEA  formulation  is  stable  

over  time.  This  formulation  had  an  initial  sensitivity  of  0.0179  ±  0.0002  change  in  

OD/Gy/cm  in  the  95%  confidence  level.  The  sensitivity  was  tracked  daily  over  nine  days  

and  decreased  to  0.0178  change  in  OD/Gy/cm  nine  days  after  irradiation.  The  difference  

between  the  initial  sensitivity  and  the  sensitivity  nine  days  after  irradiation  was  found  to  

be  within  the  95%  confidence  level.  The  differences  could  have  been  attributed  to  a  small  

error  in  the  reading  technique,  which  could  have  been  caused  by  residual  mineral  oil  on  

the  outside  of  the  cuvette.  

Page 50: 4172013 AdriaVidovic Thesis - Duke University

 

   

36  

 

Figure  24:  Dose  Response  (Sensitivity)  Temporal  Stability  of  the  1.7%  O-­‐‑MeO-­‐‑DEA  (11/27/12)  Formulation.  

3.1.4 Temperature stability

The  change  in  optical  density  with  temperature  of  the  D21  formulation  at  the  

time  of  irradiation  is  illustrated  in  Figure  25.  There  is  a  35%  difference  between  the  

optical  density  of  the  dosimeter  at  27°C  and  47°C  and  a  5%  increase  in  the  change  in  

optical  density  from  body  temperature  37°C  to  47°C.  Extrapolating  the  line  to  room  

temperature  22°C,  there  is  a  30%  increase  in  optical  density  from  room  temperature  to  

body  temperature  37°C  indicating  a  temperature  dependence  that  makes  the  dosimeters  

more  sensitive  at  higher  doses.  

Page 51: 4172013 AdriaVidovic Thesis - Duke University

 

   

37  

 

Figure  25:  Change  in  OD  with  Temperature  for  the  D21  Formulation.  

3.1.5 Effect of the cuvette material on PRESAGE®-IV

The  change  in  the  optical  density  between  the  molds  and  the  cuvettes  for  the  

1.5%  O-­‐‑MeO-­‐‑DEA  formulation  had  a  slope  of  0.9108  ±  0.05  in  the  95%  confidence  

interval.  The  results  shown  in  Figure  26  shows  that  there  is  a  maximum  difference  of  

10%  between  the  sensitivities  of  the  molds  and  the  cuvettes,  with  the  difference  getting  

larger  as  the  dose  increases  from  1-­‐‑8  Gy.  This  10%  difference  could  be  attributed  to  the  

aberrations  (tacky  surface)  on  the  surface  of  the  molds  compared  to  the  smooth  surface  

of  the  cuvette.  

Page 52: 4172013 AdriaVidovic Thesis - Duke University

 

   

38  

 

Figure  26:  The  Change  in  Optical  Density  of  the  Molds  vs.  Cuvettes  for  the  1.5%  O-­‐‑MeO-­‐‑DEA  Formulation  (1/31/13).  

3.2 Results of the feasibility of readout by comparison to gold standard

The  results  of  the  change  in  optical  density  between  the  gold  standard  1x1x4cm  

optical  cuvettes  filled  with  PRESAGE®  and  PRESAGE®-­‐‑IV  dosimeters  read  in  mineral  

oil  are  reported  in  Figure  27.  The  1.5%  O-­‐‑MeO-­‐‑DEA  (2/14/13)  formulation  was  used  for  

the  proof  of  feasibility  for  its  temporal  stability  and  good  sensitivity.  In  Figure  27,  the  

slope  0.8703  ±  0.0192  indicates  that  there  is  a  linear  relationship  between  the  cuvettes  

and  in-­‐‑vivo  dosimeters  within  the  95%  confidence  interval  and  a  dosimetry  system  for  

PRESAGE®-­‐‑IV  dosimeters  is  feasible.  

Page 53: 4172013 AdriaVidovic Thesis - Duke University

 

   

39  

 

Figure  27:  The  Change  in  Optical  Density  of  the  Dosimeters  vs.  Cuvettes  for  the  1.5%  O-­‐‑MeO-­‐‑DEA  Formulation  (2/14/13).  

3.3 Quantitative comparison between the 2D optical scanner and spectrophotometer

The  results  of  the  sensitivity  difference  between  the  2D  optical  scanner  and  the  

spectrophotometer  for  PRESAGE®-­‐‑IV  dosimeters  read  in  mineral  oil  for  dosimeters  

irradiated  between  the  doses  of  1-­‐‑12  Gy  are  reported  in  Figure  28.  The  1.5%  O-­‐‑MeO-­‐‑

DEA  (2/14/13)  formulation  was  used  for  this  comparison  for  its  temporal  stability  and  

good  sensitivity.  In  Figure  28,  the  sensitivity,  or  change  in  OD/Gy/cm  slope  of  the  

DmicrOS  technique  was  found  to  be  0.0136  ±  0.0002  and  for  the  spectrophotometer  

0.0135 ±  0.0002,  which  is  a  0.74%  difference  in  sensitivity  within  the  95%  confidence  

interval.  The  results  show  that  the  2D  optical  scanning  method  is  slightly  more  sensitive  

Page 54: 4172013 AdriaVidovic Thesis - Duke University

 

   

40  

than  the  spectrophotometer  method  as  predicted  and  that  the  DmicrOS  system  is  a  

feasible  method  of  reading  PRESAGE®-­‐‑IV  dosimeters.  

 

Figure  28:  The  Comparison  in  Sensitivity  of  the  DmicrOS  system  and  the  Spectrophotometer  for  the  1.5%  O-­‐‑MeO-­‐‑DEA  Formulation  (2/14/13).  

3.4 Patient treatment

Figure  29  shows  the  dose  response  curve  of  the  D21  formulation  taken  at  body  

temperature  (37°C)  with  a  control  at  room  temperature  using  the  technique  described  in  

Section  2.1.4.  This  dose  response  curve  was  used  to  estimate  the  dose  in  the  following  

patient  treatment  plots  using  the  D21  formulation  (Figures  30-­‐‑33).  

Page 55: 4172013 AdriaVidovic Thesis - Duke University

 

   

41  

 

Figure  29:  Dose  Response  (Sensitivity)  of  the  D21  Formulation  at  Body  Temperature.  

The  results  of  T&R  patient  6  treatment  are  displayed  in  Figure  30.  The  T&R  

patient  measured  dose  shows  a  0%  and  2.8%  difference  between  the  measured  doses  

and  the  Eclipse  doses  for  the  bladder  and  rectum,  respectfully.  These  results  are  the  best  

results  received  from  using  PRESAGE®-­‐‑IV  dosimeters  for  in-­‐‑vivo  dose  verification.  In  

the  following  patient  results,  the  differences  between  measured  doses  and  Eclipse  doses  

for  OARs  are  quite  large.  A  number  of  reasons  for  these  large  differences  could  be  due  to  

the  positional  stability  of  the  dosimeters,  organ  motion,  and  patient  motion  for  the  

duration  of  treatment  (2-­‐‑4  hours  on  average).  

Page 56: 4172013 AdriaVidovic Thesis - Duke University

 

   

42  

 

Figure  30:  T&R  Patient  6  Treatment  Dose  Measurement  Using  the  D21  Formulation.  

The  results  of  the  Capri  patient  1  fraction  (fx)  1  treatment  are  displayed  in  Figure  

31.  The  Capri  patient  measured  dose  shows  a  12%  and  20%  difference  between  the  

measured  doses  and  the  Eclipse  doses  for  the  bladder  and  rectum,  respectfully.  The  

results  of  the  Capri  patient  1  fraction  2  treatment  are  displayed  in  Figure  32.  The  Capri  

patient  measured  dose  shows  a  4%  and  7%  difference  between  the  measured  doses  and  

the  Eclipse  doses  for  the  bladder  and  rectum,  respectfully.  The  results  of  the  Capri  

patient  1  fraction  3  treatment  are  displayed  in  Figure  33.  The  Capri  patient  measured  

dose  shows  a  9%  and  19%  difference  between  the  measured  doses  and  the  Eclipse  doses  

for  the  bladder  and  rectum,  respectfully.    

Page 57: 4172013 AdriaVidovic Thesis - Duke University

 

   

43  

                       

Figure  31:  Capri  Patient  1  fx  1  Dose  Measurement  Using  the  D21  Formulation.  

 

Figure  32:  Capri  Patient  1  fx  1  Dose  Measurement  Using  the  D21  Formulation.  

Page 58: 4172013 AdriaVidovic Thesis - Duke University

 

   

44  

 

Figure  33:  Capri  Patient  1  fx  3    Dose  Measurement  Using  the  D21  Formulation.  

The  variation  in  dose  verification  over  the  course  of  three  fractions  shows  that  

patient  organ  motion  can  be  a  big  factor  in  in-­‐‑vivo  dose  verification.  The  rectal  dose  

differences  remained  the  larger  of  the  two  OARs  indicating  that  rectal  filling  could  be  a  

cause  for  these  differences.  

Figure  34  shows  the  dose  response  curve  of  the  2%  O-­‐‑MeO-­‐‑DMA  formulation  

taken  at  body  temperature  (36.8°C)  with  a  control  at  room  temperature  using  the  

technique  described  in  Section  2.1.4.  This  dose  response  curve  was  used  to  estimate  the  

dose  in  the  following  patient  treatment  plots  using  the  2%  O-­‐‑MeO-­‐‑DMA  formulation  

(Figures  35-­‐‑39).  

 

Page 59: 4172013 AdriaVidovic Thesis - Duke University

 

   

45  

 

Figure  34:  Dose  Response  (Sensitivity)  of  the  2%  O-­‐‑MeO-­‐‑DMA  Formulation  at  Body  Temperature.  

The  results  of  the  T&R  patient  2  fraction  1  treatment  are  displayed  in  Figure  35.  

The  T&R  patient  measured  dose  shows  a  38%  and  19%  difference  between  the  measured  

doses  and  the  Eclipse  doses  for  the  bladder  and  rectum,  respectfully.  The  results  of  the  

T&R  patient  2  fraction  2  treatment  are  displayed  in  Figure  36.  The  T&R  patient  

measured  dose  shows  a  34%  and  73%  difference  between  the  measured  doses  and  the  

Eclipse  doses  for  the  bladder  and  rectum,  respectfully.    

 

Page 60: 4172013 AdriaVidovic Thesis - Duke University

 

   

46  

 

Figure  35:  T&R  Patient  2  fx  1  Dose  Measurement  (2%  O-­‐‑MeO-­‐‑DMA)  

 

Figure  36:  T&R  Patient  2  fx  2  Dose  Measurement  (2%  O-­‐‑MeO-­‐‑DMA)  

Page 61: 4172013 AdriaVidovic Thesis - Duke University

 

   

47  

The  results  of  the  stump  patient  3  treatment  are  displayed  in  Figure  37.  The  

stump  patient  measured  dose  shows  a  13%  and  11%  difference  between  the  measured  

doses  and  the  Eclipse  doses  for  the  bladder  and  rectum,  respectfully.  The  results  of  the  

stump  patient  4  treatment  are  displayed  in  Figure  38.  The  stump  patient  measured  dose  

shows  a  39%  and  14%  difference  between  the  measured  doses  and  the  Eclipse  doses  for  

the  bladder  and  rectum,  respectfully.  The  results  of  the  cylinder  patient  5  treatment  are  

displayed  in  Figure  39.  The  stump  patient  measured  dose  shows  a  19%  and  30%  

difference  between  the  measured  doses  and  the  Eclipse  doses  for  the  bladder  and  

rectum,  respectfully.  

 

 

Figure  37:  Stump  Patient  3  Dose  Measurement  (2%  O-­‐‑MeO-­‐‑DMA)  

Page 62: 4172013 AdriaVidovic Thesis - Duke University

 

   

48  

 

Figure  38:  Stump  Patient  4  Dose  Measurement  (2%  O-­‐‑MeO-­‐‑DMA)  

 

Figure  39:  Cylinder  Patient  5  Dose  Measurement  (2%  O-­‐‑MeO-­‐‑DMA)  

Page 63: 4172013 AdriaVidovic Thesis - Duke University

 

   

49  

4. Conclusions The  aims  of  the  project  were  to  evaluate  the  feasibility  of  a  dosimetry  system  for  

PRESAGE®-­‐‑IV  dosimeters  by  comparing  it  to  the  gold  standard  using  PRESAGE®-­‐‑filled  

optical  cuvettes  in  spectrophotometry  and  validating  the  DMicrOS  2D  optical  scanning  

system,  and  to  demonstrate  its  utility  as  an  in-­‐‑vivo  dosimeter  for  brachytherapy  

treatment.  The  aim  of  evaluating  the  feasibility  of  a  dosimetry  system  was  met,  but  there  

is  substantial  room  for  future  investigation  of  PRESAGE®-­‐‑IV  dosimeters  in  patient  

treatment.  

The  spectrophotometer  reading  of  the  change  in  optical  densities  of  the  1.5%  O-­‐‑

MeO-­‐‑DEA  formulation  of  the  gold  standard  1x1x4cm  optical  cuvettes  filled  with  

PRESAGE®  and  PRESAGE®-­‐‑IV  dosimeters  in  mineral  oil  had  a  linear  slope  0.8703  ±  

0.0192  when  plotted  against  each  other  (Figure  27),  and  indicated  that  a  dosimetry  

system  for  in-­‐‑vivo  dosimeters  is  feasible.  The  results  provide  verification  of  the  potential  

that  this  dosimetry  system  has  for  easily  and  quickly  reading  PRESAGE®-­‐‑IV  dosimeters.  

In  Figure  28,  the  sensitivity,  or  change  in  OD/Gy/cm  slope  of  the  DMicrOS  technique  

was  found  to  be  0.0136  ±  0.0002  and  for  the  spectrophotometer  0.0135 ±  0.0002,  which  is  

a  0.74%  difference  in  sensitivity  within  the  95%  confidence  interval,  which  showed  that  

the  two  techniques  are  comparable.  

With  the  positive  results  of  the  feasibility  of  the  dosimetry  system,  came  the  

negative  results  of  patient  treatment.  The  estimated  doses  for  patient  6  treatment  using  a  

Page 64: 4172013 AdriaVidovic Thesis - Duke University

 

   

50  

T&R  (Figure  30)  showed  a  0%  and  2.8%  difference  between  the  estimated  doses  and  the  

Eclipse  doses  for  the  bladder  and  rectum,  respectfully.  These  results  were  the  best  

results  received  from  using  PRESAGE®-­‐‑IV  dosimeters  for  in-­‐‑vivo  dose  verification.  In  

the  following  patient  results,  the  differences  between  measured  doses  and  Eclipse  doses  

for  OARs  were  quite  large.  A  number  of  reasons  for  these  large  differences  could  be  due  

to  the  positional  stability  of  the  dosimeters,  organ  motion,  and  patient  motion  for  the  

duration  of  treatment  (2-­‐‑4  hours  on  average).  More  patient  trials  need  to  be  investigated  

to  show  proof  of  concept  for  the  dosimeter  as  a  reliable  method  of  dose  verification  for  

OARs  in  HDR  brachytherapy  treatments.  

There  are  several  future  directions  to  expand  on  the  results  of  this  work.  Since  

PRESAGE®-­‐‑IV  has  the  capability  of  3D  readings,  the  2D  optical  scanning  system  can  be  

turned  into  an  optical-­‐‑CT  system  capable  of  reading  the  dose  gradients  that  are  surely  

present  in  the  dosimeters.  Also,  creating  a  standard  procedure  of  application  of  in-­‐‑vivo  

dosimeters  on  intracavitary  treatment  applicators  to  eliminate  unknowns  is  a  high  

priority.  Once  a  standard  procedure  is  achieved,  dose  estimates  can  become  more  

reliable  and  the  differences  from  Eclipse  measurements  will  decrease.  

Page 65: 4172013 AdriaVidovic Thesis - Duke University

 

   

51  

References 1.   McJury,  M.,  Oldham,  M.,  Cosgrove,  V.,  et  al.  2000.  Review  article:  Radiation  

dosimetry  using  polymer  gels:  methods  and  applications.  The  British  Journal  of  Radiology  73:  919-­‐‑929.    

 2.   Nath,  Ravinder,  Lowell  L  Anderson,  Jerome  A  Meli,  Arthur  J  Olch,  Judith  Anne  

Stitt,  and  Jeffrey  F  Williamson.  1997.  Code  of  Practice  for  Brachytherapy  Physics  :  Report  of  the  AAPM  Radiation  Therapy  Committee  Task  Group  No  .  56.  24  (56):  1557–1598.  

 3.   Hendee,  W.  et  al.  2013.  Comprehensive  Brachytherapy:  Physical  and  Clinical  Aspects.  

CRC  Press.  p.  370-­‐‑71    4.   Thomadson,  B.R.,  (2000).  Achieving  Quality  in  Brachytherapy.  London,  England:  

IOP  Publishing.    5.   Nag,  S,  B  Erickson,  B  Thomadsen,  C  Orton,  J  D  Demanes,  and  D  Petereit.  2000.  

The  American  Brachytherapy  Society  Recommendations  for  High-­‐‑dose-­‐‑rate  Brachytherapy  for  Carcinoma  of  the  Cervix.  International  Journal  of  Radiation  Oncology,  Biology,  Physics  48  (1)  (August  1):  201–11.    

 6.   Palmer,  Antony,  David  Bradley,  and  Andrew  Nisbet.  2012.  Physics-­‐‑aspects  of  Dose  

Accuracy  in  High  Dose  Rate  (HDR)  Brachytherapy:  Source  Dosimetry,  Treatment  Planning,  Equipment  Performance  and  in  Vivo  Verification  Techniques.  Journal  of  Contemporary  Brachytherapy  4  (2)  (July):  81–91.    

 7.   Williamson,  J.  2008.  Current  brachytherapy  quality  assurance  guidance:  does  it  meet  

the  challenges  of  emerging  image-­‐‑guided  technologies?  International  Journal  of  Radiation  Oncology,  Biology,  and  Physics  71  (1):  518-­‐‑522.  

 8.   Devlin,  P.M  2007.  Brachytherapy:  Applications  and  Techniques.  Lippincott  Williams  

&  Wilkins  p.  233-­‐‑35.    9.   Haughey  A,  Coalter  G,  Mugabe  K.  Evaluation  of  linear  array  MOSFET  detectors  for  

in  vivo  dosimetry  to  measure  rectal  dose  in  HDR  brachytherapy.  Australas  Phys  Eng  Sci  Med  2011;  34:  361-­‐‑366.  

     

Page 66: 4172013 AdriaVidovic Thesis - Duke University

 

   

52  

10.   Reniers  B,  Landry  G,  Eichner  R,  Hallil  A,  Verhaegen  F.  (2012).  In  vivo  dosimetry  for  gynaecological  brachytherapy  using  a  novel  position  sensitive  radiation  detector:  feasibility  study.  Med  Phys.  2012  Apr.  39(4):1925-­‐‑35.    

 11.   Guo,  P  Y,  J  a  Adamovics,  and  M  Oldham.  2006.  Characterization  of  a  New  

Radiochromic  Three-­‐‑dimensional  Dosimeter.  Medical  Physics  33  (5):  1338–1345.      12.   Guo,  P.,  J.  Adamovics,  and  M.  Oldham,  A  practical  three-­‐‑dimensional  dosimetry  

system  for  radiation  therapy.  Med  Phys,  2006.  33(10):  p.  3962-­‐‑72.    13.   Pierquet,  M.,  et  al.,  An  investigation  into  a  new  re-­‐‑useable  3D  radiochromic  dosimetry  

material,  Presage.  J  Phys  Conf  Ser,  2010.  250(1):  p.  1-­‐‑4.    14.   Brown,  S.,  et  al.,  Radiological  properties  of  the  PRESAGE  and  PAGAT  polymer  

dosimeters.  Appl  Radiat  Isot,  2008.  66(12):  p.  1970-­‐‑4.    15.   Thomas,  A.,  et  al.,  Commissioning  and  benchmarking  a  3D  dosimetry  system  for  

clinical  use.  Med  Phys,  2011.  38(8):  p.  4846-­‐‑57.    16.   Juang,  T.,  et  al.,  Customising  PRESAGE  for  Diverse  Applications.  IC3D  Dose  2012.  

Shangri  La  Hotel,  Sydney,  Australia.  5  November  2012.    17.   Ahmed,  M.I.,  et  al.,  Initial  Experience  with  Alatus  Vaginal  Balloon  Packing  (VBP)  

Compared  to  Standard  Vaginal  Gauze  Packing  (SGP)  for  Tandem  and  Ovoid  Brachytherapy  Treatment  of  Carcinoma  of  the  Cervix.  International  Journal  of  Radiation  Oncology,  Biology,  and  Physics  78  (3):  S409.  

 18.   Rockey,  W.M.,  et  al.,  The  Dosimetric  Impact  of  Vaginal  Balloon  Packing  on  

Brachytherapy  for  Gynecological  Cancer.  International  Journal  of  Radiation  Oncology,  Biology,  and  Physics  81  (18):  S457.  

 19.   Kirisits,  C.,  et  al.,  2011  “Physics  for  Image-­‐‑Guided  Brachytherapy”  Gynecologic  

Radiation  Therapy:  Novel  approaches  to  Image-­‐‑Guidance  and  Management.  Springer  Heidelberg  Dordrecht.  London.  New  York.  p.143.  

 20.   Petric,  P.  et  al.,  2011  “Physics  for  Image-­‐‑Guided  Brachytherapy”  Adaptive  

Contouring  of  the  Target  Volume  and  Organs  at  Risk.  Springer  Heidelberg  Dordrecht.  London.  New  York.  p.99.  

 21.   Lambert,  J.  et  al.  2007  “In  vivo  dosimeters  for  HDR  brachytherapy:  A  comparison  of  a  

Page 67: 4172013 AdriaVidovic Thesis - Duke University

 

   

53  

diamond  detector,  MOSFET,  TLD,  and  scintillation  detector”  Med  Phys,  2007.  34(5):  1759-­‐‑65.  

22.   Varian  Medical  Systems,  2011.  “Varian  BrachyTherapy  Applicators  and  Accessories  Catalog”  Varian  Medical  Systems,  Inc.  

 23.   Pierquet,  M.,  et  al.,  On  the  Feasibility  of  Verification  of  3D  Dosimetry  Near  

Brachytherapy  Sources  Using  PRESAGE/Optical-­‐‑CT.  J  Phys  Conf  Ser,  2010.  250(1):  012091-­‐‑1-­‐‑012091-­‐‑5