400G Optics - Technologies, Timing, and...

19
www.luxtera.com 400G Optics – Technologies, Timing, and Transceivers Brian Welch

Transcript of 400G Optics - Technologies, Timing, and...

Page 1: 400G Optics - Technologies, Timing, and Transceiversieee802.org/3/bs/public/14_05/welch_3bs_01_0514.pdf · 400G Optics – Technologies, Timing, and Transceivers . Brian Welch •

www.luxtera.com

400G Optics – Technologies, Timing, and Transceivers

Brian Welch

Page 2: 400G Optics - Technologies, Timing, and Transceiversieee802.org/3/bs/public/14_05/welch_3bs_01_0514.pdf · 400G Optics – Technologies, Timing, and Transceivers . Brian Welch •

• This presentation is an investigation into three potential solutions for 400G optical transceivers given the current objectives − Solutions perceived by the author to have a high probability of

technical feasibility − Investigations and comparison are using a silicon photonics

technology basis

• This presentation is not an investigation into all potential solutions for the current objectives

• This presentation is not a proposal for any particular solution to satisfy any particular objective − Does seek to identify for which objectives the solutions might be

relative

Caveats and Disclaimers

IEEE P802.3bs May 2014 2

Page 3: 400G Optics - Technologies, Timing, and Transceiversieee802.org/3/bs/public/14_05/welch_3bs_01_0514.pdf · 400G Optics – Technologies, Timing, and Transceivers . Brian Welch •

• Reach Objectives − 500 m − 2 km − 10 km

• Market Timing • Potential Solutions − 400G-PSM16 (16x25G) − 400G-PSM4 (4x100G) − 400G-LR4 (1x400G)

• Comparisons

Agenda

IEEE P802.3bs May 2014 3

Page 4: 400G Optics - Technologies, Timing, and Transceiversieee802.org/3/bs/public/14_05/welch_3bs_01_0514.pdf · 400G Optics – Technologies, Timing, and Transceivers . Brian Welch •

• 500m: Intra-Building − Datacenter focused (especially Hyper-Scale DC) − Comparable link counts to SR interconnects (similar cost structures desired) − Typically pre-terminated fiber plants − Approximately 4 dB loss budget

• 2km: Inter-Building − Medium reach interconnects − Lower link counts than SR interconnects − Typically field-terminated fiber plants − Approximately 5dB loss budget

• 10km: Inter-Building/Site − Long reach ‘local’ interconnects − Low link counts − Field-terminated fiber plants − Approximately 6dB loss budget

Reach Objectives

IEEE P802.3bs May 2014 4

Page 5: 400G Optics - Technologies, Timing, and Transceiversieee802.org/3/bs/public/14_05/welch_3bs_01_0514.pdf · 400G Optics – Technologies, Timing, and Transceivers . Brian Welch •

• Initial 400G Standard expected to be ratified in 2017 – Seven years after 40/100G

Ethernet

• First 400G product shipments likely in 2017-2018 – Native 400G products, not

4x100G solutions

• High volumes of gen 1 400G not likely before 2020

Market Timing

Ethernet Name Date Initial Standard Ratified

10Mb/s 1983

100Mb/s 1995

Gigabit 1998

10 Gigabit 2002

40 Gigabit 2010

100 Gigabit 2010

400 Gigabit 2017 http://www.ethernetalliance.org/subcommittees/roadmapping-subcommittee/

IEEE P802.3bs May 2014 5

Page 6: 400G Optics - Technologies, Timing, and Transceiversieee802.org/3/bs/public/14_05/welch_3bs_01_0514.pdf · 400G Optics – Technologies, Timing, and Transceivers . Brian Welch •

• What solutions will be relevant 6 years from today? − 16 Channel Electrical Interface? 8 Channel? 4? − 16 Channel Optical Interface? 8 Channel? 4? − Predominantly modules? Embedded? Integrated?

• What technologies will those solutions use? − 25 Gbaud serial rates? 50 Gbaud? 100? − Optical? Electrical?

• Will they be seven years more advanced than 100G? − Advanced node in 2010: 45 nm − Advanced node in 2014: 20 nm − Advanced node in 2017: 16 nm? 10nm? − Feature size approximately 1/3rd to 1/4th of 100G contemporary

technology?

Market Timing

IEEE P802.3bs May 2014 6

Page 7: 400G Optics - Technologies, Timing, and Transceiversieee802.org/3/bs/public/14_05/welch_3bs_01_0514.pdf · 400G Optics – Technologies, Timing, and Transceivers . Brian Welch •

Potential Solutions

IEEE P802.3bs May 2014 7

Page 8: 400G Optics - Technologies, Timing, and Transceiversieee802.org/3/bs/public/14_05/welch_3bs_01_0514.pdf · 400G Optics – Technologies, Timing, and Transceivers . Brian Welch •

400G-PSM16: Parallel Fiber Only

λ

I/O+CDR

TIA PIN

MZI

I/O+CDR

TIA PIN I/O+CDR

I/O+CDR MZI

16x 25 Gbps 16x25 Gbps 16x25 Gbps

IEEE P802.3bs May 2014 8

Max: 400G per Laser

Page 9: 400G Optics - Technologies, Timing, and Transceiversieee802.org/3/bs/public/14_05/welch_3bs_01_0514.pdf · 400G Optics – Technologies, Timing, and Transceivers . Brian Welch •

400G-PSM4: Parallel Fiber + PAM4

λ

I/O+MUX

TIA PIN

MZI

I/O+DeMUX Decoder

TIA PIN I/O+DeMUX Decoder

TIA PIN I/O+DeMUX Decoder

TIA PIN I/O+DeMUX Decoder

I/O+MUX MZI

I/O+MUX MZI

I/O+MUX MZI

16x 25 Gbps 8x50 Gbps 4x100 Gbps

IEEE P802.3bs May 2014 9

Max: 400G per Laser

Page 10: 400G Optics - Technologies, Timing, and Transceiversieee802.org/3/bs/public/14_05/welch_3bs_01_0514.pdf · 400G Optics – Technologies, Timing, and Transceivers . Brian Welch •

400G-LR4: Duplex Fiber + PAM4 + WDM

λ4

I/O+MUX

TIA PIN

MZI

I/O+DeMUX Decoder

TIA PIN I/O+DeMUX Decoder

TIA PIN I/O+DeMUX Decoder

TIA PIN I/O+DeMUX Decoder

I/O+MUX MZI

I/O+MUX MZI

I/O+MUX MZI

λ3

λ2

λ1

4λ MU

X 4λ DEM

UX

16x 25 Gbps 8x50 Gbps 4x100 Gbps

1x400 Gbps

1x400 Gbps

IEEE P802.3bs May 2014 10

Max: 100G per Laser

Page 11: 400G Optics - Technologies, Timing, and Transceiversieee802.org/3/bs/public/14_05/welch_3bs_01_0514.pdf · 400G Optics – Technologies, Timing, and Transceivers . Brian Welch •

• 400G-PSM16 essentially limited to a 16x25G electrical interface − 400G-PSM8 could be done for 8x50G electrical interface

• 400G-PSM4 has an easy upgrade path to a 8x50G electrical interface − Provided 8x50G is NRZ signaling. Alternate signaling could force the

need for additional decode/encode functions in electrical IO

• 400G-LR4 has an easy upgrade path to 8x50G electrical interface − Same caveats as 400G-PSM4 upgrade path

Upgrade path from 16x25G electrical interface

IEEE P802.3bs May 2014 11

Page 12: 400G Optics - Technologies, Timing, and Transceiversieee802.org/3/bs/public/14_05/welch_3bs_01_0514.pdf · 400G Optics – Technologies, Timing, and Transceivers . Brian Welch •

400G-PSM16 • Higher count

connector ~ 0.75 dB (net)

• Per Lane ~ 0.75 dB • 16 lanes ~ 6.2 dB • Total ~ 6.95 dB

Comparisons – Link Budget Delta

400G-LR4 • PAM4 penalties ~

6.27 dB • WDM4 penalty > 5

dB • 10 km Penalty ~ 2.75

dB • TIA Noise Penalty ~

1.5 dB • Per Lane > 15.52 dB • 1 Lane ~ -6.2 dB • 4 Lasers ~ 6 dB • Total > 15.32 dB

400G-PSM4 • PAM4 Encoding

Penalty ~ 4.77 dB • Linearity Penalty ~ 0.3

dB • MPI & RIN ~ 1.2 dB • 2 km Penalty ~ 1.75 dB • TIA Noise penalty ~ 1.5

dB • Per Lane ~ 9.52 dB • 4 Lanes = 0 dB • Total ~ 9.52 dB

• All link budget deltas measured relative to 100G-PSM4 • Measures done on a net optical power basis (sum of excess optical power needed

across all light sources)

IEEE P802.3bs May 2014 12

Estimated

Page 13: 400G Optics - Technologies, Timing, and Transceiversieee802.org/3/bs/public/14_05/welch_3bs_01_0514.pdf · 400G Optics – Technologies, Timing, and Transceivers . Brian Welch •

• Electrical Interface – CDAUI16 Assumed ~ 4xCAUI4 – Gen2 CAUI4 Interface ~ 600-800 mW – Gen1 CDAUI16 Interface ~ 2.4 – 3.2 W

• Electrical Components – Electrical MUX/DEMUX ~ 35 mW – PAM4 Decoder ~ 350 mW

• Optical Components – 25Gbaud Transmitter ~ 125 mW†

– 25Gbuad Receiver ~ 50 mW – 50 Gbaud Transmitter ~ 185 mW† – 50 Gbaud Receiver ~ 75 mW – WDM4 MUX/DEMUX~ 500-1000 mW

Comparisons - Power Consumption

• 400G-PSM16 – CDAUI16 + 16x25Gbaud Optical – Ptotal ~ 5.2-6 W

• 400G-PSM4 – CDAUI16 + E-Mux + 50Gbaud

Optical + ADC – Ptotal ~ 5.4-6.2 W

• 400G-LR4

– CDAUI16 + E-Mux + 50Gbaud Optical + ADC + 4xλ

– Ptotal ~ 7.5-9.5 W‡

† Includes laser power ‡ Includes excess laser power for link budget

IEEE P802.3bs May 2014 13

Estimated

Page 14: 400G Optics - Technologies, Timing, and Transceiversieee802.org/3/bs/public/14_05/welch_3bs_01_0514.pdf · 400G Optics – Technologies, Timing, and Transceivers . Brian Welch •

• 400G-PSM16: 12-18 Months − Essentially 4x100G-PSM4 in single chipset/module

o No new design features o Incremental improvements in CAUI interface (power reduced gen2)

− Incremental link budget improvements: Low

• 400G-PSM4: 2-3 years − 100G-PSM4 +

o 50Gbaud MZI Driver and TIA o PAM4 Decoder o Electrical MUX/DEMUX

− Incremental link budget improvements: Moderate

• 400G-LR4: 3-4 years − 100G-PSM4 +

o 50 Gbaud MZI Driver and TIA o PAM4 Decoder o Electrical MUX/DEMUX o Optical MUX/DEMUX o 4λ Integration

− Incremental link budget improvements: High

Time to Market

IEEE P802.3bs May 2014 14

Estimated

Page 15: 400G Optics - Technologies, Timing, and Transceiversieee802.org/3/bs/public/14_05/welch_3bs_01_0514.pdf · 400G Optics – Technologies, Timing, and Transceivers . Brian Welch •

Comparisons - Cost

4 RX

TIA / LA(x=850u)

VREG / iPhoto(x=390u)

Offset C

ancel

Rou

ting

/ Loo

p

Pin CTL(x=570u)

MZI Driver(x=900u)

4 TX

Rou

ting

/ Loo

p

Digital

(550^2 min,

550x700 with

large rom)

Lase

r Driv

er x

2(2

.6m

m x

350

u)

1keFuse

4 RX

TIA / LA(x=850u)

VREG / iPhoto(x=390u)

Offset C

ancel

Rou

ting

/ Loo

p

Bandgap

Pin CTL(x=570u)

MZI Driver(x=900u)

4 TX

Rou

ting

/ Loo

p

4 RX

TIA / LA(x=850u)

VREG / iPhoto(x=390u)

Offset C

ancel

Rou

ting

/ Loo

p

Pin CTL(x=570u)

MZI Driver(x=900u)

4 TX

Rou

ting

/ Loo

p

Digital

(550^2 min,

550x700 with

large rom)

Lase

r Driv

er x

2(2

.6m

m x

350

u)

1keFuse

4 RX

TIA / LA(x=850u)

VREG / iPhoto(x=390u)

Offset C

ancel

Rou

ting

/ Loo

p

Bandgap

Pin CTL(x=570u)

MZI Driver(x=900u)

4 TX

Rou

ting

/ Loo

p

Digital

(550^2 min,

550x700 with

large rom)

CW

Las

er D

river

1keFuse

Bandgap

4 RX

Rou

ting

/ Loo

p

Pin C

TL(x=570u)

PA

M M

ZI

4 TX

Rou

ting

/ Loo

p

TIA / LA

(x=850u)V

RE

G / iP

hoto(x=390u)

Offset Cancel

MU

X

PLL

AD

C

AD

C F

ront

End

4 RX

Rou

ting

/ Loo

p

Pin C

TL(x=570u)

PA

M M

ZI

4 TX

Rou

ting

/ Loo

p

TIA / LA

(x=850u)V

RE

G / iP

hoto(x=390u)

Offset Cancel

MU

X

PLL

AD

C

AD

C F

ront

End

4 RX

Rou

ting

/ Loo

p

Pin C

TL(x=570u)

PA

M M

ZI

4 TX

Rou

ting

/ Loo

p

TIA / LA

(x=850u)V

RE

G / iP

hoto(x=390u)

Offset Cancel

MU

X

PLL

AD

C

AD

C F

ront

End

4 RX

Rou

ting

/ Loo

p

Pin C

TL(x=570u)

PA

M M

ZI

4 TX

Rou

ting

/ Loo

p

TIA / LA

(x=850u)V

RE

G / iP

hoto(x=390u)

Offset Cancel

MU

X

PLL

AD

C

AD

C F

ront

End

Digital

(550^2 min,

550x700 with

large rom)

CW

Las

er D

river

1keFuse

Bandgap

Digital

(550^2 min,

550x700 with

large rom)

Bandgap

Pin CTL(x=570u)

PA

M M

ZI

4 TX

Rou

ting

/ Loo

p

MU

X

PLL

4 RX

Rou

ting

/ Loo

p

TIA / LA

(x=850u)V

RE

G / iP

hoto(x=390u)

Offset Cancel

AD

C

AD

C F

ront

End

Pin CTL(x=570u)

PA

M M

ZI

4 TX

Rou

ting

/ Loo

p

MU

X

PLL

4 RX

Rou

ting

/ Loo

p

TIA / LA

(x=850u)V

RE

G / iP

hoto(x=390u)

Offset Cancel

AD

C

AD

C F

ront

End

CW

Las

er D

river

1keFuse

WD

M C

ON

TRO

LER

WD

M C

ON

TRO

LER

CW

Las

er D

river

CW

Las

er D

river

1keFuse

4 RX

Rou

ting

/ Loo

p

TIA / LA

(x=850u)V

RE

G / iP

hoto(x=390u)

Offset Cancel

AD

C

AD

C F

ront

End 4 RX

Rou

ting

/ Loo

p

TIA / LA

(x=850u)V

RE

G / iP

hoto(x=390u)

Offset Cancel

AD

C

AD

C F

ront

End

CW

Las

er D

river

Pin CTL(x=570u)

PA

M M

ZI

4 TX

Rou

ting

/ Loo

p

MU

X

PLL

Pin CTL(x=570u)

PA

M M

ZI

4 TX

Rou

ting

/ Loo

p

MU

X

PLL

Digital

(550^2 min,

550x700 with

large rom)

Bandgap

Module Cost PSM4 PSM16 4xPAM4-G1 4λxPAM4-G1

@ 95% Yield 1 2.05 1.96 8.53

400G-PSM16 Chipset 400G-PSM4 Chipset 400G-LR4 Chipset

Chipset Cost PSM4 PSM16 4xPAM4-G1 4λxPAM4-G1

Chipset 2 4.11 3.92 11.14

From welch_400_01_1113.pdf

IEEE P802.3bs May 2014 15

Estimated

Page 16: 400G Optics - Technologies, Timing, and Transceiversieee802.org/3/bs/public/14_05/welch_3bs_01_0514.pdf · 400G Optics – Technologies, Timing, and Transceivers . Brian Welch •

100G-PSM4† 400G-PSM16 400G-PSM4 400G-LR4

Time to Market 0 12-18 mo 2-3 yrs 3-4 yrs

Optical Lanes 4 16 4 1

Electrical Lanes Supported 4 16 16,8 16,8

Power < 3.5 W < 6 W ~ 6 W > 7.5 W

Link Budget Delta 0 < 7.0 ~ 9.5 > 15.3

Reach > 500m

Reach > 2km

Reach > 10km

Module Cost 1 2.05 1.96 8.53

Link Cost @ 500m Low Lowest Highest

Link Cost @ 2km High Lowest Highest

Link Cost @ 10 km Highest Low Lowest

Comparison

IEEE P802.3bs May 2014 16

† from welch_01_0513_optx.pdf

Estimated

Page 17: 400G Optics - Technologies, Timing, and Transceiversieee802.org/3/bs/public/14_05/welch_3bs_01_0514.pdf · 400G Optics – Technologies, Timing, and Transceivers . Brian Welch •

• Backward Compatibility − 400G-PSM4 operating in 100G-PSM4 mode (MZI in NRZ mode) − 400G-LR4 operation in 100G-LR4 mode (MZI in NRZ mode) − Easy upgrade model from current parallel and duplex fiber

plants

• Breakout Potential − 400G-PSM16 breakout to 4x100G-PSM4 o 16x25G Ethernet?

− 400G-PSM4 breakout to 4x100G Ethernet o With single λ 100G companion module

Additional Considerations

IEEE P802.3bs May 2014 17

Page 18: 400G Optics - Technologies, Timing, and Transceiversieee802.org/3/bs/public/14_05/welch_3bs_01_0514.pdf · 400G Optics – Technologies, Timing, and Transceivers . Brian Welch •

• Several Options for 400G solutions: − Easy: 400G-PSM16 − Moderate: 400G-PSM4 − Hard: 400G-LR4

• 400G-PSM4 appears to have the most favorables − Longer, but still reasonable, time to market − Lowest potential cost − Low potential power

• Full duplex solution has the most challenges − Longer time to market, but still should intercept volume shipments − Higher power, but still should be manageable − Considerably higher per unit cost, link cost crossover close to 10 km

reach.

Summary and Conclusions

IEEE P802.3bs May 2014 18

Page 19: 400G Optics - Technologies, Timing, and Transceiversieee802.org/3/bs/public/14_05/welch_3bs_01_0514.pdf · 400G Optics – Technologies, Timing, and Transceivers . Brian Welch •

Thank You

Brian Welch

IEEE P802.3bs May 2014 19