4-Chapter Complex Number

download 4-Chapter Complex Number

of 35

Transcript of 4-Chapter Complex Number

  • 8/9/2019 4-Chapter Complex Number

    1/35

     omplex Numbers

     

    INTRODUCTION

    Ø Consider a simple quadratic equation x2 + 4 = 0. Clearlythere is no solution of this equation in the set of realnumbers. To permit the solution of such equations the setof complex numbers is introduced.

    Ø The solutions of the above equation are given by x2 = –4

    .21 – 24x   ±=±=-±=Þ

    Ø Swiss Mathematician Euler introduced the symbol i (iota)

    for positive square root of – 1, i.e., i = 1- .

    The square root of a negative number is called an imaginarynumber.

    Ø  Now for any two real numbers x and y, we can form a newnumber x + iy. This number x + iy is called a complexnumber. The set C of complex numbers is therefore defined  by C = {x + iy | x Î  R, y Î  R}The extension of concept of numbers from real numbersto complex numbers enabled us to solve any polynomialequation.

    Ø A complex number is deonoted by a single letter such as z,w etc. Given a complex number z = x + iy, x is called itsReal part and y its Imaginary Part and we denote

    x = Re(z) and y = Im (z)If y = 0, then z = x is a purely real number.If x = 0, then z = iy is a purely imaginary number.

    The complex number 0 = 0 + i0 is both purely real as wellas purely imaginary.

    Ø Two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 aresaid to be equal if and only if x1 = x2 and y1 = y2.

     AXIOMATIC APPROACH TOWARDS THE COMPLEX 

    NUMBER SYSTEM

    Ø A complex number is defined as an ordered pair (x, y) of real numbers x and y. Thus,

    C = {(x, y) | x Î  R, y Î  R}

    If z = (x, y) then x = Re(z) and y = Im (z), z = (x, y) isequivalent to z = x + iy.

    Thus, i is equivalent to (0, 1) and z  = (x, –y).

    i  (greek letter iota) represents positive square root of 

     –1, so, 1-=i . It is called imaginary unit. We have

    1. .etc........,,1,,1

    5432

    iiiiii   ==-=-=Thus for any integer k,i4k  = 1, i4k+1 = i, i4k+2 = –1, i4k+3 = – i.

    That is if power of i is m,  Nm Î , then divide m by 4and find the remainder.

    If the remainder is zero, then im = 1If the remainder is one, then im = iIf the remainder is two, then im = –1If the remainder is three, then im = – i

    2. The sum of four consecutive powers of i is zero, for example, i12 + i13 + i14 + i15 = 0

    3. For any two real numbers a and b, ab ba   =´   is

    true only if at least one number is non negative or zero.

    If both a and b are negative then ab ba   ¹´In fact if a > 0 and b > 0 then

    1 1a b a b i a i b ab- ´ - = - ´ - = ´ = -

    OPERATIONS ON COMPLEX NUMBERS

    Suppose that z1  = (x1, y1) and z2  = (x2, y2) be two complexnumbers, that is, z1 = x1 + iy1 and z2 = x2 + iy2(i) Equality : z1 = z2, if x1 = x2 and y1 = y2(ii) Addition : z

    1

      + z2

     = (x1

     + x2

    , y1

     + y2

    ) or equivalently z1

     +z2 = (x1 + x2) + i (y1 + y2)

  • 8/9/2019 4-Chapter Complex Number

    2/35

    2 Phys ics  

    (iii) Subtraction : z1 – z2 = (x1 – x2, y1 – y2) or equivalently z1 – z2 = (x1 – x2) + i (y1 – y2)

    (iv) Multiplication : z1z2  = (x1x2  – y1y2, x1y2  + x2y1) or equivalently z1z2 = (x1x2 – y1y2) + i (x1y2 + x2y1)

    (v) Division : If z2  ¹ 0 then

    ÷÷

     ø

     ö

    çç

    è 

    æ 

    +

    -

    +

    +=

    22

    22

    122122

    22

    2121

    2

    1

    yx

    xyxy,

    yx

    yyxx

    z

    z

    or equivalently ÷÷

     ø

     ö

    çç

    è 

    æ 

    +

    -+

    ÷÷

     ø

     ö

    çç

    è 

    æ 

    +

    +=

    22

    22

    122122

    22

    2121

    2

    1

    yx

    xyxyi

    yx

    yyxx

    z

    z

    (vi) Multiplication by a real number : If z = (x, y) and m ÎR then mz = (mx, my) or equivalently if z = x + iy then mz = mx + imy

     ALGEBRA OF OPERATIONS

    If z1, z2 and z3  belong to set C  of complex numbers, thenfollowing properties hold.

    (1) Closure Property : z1  ±  z2; z1z2 and2

    1

    z

    z, z2  ¹ 0 all also

     belong to C.

    (2) Commutative Property : z1 + z2 = z2 + z1 and z1z2 = z2z1(3) Associative Property : z1 + (z2 + z3) = (z1 + z2) + z3 and 

    z1 (z2z3) = (z1z2)z3(4) Cancellation Property : z1 + z3 = z2 + z3  Þ  z1 = z2 and 

    z1z3 = z2z3  Þ z3 = 0 or z1 = z2(5) Distributive Property : z

    1

     (z2

     + z3

    ) = z1

    z2

     + z1

    z3(6) Existence of Identity : 0 = (0, 0) is additive identity, i.e. 0

    + z = z + 0 = z "  z ΠC

    1 = (1, 0) is multiplicative identity, i.e. 1(z) = (z)1 = z " z ΠC(7) Existence of Inverse : For every complex number z = (x,

    y), we may get a unique number–z = (–x, –y) such that z + (–z) = (–z) + z = 0. (–z) is Additive Inverse.

    For every complex number z = (x, y), z 0¹  we may get a

    unique number z –1 orz

    1 = ÷

    ÷ ø

     öççè 

    æ 

    ++ 2222 yx

    y – ,

    yx

    x such that

    1zz

    1

    z

    1z   =÷ ø öç

    è æ =÷

     ø öç

    è æ  . ÷

     ø öç

    è æ 

    z

    1 is multiplicative inverse.

    [NOTE : A set with two operations on it satisfying all above

     properties is called a Field.]

    (8) The order relations 'greater than' and 'less than' arenot defined for non real complex numbers. Theinequalities like –2i < 0; 1 + 2i > 1; i – 1< i are meaningless.

    The Modulus and the conjugate of a Complex Number

    Let z =  x + iy be a complex number. Then the modulus(absolute value) of z, denoted by | z | is defined as follows :

    | z | = 2 2 2 2{Re( )} {Im( )}a b z z+ = +

    Clearly, modulus of a complex number is a real number.Again let z =  x + iy be a complex number. Then the complexnumber x – iy is called the conjugate of z and is denoted by

     z  or z*.

    Thus, we have Re ( z ) = Re ( z) and Im ( z ) = – Im ( z).Note :

    1. The additive inverse of ‘ z’ is ‘– x – iy’ and conjugateof ‘ z’ is ‘ x – iy’.

    2. The multiplicative inverse of a non-zero complexnumber ‘ z’ can be given by

    12 2 2

    1

    | |

     x iy z z

     x iy  x y z

    -   -= = =+   +

    or  2| | z z z=

     

    (i) z)z(   = (ii) 2121 zzzz   ±=±

    (iii) nn2121 )z()z(zzzz   =Þ= , n NÎ

    (iv) z)z(   -=i (v) 0z,zz

    z

    z2

    2

    1

    2

    1 ¹=÷÷ ø

     öççè 

    æ 

    (vi) )zRe(2zz   =+ , which is a purely real number 

    (vii) )zIm(2zz   =- , which is a purely imaginary number..

    (viii) zz =  if and only if z is purely real.(ix) zz   -=  if and only if z is purely imaginary..(x) If f(z) is a polynomial in a complex variable z, then

    )z(f )z(f    =  [where f   means the complex coefficients

    are replaced by their conjugate is]

    (xi) )zzRe(2)zzRe(2zzzz 21212121   ==+

    (xii) If

    321

    321

    321

    ccc

     b b b

    aaa

    z =  then

    321

    321

    321

    ccc

     b b b

    aaa

    z =

    where ai

    , bi

    , ci

     (i = 1, 2, 3) are complex numbers.

    ILLUSTR TIVE EX MPLES

    1. The value of the sum å+

    =

    7n4

    1k 

    k i  is

    (a) 0 (b) 1

    (c) –1 (d) i or – i, depending on n is even or odd 

    Sol. We have, 1017n4

    4k 

    k 327n4

    1k 

    k  -=+--=+++= åå  +

    =

    +

    =

    iiiiiii

    [Note that, k = 4 to 4n + 7 contains 4n + 4 terms, a multipleof 4] Answer (c)

  • 8/9/2019 4-Chapter Complex Number

    3/35

    Laws of Motion 3

    2. If R y,x,3

    y)32(

    3

    2x)1(Î=

    -+-

    ++

    -+i

    i

    ii

    i

    ii, then

    (a) x = 3, y = –1 (b) x = –3, y = 1(c) x = 3, y = 1 (d) x = –3, y = –1

    Sol. We have ii

    ii

    i

    ii =-

    +-++

    -+3

    y)32(3

    2x)1(

    Multiplying both sides by (3 + i) (3 – i), we get[(1 + i)x – 2i] (3 – i) + [(2 – 3i)y + i] (3 + i) = (3 + i) (3 – i)i

    Þ (4x + 9y – 3) + (2x – 7y – 3)i = 10iÞ  4x + 9y – 3 = 0 and 2x – 7y – 13 = 0Solving these equations, we get x = 3, y = –1 Answer (a)

    3. If(cos x sin x)(cos y sin y)

    A B(cot u )(1 tan v)

    + += +

    + +

    i ii

    i i, then

    (a) A = sinu cosv cos (x + y – u – v)(b) B = sinu cosv sin(x + y – u – v)

    (c) A = cosu sinv cos(x + y – u – v)(d) B = cosu sinv sin(x + y – u – v)

    Sol . We have,(cos x sin x)(cos y sin y)

    (cot u )(1 tan v)

    + +

    + +

    i i

    i i

    ÷ ø

     öçè 

    æ +÷

     ø

     öçè 

    æ +

    ++=

    vcos

    vsin1

    usin

    ucos

    )ysiny)(cosxsinx(cos

    ii

    ii

    )vsinv)(cosusinu(cos

    )ysiny)(cosxsinx(cosvcosusin

    ii

    ii

    ++

    ++=

     )]vusin()vu[cos(

    )]yxsin()yx[cos(vcosusin

    +++

    +++=

    i

    i

    )]vusin()vu[cos(

    )]vusin()vu[cos(

    +-+

    +-+´

    i

    i

    )vu(sin)vu(cos

    )]vuyxsin()vuyx[cos(vcosusin22 +++

    --++--+=

    i

    )vuyxcos(vcosusin   --+= )vuyxsin(vcosusin   --++i

    )vuyxcos(vcosusinA   --+=\

    and )vuyxsin(vcosusinB   --+= Answers (a, b)4. If z1z2z3 are there complex numbers then the value of 

    z1 Im )zzIm(z)zzIm(z)zz( 2313232 1++ is

    (a) Re (z1z2z3) (b) Im (z1z2z3)(c) Re (z1 + z2 + z3) (d) 0

    Sol. 1 1 1 2 2 2 3 3 3, , Let z x iy z x iy z x iy= + = + = +

    11 2 1 1 2 2 3 3Im( ) ( ) Im ( – )( )Then z z z x iy x iy x iy= + +é ùë û

    1 1 2 3 2 3 2 3 3 2( ) Im ( ) ( – ) x iy x x y y i x y x y= + + +é ùë û

    1 1 2 3 3 2( )( – ) x iy x y x y= +

    1 2 3 3 2 1 2 3 3 2( – ) ( – ) x x y x y iy x y x y= +Similarly, )yx – yx(iy)yx – yx(x)zzIm(z 3113231132232   +=

    and )yx – yx(iy)yx – yx(x)zzIm(z 122131221323 1   +=

    Clearly 0)zzIm(z)zzIm(z)zzIm(z 231231 132   =++

     Answer (d)5. If ( x + iy)1/3 = a + ib, where x, y, a, b Î  R, show that

    2 22( ) x y

    a ba b

    - = - +

    Sol . ( x + iy)1/3  = a + ibÞ  x + iy = (a + ib)3

    i.e.,  x + iy = a3

     + i3

    b3

     + 3iab (a + ib)= a3 – ib3 + i3a2b – 3ab2 = a3 – 3ab2 + i (3a2b –  b3)Þ  x = a3 – 3ab2 and y = 3a2b – b3

    Thus x

    a = a2 – 3b2 and

     y

    b = 3a2 – b2

    So, x y

    a b-  = a2 – 3b2 – 3a2 + b2

    = – 2a2 – 2b2 = – 2(a2 + b2).

    6. Solve the equation z2 =  z , where z = x + iy

    Sol.  z2 =  z  Þ  x2 – y2 + i2 xy = x – iyTherefore, x2 –  y2 = x ...... (1)and 2 xy = – y ...... (2)

    From (2), we have y = 0 or x = –1

    2When y = 0, from (1), we get

     x2 – x = 0, i.e., x = 0 or x = 1.

    When x = –1

    2, from (1), we get

     y2 =1 1

    4 2+  or y2 =

    3

    4, i.e., y =

    3

    2± .

    Hence, the solutions of the given equation are

    0 + i0, 1 + i0, –1

    2 + i

    3

    2, –

    1

    2 – i

    3

    2

    4.1

    Solve following problems with the help of above text and 

    examples.

    1. The value of 1iiiii

    iiiii574576578580582

    584586588590592

    -++++

    ++++ is

    (a) 2 (b) –2 (c) 1 (d) –12. 1 + i2 + i4 ... + i2n is

    (a) Positive (b) Negative(c) 0 (d) Can’t be determined  

    3. The value of å=

    ++13

    1n

    1nn )ii( , where i = 1-  equals

    (a) i (b) i – 1 (c) – i (d) 0

    4. The least positive integer n such that

    n

    i1

    i2÷ ø

     öçè 

    æ +

     is a positive

    integer is(a) 2 (b) 4 (c) 8 (d) 16

  • 8/9/2019 4-Chapter Complex Number

    4/35

    4 Phys ics  

    5. The multiplicative inverse of 2)i56(   +  is

    (a) i61

    60

    61

    11- (b) i

    61

    60

    61

    11+

    (c) i61

    60

    61

    9- (d) None of these

    6. The multiplicative inverse ofi54

    i43

    -+

     is

    (a) i25

    31

    25

    8+- (b) i

    25

    31

    25

    8-

    (c) i25

    31

    25

    8-- (d) None of these

    7. The conjugate complex number of 2)i21(

    i2

    -

    - is

    (a) i25

    11

    25

    2

    ÷ ø

     ö

    çè 

    æ 

    +÷ ø

     ö

    çè 

    æ (b) i25

    11

    25

    2

    ÷ ø

     ö

    çè 

    æ 

    -÷ ø

     ö

    çè 

    æ 

    (c) i25

    11

    25

     ø

     öçè 

    æ +÷

     ø

     öçè 

    æ - (d) i

    25

    11

    25

     ø

     öçè 

    æ -÷

     ø

     öçè 

    æ -

    8. The value of ÷ ø

     öçè 

    æ -

    +÷ ø

     öçè 

    æ +

    +- i42

    i43

    i1

    3

    i21

    1 is

    (a) i

    4

    9

    4

    1- (b) i

    4

    9

    4

    1+

    (c) i4

    9

    4

    1+- (d) i

    4

    9

    4

    1--

    9. The value ofq+q- sini2cos1

    1 is

    (a) q+

    q

    -q+ cos35

    2tan2

    icos35

    1(b)

    q+

    q

    +q+ cos35

    2tan2

    icos35

    1

    (c)q+

    q

    -q+ cos35

    2cot2

    icos35

    1(d) None of these

    10. If ,iyxiba3 -=- then =+3 iba

    (a) iyx + (b) iyx - (c) ixy + (d) ixy -

    GRAPHICAL REPRESENTATION OF COMPLEX NUMBERS

    N(0, y)

    P (x,y)

    O M (x,o)

    y

    Q (x,–y)

    x

    Ø Every complex number x+iy can be represented geometrically as a unique point P (x,y) in the xoy planewith x-coordinate representing its real part and y-coordinaterepresenting its imaginary part.

    Ø The Point (x, 0) on the x-axis represents the purely realnumber x. As such x-axis is called the real axis. Similarly,the point (0, y) on the y-axis represents purely imaginarynumber iy. Therefore, y-axis is called the imaginary axis.

    Ø The plane having a complex number assigned to each of its points, is called the complex plane or Argand planeor Guassian plane. This representation of complexnumbers as points in the plane is known as Arganddiagram.

    Ø The distance from the origin to the point P(x, y) is defined as the MODULUS (or absolute value) of the complex

    number z = x + iy, denoted by | z |, thus | z | = 22 yx   +

    Ø The conjugate z  of complex number z is represented bythe point Q, which is the mirror image of P on the x–axis.

    1. 0|z|   ³ , 0|z|   = 0z =Û .

    2. 2|z|zz   =  ( majority of the complex equations are solved using this property)

    3. |z||z||z||z|   -=-==

    4. nn2121 |z||z||z||z||zz|   =Þ=

    5. |z|

    |z|

    z

    z

    2

    1

    2

    1 = , 0z2 ¹

    6.|z|

    z1

    |z|

    zÞ= , is a unimodular complex number 

    ( 0z ¹ ).

    7. )zzRe(2|z||z||zz| 212

    22

    12

    21   ++=+

    8. )zzRe(2|z||z||zz| 212

    22

    12

    21   -+=-

    9. )|z||z(|2|zz||zz| 222

    12

    212

    21   +=-++

    10.

    2 2 2 2 2 21 2 1 2 1 2| az bz | | bz az | (a b )(| z | | z | ),+ + - = + +

    where a, b ΠR 

    11. If 0z,z 21   ¹  then2

    22

    12

    21 |z||z||zz|   +=+  2

    1

    z

    zÛ  is

     purely imaginary.

    ANSWER KEY

    1. (b) 2. (d) 3. (b) 4. (c) 5. (a) 6. (c) 7. (d) 8. (b) 9. (c) 10. (a)

  • 8/9/2019 4-Chapter Complex Number

    5/35

    Laws of Motion 5

    POLAR FORM (OR TRIGONOMETRICAL FORM) OF

    COMPLEX NUMBERS

    P (z)

    O M

    y

    XX

    q

      r   =   |   z  | 

    y

    Let P represents the nonzerocomplex number z = x+iy. Let the

    directed line regment OP be of length r and makes an angle q withthe positive direction of the x–axis(q in radians)

    The point P is uniquely determined by the ordered pair of realnumbers (r, q) called the polar coordinates of the point P. Clearly,

    x = r cos q, y = r sin q,

    r= 22 yx   + , tanq =x

    y

    Thus z=r(cosq + isin q) is the poar from of z. r is the modulus of 

    the number z and q  is called the ARGUMENT (or AMPLITUDE) of the number z, denoted by arg (z) or amp (z)Hence.

    22 yx|z|r    +==  andx

    ytan)z(arg 1-==q

    z = r(cosq + i sinq) is also written as r cis(q)Ø  Note that q is not defined uniquely, In fact q is the solutionof simultaneous equations

    22 yx

    xcos

    +=q  and

    22 yx

    ysin

    +=q

    If z = 1 + i,211yxr 

    2222 =+=+= ;

    41

    x

    ytan

      p=qÞ==q

    Polar from of ÷ ø

     öçè 

    æ    p+

    p=

    4sini

    4cos2z

    Clearly the possible arguments of the number z=1+i are thefollowing angles :

    IÎp+p

    p+pp

    k ,k 24

    ..,,.........24

    ,4

    Any two arguments of a complex number differ by a number

    which is a multiple of 2 .

    The unique value of q, such that p£q 0, y > 0, then the point P lies in the first quadrant

    and then a==q zarg

    For example, if i1z   += , then arg(z) =4

    p

    Case II : If x < 0, y > 0, then the point P lis in the second 

    quadrant and then -p==q zarg

    For example, if i31z   +-= , then 31

    3tan   =

    -=a

    so3

    2

    3)zarg(

      p=

    p-p=

     q

    P

    xO

    y

    a

    Case III : If x < 0, y < 0 then the point P lies in the third quadrant and then

    p-a=a-p-==q )(zarg

     q

    P

    xOx¢

    y

    aFor example, if i1z   --=

    then 111tan   =

    --=a

    so4

    3)

    4()zarg(

      p-=

    p-p-=

    Case IV : If x > 0, y < 0 then the point P lies in the fourth

    quadrant and then   a-==q zarg

    For example, if ,i3z   -=  then

    3

    1

    3

    1tan   =

    -=a

     q

    P

    xOx¢

    y

    a

    so, 6)zarg(   p-=

    Case V : If y = 0, then z is purely real and P lies on real axis, and z = x,so arg (z) = 0 if x > 0; arg (z) = p if x < 0

    For example arg(3) = 0 and p=÷ ø

     öçè 

    æ -

    2

    1arg

    Case VI : If x = 0, then z = iy is a purely imaginary number and P lies on imaginary axis

    So, arg (z) =2

    p if y > 0 and arg (z) =

    2

    p-  if y < 0

    For example,2

    )i2arg(   p=  and2

    )i100arg(   p-=-

  • 8/9/2019 4-Chapter Complex Number

    6/35

    6 Phys ics  

     

    1. )zarg()zarg(   -=

    2.   p++= k 2)zarg()zarg()zzarg( 2121

    3.   p+-=÷÷ ø ö

    ççè æ  k 2)zarg()zarg(

    z

    zarg 212

    1

    4.z

    arg 2arg(z) 2k  z

    æ ö= + pç ÷

    è ø

    5.   p+= k 2)zarg(n)zarg( n

    Where k = 0, –1 or 1 would be taken so that thevalue comes out into the principal value region

    6. If q=÷÷ ø

     öççè 

    æ 

    1

    2

    z

    zarg the q-p=÷÷

     ø

     öççè 

    æ k 2

    z

    zarg

    2

    1 , Ik Î

    7.   p±=-- )zarg()zarg(

    8. )zarg(2

    )izarg(   +p

    =

    9. 2/)zarg()zarg(|zz||zz| 212121   p=-Û-=+

    10. )zarg()zarg(|z||z||zz| 212121   =Û+=+

    EULER'S NOTATION

    It can be shown that q-q=q+q=   q-q sinicose,sinicose ii

    \  )ysiniy(cosee.eee xiyxiyxz +===   +

    Also q=q+q ire)sini(cosr 

    Again,i2

    eesinand 

    2

    eecos

    iiii   q-qq-q -=q

    +=q

    LOGARITHM OF A COMPLEX NUMBER

    Let q=q+q=+= ire)sini(cosr iyxz

    Then q+==   q ir log)re(log)z(log ei

    ee

    So, )zarg(i|z|log)z(log ee   +=

    As such the argument of a complex number is not unique, thelog of a complex number cannot be unique. In general,

    )],zarg(k 2[i|z|log)z(log ee   +p+=   Ik Î

    For example, Ik ,2

    k 2ielog)ilog( 2/i Î÷ ø

     öçè 

    æ    p+p==   p  So,

    2i p

     is

    one of the values of log (i)

    Also, ÷ ø

     öçè 

    æ  p+

    p=÷

     ø

     öçè 

    æ  p+=

    p=

    2log

    2i

    2logilog)

    2ilog()ilog(log

    [Taking principal value only]

    7. If z1 and z2 are any two complex numbers then

    |zzz||zzz| 22211

    22

    211   --+-+  is equal to

    (a) |z| 1 (b) |z| 2

    (c) |zz|21

    + (d) |zz||zz|2121

      -++Sol. (Trick ) The nature of the problem suggests at once that

    we shold use the formula

    )|z||z(|2|zz||zz| 222

    12

    212

    21   +=-++

    We have 222211

    22

    211 )zzz||zzz(|   --+-+

    |zzz|2|zzz||zzz| 2221

    21

    222

    211

    222

    211   +-+--+-+=

    22

    222

    21

    21 |z|2|zz||z|2   +úû

    ùêëé -+=

    = |zz|2)|z||z(|222

    21

    22

    21   -++

    = |zz||zz|2|zz||zz| 21212

    212

    21   -++-++= 22121 |)zz||zz(|   -++

    \ |zzz||zzz| 22211

    22

    211   --+-+

    |zz||zz| 2121   -++= Answer (d)

    8. The smallest positive integer n for which 1i – 1

    i1n

    =÷ ø

     öçè 

    æ   +  is

    (a) 4 (b) 3 (c) 2 (d) 1

    Sol. i2

    i2

    i – 1

    i2i1

    i1

    i1

    i – 1

    i1

    i – 1

    i12

    2

    ==++

    =++

    ´+

    =+

      1i1i – 1

    i1 nn

    =Þ=÷ ø

     öçè 

    æ   +\

    Clearly the smallest value of n is 4. Answer (a)

    9. If .1iba   =+  the simplified form ofai b1

    ai b1

    -+++

     is

    (a) b + ai (b) a + bi(c) (1 + b)2 + a2 (d) ai

    Sol. As 1 ba1iba 22 =+Þ=+

    =)ai b1)(ai –  b1(

    )ai b1(

    ai –  b1

    ai ba 2

    +++++

    =+

    ++  22

    22

    a) b1(

    ai) b1(2a – ) b1(

    ++

    +++=

    = b2) ba(1

    abi2ai2 b2 b)a – 1(22

    22

    +++

    ++++ 

     b211

    abi2ai2 b2 b b 22

    ++

    ++++=

     = ai b b1

    i) b1(a) b1( b b1

    abiai b b2 +=+

    +++=+

    +++

    Answer (a)

    10. The argument of the complex number a-a+ cosisin1  is

    (a)42

    p-

    a(b)

    2

    a(c)

    42

    p+

    a(d)

    22

    p+

    a

    Sol. Let 1+ sina – icosa = r(cosq + isinq)Then r cos q = 1 + sina and r sinq = – cosa

    r 2 = (1 + sina)2 + (–cosa)2 = 2 + 2 sina =2

    2sin

    2cos2   ÷

     ø

     öçè 

    æ    a+

    a

    r =÷

     ø

     öçè 

    æ    a+

    a

    2sin

    2cos2

     or ÷ ø

     ö

    çè 

    æ    a-

    p

    24cos2

  • 8/9/2019 4-Chapter Complex Number

    7/35

    Laws of Motion 7

    Also, tan q =÷ ø

     öçè 

    æ  a-p

    +

    ÷ ø

     öçè 

    æ  a-p

    -=

    a+

    a-

    2cos1

    2sin

    sin1

    cos [Note the step]

     ø

     öçè 

    æ    a-p

    ÷ ø öç

    è æ    a-p÷

     ø öç

    è æ    a-p-

    24cos2

    24cos

    24sin2

    2  ÷

     ø

     öçè 

    æ    p-

    a=÷

     ø

     öçè 

    æ    a-

    p-=

    42tan

    24tan

    \ q =42

    p-

    a

    Hence, Modulus = ÷ ø

     öçè 

    æ    a-

    p

    24cos2  and argument

     =42

    p-

    a.

    Answer (a)

    11. Convert the complex number16

    1 3i

    -

    + into polar form.

    Sol. The given complex number16

    1 3i

    -

    + =

    16

    1 3i

    -

    + ×

    1 3

    1 3

    i

    i

    -

    -

    =2

    16(1 3)

    1 ( 3)

    i

    i

    - -

    - =

    16(1 3)

    1 3

    i- -+

     = – 4 (1 3)i-

    = – 4 + i4 3

    q

    O

    Y

    X

    Y'

    X'

    P( 4,4 3)-

    Let – 4 = r  cos q, 4 3  = r  sin qBy squaring and adding, we get

    16 + 48 = r 2 (cos2 q + sin2 q)which gives r 2 = 64, i.e., r  = 8

    Hence, cos q = –

    1

    2 , sin q =

    3

    2

    q = p –3

     =2

    3

    Thus, the required polar form is 82 2

    cos sin3 3

    ip pæ ö

    +ç ÷è ø

    12.  If | z2 – 1| = | z |2 + 1, then show that z lies on imaginaryaxis.

    Sol. Let z = x + iy. Then | z2 – 1| = | z |2 + 1Þ | x2 – y2 – 1 + i2 xy | = | x + iy |2 + 1Þ ( x2 – y2 – 1)2 + 4 x2 y2 = ( x2 + y2 + 1)2

    Þ 4 x2

     = 0 i.e., x = 0Hence z lies on y-axis.

    4.2

    Solve following problems with the help of above text and 

    examples.

    1. For any two complex number z1, z

    2

    221

    221 |zz||zz1|   ---  is equal to :

    (a) )|z|1()|z|1(2

    22

    1   ++ (b) )|z|1()|z|1(2

    22

    1   --

    (c) )|z|1()|z|1( 222

    1   -+ (d) )|z|1()|z|1(2

    22

    1   +-

    2. If z1, z

    2 and z

    3, z

    4 are two pairs of conjugate complex

    numbers, then arg ÷÷ ø

     öççè 

    æ +

    ÷÷

     ø

     ö

    çç

    è 

    æ 

    3

    2

    4 z

    zarg

    z

    z1 equals

    (a) 0 (b)2

    p

    (c)

    2

    3p(d)   p

    3. If |b| = 1, then ba-a-b

    1 is equal to

    (a) 0 (b) ½ (c) 1 (d) 2

    4. Let z1 and z

    2 be complex numbers such that 21   zz   ¹  and 

    |z1| = |z

    2|. If z

    1 has positive real part and z

    2 has negative

    imaginary part, then21

    21

    zz

    zz

    -

    + may be

    (a) real and positive(b) zero(c) real and negative(d) either zero or purely imaginary

    5. If1

    2

    z7

    z5 is purely imaginary number then

    21

    21

    z3z2

    z3z2

    -

    + is

    equal to

    (a) 7

    5

    (b) 9

    7

    (c) 49

    25

    (d) None

  • 8/9/2019 4-Chapter Complex Number

    8/35

    8 Phys ics  

    6. If z1 and z

    2 be two non-zero complex numbers such that

    |zz||zz| 2121   -=+  then arg (z1) – arg (z2)=

    (a)

    2

    p(b) 0

    (c)2

    p- (d)

    4

    p

    7. The Argument of the complex number z =)3i – 1(i4

    )3i1( 2+ is

    (a)6

    p(b)

    4

    p

    (c)2

    p(d) None of these

    8. The modulus of the complex number 

     z =)sini – (cos)i – 1(2)sini(cos)3i – 1(

    qq q+q is

    (a)2

    1(b)

    22

    1

    (c)

    3

    1(d) None of these

    9. If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then

    ( 2a  + 2 b ) (2c  + 2d  ) ( 2e  + 2f  ) (

    2g  + 2h ) =

    (a) 2A  – 2B (b) 2A  + 2B

    (c) 44 BA   + (d) 44 B – A

    10. If q is real, then the modulus ofq+q+ sini)cos1(

    1 is

    (a)2

    1sec

    2

    q(b)

    2

    1cos

    2

    q

    (c) sec2

    q(d) cos

    2

    q

    DE MOIVRE THEOREM

    These are two statements of De Moivre Theorem

    1. (cosq+i sinq)n = cos nq + i sin nq, IÎn

    2. If QÎn   ÷÷ ø

     öççè 

    æ Î¹= Iq , p,0q ,

     pn  then cos nq+i sinnq

    is one of the values of (cosq+ i sinq)n

    1. Take care that n(sin icos ) (sin n icos n )q+ q ¹ q + q  in fact

    n)cosi(sin   q+q  =

    n

    2sini

    2cos ú

    û

    ùêë

    é÷ ø

     öçè 

    æ q-

    p+÷

     ø

     öçè 

    æ q-

    p

     = ÷ ø

     öçè 

    æ q-

    p+÷

     ø

     öçè 

    æ q-

    pn

    2

    nsinin

    2

    ncos

    2. (cos i sin )(cos isin )(cos i sin )....a + a b + b g + g

    = cos( .....) i sin( .....)a + b + g + + a + b + g +

    3. )sin(i)cos(sinicos

    sinicosb-a+b-a=

    b+b

    a+a

    ROOTS OF A COMPLEX NUMBER

    If )sini(cosr z   q+q=  and n is a positive integer, then

    n

    1

    n

    1

    )]sini(cosr [)z(   q+q=

    [ ] n1

    n )k 2sin(i)k 2cos(r    q+p+q+p=1

     k = 0, 1, 2, ......, n – 1

    ANSWER KEY

    1. (b) 2. (a) 3. (c) 4. (d) 5. (d) 6. (a) 7. (c) 8. (a) 9. (b) 10. (a)

    úû

    ùêë

    é÷ ø

     öçè 

    æ    q+p+÷

     ø

     öçè 

    æ    q+p=\

    n

    k 2sini

    n

    k 2cosr )z( n

    1

    n

    1

    Putting k = 0, 1, 2, ....., n – 1, we get n values which representnth roots of complx number z

    PROPERTIES

    1. These n roots always form a G. P. with common ratio ei 2p/

    n

    2. Their images on argand diagram lie on a circle of radiusn/1r   and centre origin.

    3. The points representing these roots from the vertices of aregular polygon of n sides

    P1x

    O

    y

    P2P3

    Pn

    q

    2q

    CUBE ROOTS OF UNITY 

    3

    k 2sini

    3

    k 2cos]k 2sinik 2[cos)1(z 3/13/1

      p+

    p=p+p== , k = 0, 1, 2

    So, three cube roots of unity are 1,3

    2sini

    3

    2cos

      p+

    p  and 

    3

    4sini

    3

    4cos

      p+

    p  or 1,

    2

    3i1+- and

    2

    3i1--.

    As ÷÷ ø

     ö

    ççè 

    æ    --=÷÷ ø

     ö

    ççè 

    æ    +-2

    3i1

    2

    3i12

     and

    21 i 3 1 i 3

    2 2

    æ ö æ ö- - - +=ç ÷ ç ÷ç ÷ ç ÷è ø è ø

  • 8/9/2019 4-Chapter Complex Number

    9/35

    Laws of Motion 9

    So, we denote the non-real roots by w and w2 we write mostly

    2

    3i1+-=w  and

    2

    3i12   --=w

     ALGEBRAIC METHOD

    Let z = (1)1/3  01z3 =-Þ 0)1zz)(1z(2 =++-Þ , which gives

    the roots of z as z = 1, the real root and2

    3i1z

      ±-= ,the non-

    real roots , i.e., w  and w2. Clearly, we can always write

    )z)(z)(1z()1z( 23 w-w--=-

    1. 01 2 =w+w+

    2. 2w=w  and w=w )( 2 , so 13 =w=ww

    3. 1|||| 2 =w=w

    4.3

    2)arg(

      p=w  and

    2 4arg( )3

    pw =  or

    3

    2p-

    5. For nay positive integer k, ,1k 3 =w   w=w   +1k 3   and 

    22k 3 w=w   +

    6. For any real a, b, c; 0c ba 2 =w+w+   c ba   ==Þ7. The cube roots of unity lie on a unit circle and divide the

    circumference into three equal parts8. The points represented by cube roots of unity form the

    vertices of an equilateral triangle.9. |z||z||||z|   =w=w

    10. )zarg(3

    2)zarg(   +

    p=w  

     –1 1

    w

    w2

    i

     –i

    xx¢

    y

    (i) )iyx)(iyx(yx 22 -+=+

    (ii) )yx)(yx)(yx(yx 233 w+w++=+

      )yx)(yx)(yx(22

    w+ww+w+=(iii) )y – x)(y – x)(yx(yx 233 ww-=-

    (iv) x2 + xy + y2 = (x – yw) (x – yw2), in particular,x2 + x + 1 = (x – w) (x – w2)

    (v) x2 – xy + y2 = (x + yw) (x + yw2), in particular,x2 – x + 1 = (x + w) (x + w2)

    (vi) x2 + y2 + z2 – xy – xz – yz = (x + yw + zw2)(x + yw2 + zw)

    (vii) xyz3 – zyx 333 ++

    )zx – yz – xy – zyx)(zyx( 222 ++++=

    = )zyx)(zyx)(zyx( 22 w+w+w+w+++

    nTH ROOTS OF UNITY 

     Since 0sini0cos1   += , therefore

    n/1n/1 )0sini0(cos)1(   +=   1/ n(cos 2k isin 2k )= p + p

      2 k 2 k  cos isinn np p= + ; k = 0, 1, 2, ........, (n – 1)

     2k 

    ine

    p

    =  ; k = 0, 1, 2, ...., (n – 1)

      ]n/)1n(2i[)n/4i()n/2i( e,.....,e,e,1   p-pp=

      )n/2i(1n32 ewhere,....,,,,1   p- =aaaaa=

    SQUARE ROOTS OF A COMPLEX NUMBER

    Let z = x + iy and let the square root of z be the complex number a + ib. Then

    ibaiyx   +=+   or i)ab2() ba()iba()iyx( 222 +-=+=+Equating real and imaginary part, we get

    22  bax   -= …(1)

    and y = 2ab …(2)

     Now, 222222222 yx ba4) ba( ba   +=+-=+ …(3)

    Solving the equations (1) and (3), we get

    ÷÷÷

     ø

     ö

    ççç

    è 

    æ  ++±=

    2

    xyxa

    22

    ;÷÷÷

     ø

     ö

    ççç

    è 

    æ  -+±=

    2

    xyx b

    22

    From (2), we can determine the sign of ab. If ab > 0, then a and  b will have same sign. Thus

    úúú

    û

    ù

    êêê

    ë

    é

    ÷÷÷

     ø

     ö

    ççç

    è 

    æ  -++

    ÷÷÷

     ø

     ö

    ççç

    è 

    æ  ++±=+

    2

    xyxi

    2

    xyxiyx

    2222

    If ab < 0, then

    úúú

    û

    ù

    êêê

    ë

    é

    ÷÷÷

     ø

     ö

    ççç

    è 

    æ  -+-

    ÷÷÷

     ø

     ö

    ççç

    è 

    æ  ++±=+

    2

    xyxi

    2

    xyxiyx

    2222

    Thus, square roots of z = a + ib are :

    úúû

    ù

    êêë

    é   -+

    2

    a|z|i

    2

    a|z|for b > 0

    and úúû

    ù

    êêë

    é   --

    2

    a|z|i

    2

    a|z| for b < 0

     For example :

    (i) Square root of i is ÷÷ ø

     öççè 

    æ   +±

    2

    i1, as x = 0, y = 1 > 0 and 

    | i | = 1

  • 8/9/2019 4-Chapter Complex Number

    10/35

    10 Phys ics  

    (ii) Square root of -i is ÷÷ ø

     öççè 

    æ   -±

    2

    i1, as x = 0, y = -1 < 0 and | i | =

    1

    (iii) Square root of -3 + 4i is÷÷ ø

     öççè 

    æ    --+-±2

    )3(5i

    2

    35 ,

    or )i21(  +± , As x = –3 and y = 4 > 0.

    (iv) Square root of i31-   is ÷÷ ø

     öççè 

    æ    --

    2

    12i

    2

    12  or 

    ÷÷ ø

     öççè 

    æ    -±

    2

    i3; As 03y  

  • 8/9/2019 4-Chapter Complex Number

    11/35

    Laws of Motion 11

    17. If sin 5x = å=

    5

    0r 

    r r  xsina , then

    (a)  å= =5

    0r r  1a (b) a1 = a3 = a5

    (c) a0 = a2 = a4 (d) a1+a3+a5=a0+a2+a4Sol. Solve as above, expand (cos x + i sinx)5 using two theorems

    and equate imaginary parts. Answer (a, c)

    18. If sin6x = å=

    6

    0r r  rxcosa . Then

    (a) a0 = 0 (b) a1 = a3 = a5

    (c) a2 + a6 = 2

    1

    (d) 2a0 + a1 + 3a2 + a3 + a4 + a5 + a6 = 0

    Sol.  To express cosn

    x or sinn

    x as a series of multiple anglesof cos and sin, we use Euler's representation cosx =

    2

    ee ixix   -+ and sinx =

    i2

    ee ixix   -- and expand cosnx =

    nixix

    2

    ee÷÷

     ø

     ö

    çç

    è 

    æ    +   - by binomial theorem etc. as for the above

    example.

    sin6x =

    6ixix

    i2

    ee÷÷

     ø

     ö

    çç

    è 

    æ    -   -

    [

    ]ix666ix5ix56ix4ix2

    46ix3ix3

    36

    ix2ix42

    6ixix51

    6ix60

    666

    eCeeC

    eeCeeC

    eeCe.eCeCi2

    1

    --

    --

    --

    +-

    +-

    +-=

    =   [

    ]36ix2ix226

    ix4ix41

    6ix6ix60

    66

    C)ee(C

    )ee(C)ee(C2

    1

    -++

    +-+-

    -

    --

    ]CC[ r nn

    r n

    -=Q

    = [ ]20x2cos215x4cos26x6cos264

    1-´+´--

     = 8

    5

    x2cos32

    15

    x4cos16

    3

    x6cos32

    1

    +-+-  = å=

    6

    0r  r rxcosa

    We get a0 = 8

    5, a1 = 0, a2 = 32

    15- , a3 = 0, a4 = 16

    3, a5 = 0

    and a6 = 32

    1- .

    Only (d) is satisfied with these values. Answer (d)

    19. If a, b, g are the cube roots of a negative number p then

    for any three real numbers x, y, z, the value of a+g+b

    g+b+a

    zyx

    zyx

    is

    (a)2

    i31--(b) (x + y + z)i

    (c) ip (d)  pi2

    y

    2

     ø

     öçè 

    æ +

    Sol.  Let q = –p, q > 0

    Cube root of p = p1/3 = (–q)1/3 = –q 1/3. (1)1/3

    Cube roots of p are – q 1/3, –q 1/3w, –q 1/3w2

    Let a = –q 1/3, b = –q 1/3w, g = –q 1/3w2

    \ )q (z)wq (y)wq (x

    )wq (z)wq (y)q (x

    zyx

    zyx3/123/13/1

    23/13/13/1

    -+-+-

    -+-+-=

    a+g+bg+b+a

    =2

    i31w

    zywxw

    )zywxw(w

    zywxw

    zwywx 22

    22

    2

    2 --==

    ++

    ++=

    ++

    ++

    1 3ior 2

    æ ö- +ç ÷è ø

    Answer (a)

    4.3

    Solve following problems with the help of above text and examples.

    1. If z =50

    17

    )i – 1(

    )i3(   +, then amp (z) is equal to

    (a)3

    2p(b) –

    3

    p(c)

    3

    2p- (d) None

    2. Arg2

    6

    )3i – 1(4

    )i3(i   + is equal to

    (a) –6

    p(b)

    6

    p

    (c)3

    10

    p(d)

    10

    5p

  • 8/9/2019 4-Chapter Complex Number

    12/35

    12 Phys ics  

    3. For z = cos q + i sin q, then the value of n2

    n2

    z1

    z1

    +

    - is

    (a) –i tan n q (b) i tan n q (c) tan n q (d) i4. If x = a + b, y = aw + bw2 and z = aw2 + bw, then x3+y3+z3

    =

    (a) 3 (a3 + b3) (b) (a + b)3

    (c) a3 + b3 – a2 b – ab2 (d) None of these

    5. If 1, w, w2 are the cube roots of unity then(1 – w + w2)5 + ( 1 + w – w2)5 =(a) 32 (b) 0

    (c) 32w (d) 16w2

    6. If 1, w, w2 are the cube roots of unity then(3 + 3w + 5w2)6 – (2 + 6w + 2w2)3 =(a) 0 (b) 64 (c) 36 (d) – 36

    7. RÎx , then square roots of 1xxix 24 +++  are

    (a)   ÷ ø ö

    çè æ  +-+++± 1xxi1xx

    2

    1 22

    (b)   ÷ ø ö

    çè æ  +--++± 1xxi1xx

    2

    1 22

    (c)   ÷ ø ö

    çè æ  ++++-± 1xxi1xx

    2

    1 22

    (d)   ÷ ø

     ö

    çè 

    æ  ++-+-± 1xxi1xx2

    1 22

    8. If ¹w   1 is a cube root of unity, then the roots of theequation (x+aw)3 + a3 = 0 are :(a) a, aw2, – 2aw (b) a, –2aw2, aw(c) –2a, aw2, aw (d) a, – 2aw2, –aw

    9. Let ,zz,zz 22

    121   w+w=b+=a 212

    zz   w+w=g   wherew  is a complex cube root of unity, then :

    (a) 21222 zz8=g+b+a

    (b) 21zz3=ga+bg+ab

    (c) )zz(3 323

    1333 +=g+b+a

    (d) )zz(2 323

    1   +=abg

    10. The polynomial 2k 31n3m3 xxx   ++ ++ , is exactly divisible

     by 1xx 2 ++  if (a) m n, k are rational(b) m, n, k are integers(c) m, n, k are positive integers(d) none of these.

    11. If ,1i   -= then334 365

    1 i 3 1 i 34 5 3

    2 2 2 2

    æ ö æ ö+ - + + - +ç ÷ ç ÷ç ÷ ç ÷

    è ø è ø  is

    equal to

    (a) 3i1- (b) 3i1+-

    (c) 3i (d) 3i-

    12. If )1(¹w  be a cube root of unity and ,BA)1( 7 w+=w+

    then A and B are respectively the numbers(a) 0, 1 (b) 1, 1 (c) 1, 0 (d) –1, 1

    GEOMETRY OF A COMPLEX NUMBER

    O

    Y

    X

    P(z)

    As in vectors, we represent a point by the position vector of the

     poi nt r OP =   with respect toorgin O. Similarly the point P can be rep resen ted by a comp lexnumber z, such that length

    OP= z

    and )zarg(XOP =Ð . The point P is called the IMAGE of thecomplex number z and z is said to be AFFIX or complexcoordinate of the point P.

    DISTANCE BETWEEN TWO POINTS

    If two points P and Q have affices z1and z2 respectively then

    12 z – zPQ =   == 12 z – zPQ  Affix of Q – Affix of P..

    SECTION FORMULA 

    n

    m

    QR 

    PR =

    P (z )1

    Q (z )2

    R (z)

    If a point R (z) divides the join of two points P (z1) and Q (z2) in ratio m:n, then

    nm

    nzmzz 12

    +

    +=  (internally) and 

    nm

    nzmzz 12

    -

    -=  (externally)

    ØMid Point of PQ is given by 2

    zz 21 +

    ANSWER KEY

    1. (c) 2. (b) 3. (a) 4. (a) 5. (a) 6. (a) 7. (a) 8. (a) 9. (c) 10. (b) 11. (c) 12. (b)

  • 8/9/2019 4-Chapter Complex Number

    13/35

    Laws of Motion 13

     ANGLE BETWEEN TWO LINES(CONCEPT OF ROTATION)

    )z(R3

    )z(P 1

    )z(Q 2

    1q

    q

    2q

    (i) Consider three points P(z1), Q(z2) and R(z3)Then angle between PQ an PR (counter clockwise)

    12   q-q=q )PQarg( – )PR arg(=

      )z – zarg( – )z – zarg( 1213=

    12

    13

    z – z

    z – zarg=q\

    If P(z1), Q(z2) and R(z3) be collinear Points, then q = 0 or p,

    i.e.12

    13

    z – z

    z – z= 0

    1zz

    1zz

    1zz

    z – z

    z – z

    33

    22

    11

    12

    13 =Þ

    (A complex number z is purely real if zz = )

    If PR is perpendcular to PQ.Then

     arg12

    13

    12

    13

    z – z

    z – z

    2z – z

    z – zÞ

    p±=÷÷

     ø

     öççè 

    æ  is puerly imaginary

    That is,12

    13

    12

    13

    z – z

    z – z

    z – z

    z – z-=

    (A Complex number z is purely imaginary if zz   -= )

    (ii))z(R 3 )z(P 1

    )z(Q 2 )z(S 4

    q

    Consider Four Points P, Q, R and S with affices respectively

    321   z,z,z and z4. As in (i) the angle between SR and QP..

    ÷÷ ø

     öççè 

    æ =q

    21

    43

    z – z

    z – zarg

    If SR and QP be perpendicular, 2

    p±=q

    Then21

    43

    z – z

    z – z is purely imaginary..

    21

    43

    21

    43

    z – z

    z – z – 

    z – z

    z – z=Þ

    or alternatively {0}k somefor ik,z – z

    z – z

    21

    43 -Î= R

    )z – z(ik z – z 2143   =Þ(iii) Multiplying a complex number z by i is equivalent to

    rotating the image of z in Argand plane by 90º about origin,

    anticlockwise, as |z| = |iz| and arg2

    )i(argz

    iz   p==÷

     ø

     öçè 

    æ 

    O

    P (z)

    Q (iz)

    p    /    2   

    (iv) Multiplying a complex number z by w  is equivalent torotating the image of z in Argand plane by 120º (or 240°)about origin anticlockwise, for |z| = |wz| (|w| = 1) and 

    argwz 2 4

    arg (w) or  

    z 3 3

    p pæ ö æ ö= =   ç ÷ç ÷

    è øè ø

    O

    P (z)Q (wz)

    3

    2p

     ANGLES OF A TRIANGLE

    )z(C 3

    )z( A 1

    )z(B 2

    If z1 z2 and z3 be the affices of vertices A, B and C of atringle ABC described in counterclockwire sense. Then

    )AsiniA(cosBA

    CA

    z – z

    z – z

    12

    13 +=  or iA

    12

    13 eBA

    CA

    z – z

    z – z=

    Similarly relations with other vertical angles can be given.

  • 8/9/2019 4-Chapter Complex Number

    14/35

    14 Phys ics  

    If z1, z2 , z3 are the vertices of a triangle then

    1. centroid z is givn by3

    zzzz 321

      ++=

    2. Incentre I (z) of the DABC is given byc ba

    cz bzazz 321

    ++++

    =

    3. Circumcentre O(z) of theDABC is given by

    C2sinB2sinA2sin

    )C2(sinz)B2(sinz)A2(sinz

    1zz

    1zz

    1zz

    1z|z|

    1z|z|

    1z|z|

    z 321

    32

    3

    22

    2

    12

    1

    32

    3

    22

    2

    12

    1

    ++

    ++==

    4. Orthocentre H(z) of DABC is given by

    1zz

    1zz

    1zz

    1z|z|

    1z|z|

    1z|z|

    1zz

    1zz

    1zz

    z

    32

    3

    22

    2

    12

    1

    32

    3

    22

    2

    12

    1

    32

    3

    22

    2

    12

    1

    +

    =   OR 

    1 2 3

    1 2 3

    (tan A)z (tan B)z (tan C)zz

    tan A tan B tan C(a sec A)z (b sec B)z (c sec C)z

    a sec A bsec B csec C

    + +=

    + ++ +=

    + +

    5. The centroid G lies on the segment joining the orthocentreH and the circumcentre O of the triangle and divides

    internally in ratio 2 : 1, i.e1

    2

    OG

    HG=

    H

    OG

    6. Ar ea of t he DABC is given by the modulus of 

    1 1

    2 2

    3 3

    z z 11z z 1

    4 z z 1

    7. Triangle ABC is equilateral if and only if 

    0zz

    1

    zz

    1

    zz

    1

    211332

    =-

    +-

    +-

    21133223

    22

    21 zzzzzzzzz   ++=++Û

    0

    zz1

    zz1

    zz1

    21

    13

    32

    EQUATION OF STRAIGHT LINE THROUGH TWO

    POINTS Z1 AND Z2Let variable point z be a point on this line then

    01zz1zz

    1zz

    22

    11   =  or 0zzzz)zz(z)zz(z 21211221   =-+-+-

    0)zzzz(ii)zz(zi)zz(z 21211221   =-+-+-Þ

    (i) Let ,ai)zz( 12   =-   a constant complex number then

    ai)zz( 12   =--  Also )zzzz(i 2121   -   is purely real constant

    number, say b then the above equation is 0 bzaza   =++It is called the general equation of a straight line

    (ii) The complex equation 0 bazaz   =++  represents a straightline in complex plane where 'a' is a complex number and 'b' is a real number. The complex slope of the line is given

     bya

    a- .

    (iii) The equation of the perpendicular bisector of the linesegment joining the points A(z1) and B(z2) is

    22

    212121 |z||z|)zz(z)zz(z   -=-+-

    1. The complex slope of line joing points A (z1) and B(z2)

    is define as 21

    21

    zz

    zz

    -

    -=m

    2. Two lines with complex slopes 1m  and 2m  are parallel

    if 21   m=m  and perpendicular if 021   =m+m

    3. The length of perpendicular from a point )(A a  to the

    line 0 bzaza   =++  is given by|a|2

    | baa| p

      +a+a=

    EQUATION OF A CIRCLE :

    P (z)

    )z(C 0

    (1) Consider a circle with centre C having affix z0 and radiusr.For any point P(z) on this circle CP = r 

    i.e. r z – z 0   =   .....(1)

    where, r is a positive real number 

  • 8/9/2019 4-Chapter Complex Number

    15/35

    Laws of Motion 15

    14

    tan76y12x14yx

    36y622

      =p

    =+--+

    Þ x2 + y2 – 14x – 18y + 112 = 0 ..... (i)which is a circle with centre (7, 9)

     and radius = 18112814911297 22 =-+=-+  Answer (b)

    Note : The equation (i) may be converted to complex form asfollowing :x2 –14 + y2 – 18y + 112 = 0

    Þ (x2 – 14x + 49) + (y2 – 18y + 81) + 112 – 49 – 81 = 0Þ (x – 7)2 + (y – 9)2 = 18 Þ  |(x – 7) + i (y – 9)|2 = 18Þ  |(x + iy) – (7 + 9i)|2 = 18

    Þ  |z – (7 + 9i)|2 = 18 Þ |z – (7 + 9i)| = 18 , which is equivalent to |z – z0| = r 

    Hence centre of the circle is z0 = 7 + 9i = (7, 9) radius of 

    the circle is r = 18

    21. Consider the complex number z satisfying |z – 5i| £  3, then(a) Value of z having the least modulus is z =2i(b) Value of z having the greatest modulus is z = 8i(c) Value of z having the least positive argument is

     z = )i43(5

    4+

    (d) Value of z having the greatest positive argument is

    z = )i43(5

    4+-

    Sol. The inequation | z – 5i | £  3 represents all the complexnumbers lying inside or on the circle| z – 5i | = 3 ...(1)Clearly the circle (1) has centre at (0, 5) and radius = 3 Letus plot this circle on the xy – plane.The given inequation represents the points inside or on thecircle shown in figure.

    O

    BD

    C

    E

    y

    x

    A

    (5i)

    ab

    f

     Note that the modulus of a complex number is represented  by the distance of the image of the complex number fromorigin. Clearly the point at the least distance from origin isD and the point at the greatest distance from origin is E.

    Hence the affices of D and E give us the complex numbersof the least and the greatest moduli respectively.

    Ø r z – z 0   <  represents the region inside the circle given by

    (1)

    Ø r z – z 0   >  represents the region outside the circle given

     by (1).(2) General equation of a circle

    Consider the equation of a circle r |zz| 0   =-

    0r |z|zzzzzzr )zz)(zz( 220002

    00   =-+--Þ=--Þ

    Let ,az0 =-  a constant complex number and 

    , br |a|r |z| 22220   =-=-  a constant real number then the

    above equation becomes 0 bzazazz   =+++ ,It is called the general equation of circle .

    Hence the complex equation 0 bzazazz   =+++reprectents a circle in complex plane where 'a' is a complex

    number and 'b' is a real number. The centre of the circle is

    a point with affix '–a' and the radius is given by  b – a2

    .

    For the existence of the circle .0 b – a2

    >

    (3) 2 11 2(z – z )(z – z ) (z – z )(z – z ) 0+ =  represents a circle in

    the complex plane which is described on a line as diameter having extremities z1 and z2.

    20. Let z1 = 10 + 6i and z2 = 4 + 6i. If z is any complex number 

    such that the argument of2

    1

    zz

    zz

    -

    - is

    4

    p. Then z must lie on

    a circle, which has(a) Centre (0, 0); radius 6

    (b) Centre (7, 9); radius 18

    (c) Centre ( 2 , 1); radius 18

    (d) Centre (7, 9); radius 6Sol.  Let z = x + iy

    Then i)6y()4x(

    i)6y()10x(

    )i64()iyx(

    )i610()iyx(

    zz

    zz

    2

    1

    -+-

    -+-=

    +-+

    +-+=

    -

    -

    i)6y()4x(

    i)6y()4x(

    xi)6y()4x(

    i)6y()10x(

    ---

    ---

    -+-

    -+-

    =

     52y12x8yx

    i)36y6(

    52y12x8yx

    76y12x14yx2222

    22

    +--+

    -+

    +--+

    +--+=

    (on simplifying)

     Now given that arg 4zz

    zz

    2

    1   p=÷÷ ø

     öççè 

    æ 

    -

    -;

    Hence476y12x14yx

    36y6tan

    221   p=

    úúû

    ù

    êêë

    é

    +--+

    --

    úûùêë

    é =+   -xytan)iyx(arg 1Q

  • 8/9/2019 4-Chapter Complex Number

    16/35

    16 Phys ics  

     Now OC = 5, DC = 3, Hence OD = 2 and OE = 8\ Point D, i.e. complex number with least modulus is 2iPoint E, i.e. complex number with maximum modulus is 8iFurthermore the argument of a complex number in Argand diagram is given by the angle that the line joining the origin

    to its image forms with positive x–axis. Clearly the twotangents drawn on the circle from origin, OA and OBrepresent the least and the greatest values of this anglerespectively for any point on or inside the circle. Hence,the affices of points A and B give us the complex numberswith least and greatest arguments respectively.

     Now РXOA = a = AOC,2

    Ð=ff-p

    and ÐXOB = b = f+p2

    Clearly cos f  = OCOA  = OCACOC

    22

    - = 54

    535

    22

    =-

    [Where 3radiusAC   == ] and sin f  =5

    3

    Affix of point A is r (cos a+ i sin a)

    r = OA = 4, cos a = cos ÷ ø

     öçè 

    æ f-

    p2

     = sin f  =5

    3 ;

    sin a = sin ÷ ø

     öçè 

    æ  f-p

    2 = cos f =

    5

    4. \ A is )i43(

    5

    4+

    Also affix of point B is r(cos b + i sinb)

    r = OB = OA = 4, cos b = cos ÷ ø

     öçè 

    æ f+

    p

    2 = – sin f = – 

    5

    3

    sin b = sin ÷ ø

     öçè 

    æ f+

    p2

     = cos f =5

    4

    \ B is )i43(5

    4+-

    Hence, the complex number with least argument is

    )i43(5

    4+  and the complex number with greatest argument

    is )i43(5

    4+- .

    All options (a), (b), (c) and (d) are correct

    Note : Student may feel that the solution of this example islengthy on the contrary the solution is quite simple and directfrom the figure only.

    22. Suppose that z1, z2, z3 represent the vertices of a triangletaken in order. The triangle is equilateral if and only if 

    (a) 0zz

    1

    zz

    1

    zz

    1

    133221

    =-

    +-

    +-

    (b) 0zz1

    zz1

    zz1

    133221=-----

    (c)3221 zz

    1

    zz

    1

    -=

    -

    (d) 0zzzzzzzzz 13322123

    22

    21   =---++

    Sol. Let a = 1332,21 zzand zzzz   -=g-=b-Then a + b + g = 0 ....(1)

    Clearly g+b+a   = 0 ....(2)

    Let the triangle be equilateral, then| z1 – z2 | = |z2 – z3 | = | z3 – z1 | = l sayThat is | a | = | b | = | g | = l

     Nowal

    =aÞl=a=aa2

    22||

    Similarly,

    g

    l=g

    b

    l=b

    22

    &

    Hence, from (2)g

    l+

    b

    l+

    a

    l 222 = 0

    g+

    b+

    111= 0

    133221 zz

    1

    zz

    1

    zz

    1

    -+

    -+

    -Þ  = 0

    Conversely let133221 zz

    1

    zz

    1

    zz

    1

    -+

    -+

    -  = 0

    bga

    =bg

    g+b-=

    aÞ=

    g+

    b+

    10

    111 from (1)

    ||||||||||||y 322 gba=aÞbg=aÞb=a\

    Similarly ||||||||3 gba=b  and |||||||| 3 gba=g

    Hence |zz||zz||zz||||||| 133221   -=-=-Þg=b=a .That is the triangle is equilateral.

    Also note that 0zz

    1

    zz

    1

    zz

    1

    133221

    =-

    --

    +-

    0zzzzzzzzz 13322123

    22

    21   =---++Þ Answer (a, d)

    23. The centre of a regular hexagon has affix i. The affix of one

    vertex is 2 + i. The affix z of adjacent vertices are

    (a) 1 + i )31(   ± (b) 31i   ±+

    (c) )31(i2   ±+ (d) i21±

    Sol.  

  • 8/9/2019 4-Chapter Complex Number

    17/35

    Laws of Motion 17

    Let A be the image of complex number 2 + i, ÐAOB =3

    p

    Let B (or F) be z, then ÐAOB = arg i)i2(iz

    -+

    -

    (refer to angle between two lines in the text)

    3

    p±=

    ÷ ø

     öçè 

    æ    p±

    p=

    -+-

    \3

    sini3

    cosAO

    BO

    i)i2(

    iz

    = cos3

    sini3

    p[ ]BOAO =Q

    ( )1 3

    z i 2 i z i 1 i 3 1 i 1 32 2

    æ ö\ - = ± Þ = + ± = + ±ç ÷ç ÷

    è øAnswer (a)

    24. Let RΠb,a , such that 0 3q (b) P2 < 3q (c) p 2 = 3q (d) p = 3q  

    Sol.  Given z1 and z

    2 are roots of z2 + pz + q = 0

    Hence, z1 + z2 = – p – (i), z1z2 = q –(ii)We know that if z

    1, z

    2, z

    3  are vertices of an equilateral

    triangle

    then 0zzzzzzzzz 13322123

    22

    21   =---++

    (see example 16)

    Here z3 = 0, then 0zzzz 21

    22

    21   =-+

    0q 3 p0zz3)zz( 2212

    21   =-Þ=-+Þ   [from (i) & (ii)]

    Answer (c)

    26. If the imaginary part of2 1

    1

     z

    iz

    +

    +

     is – 2, then show that the

    locus of the point representing  z in the argand plane is astraight line.

    Sol. Let z = x + iy. Then

    2 1

    1

     z

    iz

    +

    + =

    2( ) 1

    ( ) 1

     x iy

    i x iy

    + +

    + + =

    (2 1) 2

    (1 )

     x i y

     y ix

    + +

    - +

    ={(2 1) 2 }

    {(1 ) }

     x i y

     y ix

    + +

    - + ×

    {(1 ) }

    {(1 ) }

     y ix

     y ix

    - -

    - -

    =2 2

    2 2

    (2 1 ) (2 2 2 )

    1 2

     x y i y y x x

     y y x

    + - + - - -

    + - +

    Thus, Im2 1

    1

     z

    iz

    æ ö+ç ÷+è ø

     =2 2

    2 2

    2 2 2

    1 2

     y y x x

     y y x

    - - -

    + - +

    But Im2 1

    1

     z

    iz

    æ ö+ç ÷+è ø

     = – 2 (Given)

    So,2 2

    2 2

    2 2 22

    1 2

     y y x x

     y y x

    - - -= -

    + - +

    Þ 2 y – 2 y2 – 2 x2 – x = – 2 – 2 y2 + 4 y – 2 x2

    i.e.,  x + 2 y – 2 = 0, which is the equation of a line.

    27. Let  z1  and  z2  be two complex numbers such that

    1 2 0 z i z+ =  and arg ( z1  z2) = p. Then find arg ( z1).

    Sol. Given that 1 2 0 z i z+ =Þ  z1 = iz2, i.e., z2 = – iz1Thus, arg ( z1 z2) = arg z1 + arg (– iz1) = pÞ arg (– iz1

    2) = pÞ arg (– i) + arg ( z1

    2) = pÞ arg (– i) + 2 arg ( z1) = p

    Þ2

    - p + 2 arg ( z1) = p

    Þ arg ( z1) = 34p

  • 8/9/2019 4-Chapter Complex Number

    18/35

    18 Phys ics  

    4.4Solve following problems with the help of above text and 

    examples.1. The points z

    1, z

    2, z

    3, z

    4, are the vertices of a parallelogram

    (in a complex plane) taken in order if and only if 

    (a) 3241 zzzz   +=+ (b) 4231 zzzz   +=+

    (c) 4321 zzzz   +=+ (d) None2. A square ABCD has its centre at the origin. If A be z

    1 then

    the centroid of triangle ABC is

    (a)3

    iz1± (b)3

    z1±

    (c)   ÷ ø

     öçè 

    æ    p±

     ø

     öçè 

    æ 3

    sini3

    cos3

    z1(d)   ÷

     ø

     öçè 

    æ    p±

     ø

     öçè 

    æ 6

    sini6

    cos3

    z1

    3. If z1 = 1+2i, z2 = 2 + 3i, z3= 3 + 4i then z1, z2 and z3 representthe vertices of a/an(a) equilateral triangle (b) right angled triangle(c) isoceles triangle (d) none of these

    4. Circumcentre of an equilateral triangle is at the origin and one of the vertex is r cis a then the other two vertices are at(a) )2(cisr ),(cisr    aa-

    (b)   aa 3cisr ,2cisr 

    (c)   ÷ ø

     öçè 

    æ    p+a÷

     ø

     öçè 

    æ    p+a

    3

    4cisr ,

    3

    2cisr 

    (d)   ÷ ø

     öçè 

    æ    p

    +a÷ ø

     öçè 

    æ    p

    +a 32

    cisr ,3cisr 

    5. Let z be a complex number satisfying £i5 – z  1 such that

    amp z is minimum. Then z is equal to

    (a)5

    62 +

    5

    i24(b)

    5

    24 +

    5

    i62

    (c)5

    62 –

    5

    i24(d) None of these

    6. If i25 – z   £ 15, then )z(amp.min – )z(amp.max =

    (a) ÷ ø

     öçè 

    æ 5

    3cos 1 –    (b) p  – 2   ÷

     ø

     öçè 

    æ 5

    3cos 1 – 

    (c)2

    p + ÷

     ø

     öçè 

    æ 5

    3cos 1 –    (d) ÷

     ø

     öçè 

    æ 5

    3sin 1 –   – ÷

     ø

     öçè 

    æ 5

    3cos 1 – 

    7. In the Argand plane, the area in square units of the triangleformed by the points 1 + i, 1 – i, 2i is

    (a)2

    1(b) 1 (c) 2 (d) 2

    8.If the complex numbers 1z , 2z , 3z are in A.P. , then theylie on a

    (a) circle (b) parabola

    (c) line (d) ellipse.

    9. Let the complex numbers 1z , 2z and 3z be the vertices

    of an equilateral triangle. Let 0z the circumcentre of the

    triangle. Then 21z  +2

    2z  +2

    3z  – 32

    0z  equals

    (a) 1 (b) – 1

    (c) 0 (d) None of these

    10. The complex numbers z = x + iy which satisfy the equation

    i5z

    i5 – z

    + = 1 lie on

    (a) the x-axis

    (b) the straight line y = 5

    (c) a circle passing through the origin

    (d) None of these.

    ANSWER KEY

    1. (b) 2. (a) 3. (d) 4. (c) 5. (a) 6. (b)

    7. (b) 8. (c) 9. (c) 10. (a)

    SOME LOCI IN COMPLEX PLANE :

    1. arg (z) = RÎaa,  represents a line starting from the origin(excluding origin) and making an angle a  with the realaxis.

    a

    z

    Y

    XO

    2. R ,)zzarg( 0   Îaa=-  represents a line starting from the

     point z0 (excluding the point z0) and making an angle awith the real axis.

    az

    Y

    XO

    z03. If z

    1 and z

    2 are two fixed points then locus of z, satisfying

  • 8/9/2019 4-Chapter Complex Number

    19/35

    Laws of Motion 19

    |zz||zz| 21   -=-   is the perpendicular bisector of the

    segment joining )z(A 1  and )z(B 2

    4. The complex equation a2zzzz 21   =-+-   where

    ,zza2 21 ->   'a' is positive real number represents anellipse in complex plane, z1 and z2 are affices of two foci

    of ellipse. If |,zz|a2 21 -=   then a2|zz||zz| 21   =-+-represents the line segment joining z1 and z2If |,zz|a2 21 -<  then the equation does not represent anycurve

    5. The complex equation 1 1 2z z – z z 2a- - = .where

    21 zza2   -< , and 'a' is positive real number, represents ahyperbola in complex plane, z1 and z2 are affices of twofoci of hyperbola.

    If |zz|a2 21 -= , a2|zz||zz| 21   =---   represents thestraight line joining A(z1) and B(z2) but excluding thesegment AB

    A(z )1 B(z )2

    6. The complex equation K z – z

    z – z

    2

    1 =  represents a circle if 

    1K ¹  and a straight line if K=1.

    7. The complex equation K z – zz – z2

    22

    1   =+  represents

    a circle if K ,z – z2

    1

    2

    21³ a real number..8. Let z1 and z2 be two fixed points and a  be a real number 

    such that p£a£0  then

    (a) ,zz

    zzarg

    2

    1 a=÷÷ ø

     öççè 

    æ 

    -

    2,0

      p¹ap

  • 8/9/2019 4-Chapter Complex Number

    20/35

    20 Phys ics  

    Given arg zz

    zz

    2zz

    zz

    2

    1

    2

    1

    -

    p=÷÷

     ø

     öççè 

    æ 

    -

    - is purely imaginary

    Or Re 0zz

    zz

    2

    1 =÷÷ ø

     ö

    ççè 

    æ 

    -

    -

    0)3y()1y()x4()6x(   =+----Þ

    021y2x10yx 22 =++-+Þ

    Which is a circle with centre (5, – 1) and radius = 5

    The equivalent form in complex number is

    |z – (5 – i)| = 5 Answer (b)

    29. The complex number z in the argand diagram satisfying

    | z – a | = 2 and arg (z) = tan –1

    3

    4 where a = 3 + 4i, is

    (a) )i43(5

    7or )i43(

    5

    3++ (b) )i43(

    7

    5or )i43(

    3

    5++

    (c) 3 + 4i and 3 – 4 i (d) None of these.

    Sol.

     | z – a | = 2 is the circle with centre at a = (3, 4) and radius= 2.

    Clearly3

    4tanXOC 1 – =q=Ð

    Since arg (z) =3

    4tan 1 –  , z must lie along OC and on the

    circle. It must therefore be either point A or B. Now, OA = OC – AC = 5 – 2 = 3

    OB = OC + CB = 5 + 2 = 7

    \ A is 3 (cos q +i sin q ) = )i43(53

    +

    B is 7 (cos q +i sin q ) = )i43(57

    + Answer (a)

    30.  If z = x + iy such that | z + 1| = | z – 1| and amp41z

    1z   p=

    +

    -

    then

    (a) 0y,12x   =+= (b) 12y,0x   +==

    (c) 12y,0x   -== (d) 0y,12x   =-=

    Sol.

    Given that | z + 1 | = | z – 1 | Þ (x +1)2 + y2 = (x – 1)2 + y2

    Þ  x = 0 ...(1)

    41z

    1zarg

      p=÷

     ø

     öçè 

    æ +-

      Þ  arg 4y)1x(

    ]iy1x[]iy)1x[(22

    p=

    ïþ

    ïýü

    ïî

    ïíì

    ++

    -++-

    4y)1x(

    iy2)1yx(22

    22 p=

    ïþ

    ïýü

    ïî

    ïíì

    ++

    +-+Þ

    11yx

    y2,01yx,0y

    2222 =

    -+>-+>Þ

    01yx,0y,01y2yx 2222 >-+>=--+ÞTherefore the locus represented by the equation

     arg41z

    1z   p=÷

     ø

     öçè 

    æ +-

    is the arc ABC of the circle x2 + y2 – 2y – 1 = 0. Solvingwith x = 0, we get

    y = 21y,0y,21

    2

    82+=\>±=

    ±Answer (b)

    31. In argand plane the locus of 1z ¹  such that

    arg 3

    2

    2zz3

    3z5z22

    2 p=

    úúû

    ù

    êêë

    é

    --

    +- is

    (a) the straight line joining the points z = 3/2, z = –2/3(b) the straight line joining the points z = –3/2, z = 2/3(c) a segment of a circle passing through z = 3/2, z = –2/3(d) a segment of a circle passing through z = –3/2, z = 2/3

    Sol .)1z)(2z3(

    )1z)(3z2(

    2zz3

    3z5z22

    2

    -+--

    =--

    +-= .1zas

    3/2z

    2/3z.

    3

    2

    2z3

    3z2¹

    +-

    =+-

    \ The given condition reduces to arg3

    2

    3/2z

    2/3z   p=÷ ø öç

    è æ 

    +-

    This implies that the line joining the points z =2

    3. and 

    z =3

    2-  subtend a constant angle

    3

    2p at the point z. Thus

    z describes the segment of a circle through z =2

    3 and 

    z =3

    2-  at which the chord subtends an angle

    3

    2p.

    Answer (c)

  • 8/9/2019 4-Chapter Complex Number

    21/35

    Laws of Motion 21

    4.5

    Solve following problems with the help of above text and 

    examples.

    1. If z = x + iy and w =iz

    iz1

    -

    -, then |w| = 1 implies that, in the

    complex plane.(a) z lies on the imaginary axis(b) z lies on the real axis(c) z lies on the unit circle(d) None of these.

    2. The Points representing the complex numbers z for which| z + 4 |2 – | z – 4 |2 =8 lie on(a) a straight line parallel to x – axis(b) a straight line parallel to y – axis(c) a circle with centre as origin(d) a circle with centre other than the origin

    3. If 1z , 2z , 3z are in H.P. they lie on a:

    (a) circle (b) sphere(c) straight line (d) None of these

    4. The locus of the point Z in the Argand plane for which

    21Z+  +

    21 – Z  = 4 is a

    (a) straight line (b) pair of straight lines(c) circle (d) parabola

    5. If the imaginary part of

    1iz

    1z2

    +

    + is – 2, then the locus of z in

    the complex plane is(a) a circle (b) a straight line(c) a parabola (d) None of these

    6. If the real part of i – z 2z +  is 4, then the locus of the point

    representing z in the complex plane is a/an(a) circle (b) parabola(c) hyperbola (d) ellipse

    7. The complex number iyxz   +=   which satisfy the

    equation 1i5z

    i5z=

    +-

     lie on

    (a) the x -axis (b) the line y = 5(c) a circle through the origin (d) None of these

    8. If 11z

    iz=+

    -, then locus of z is

    (a) x-axis (b) y-axis(c) x = 1 (d) x + y = 0

    9. If iyxz   +=   and ‘a’ is a real number such that

    |aiz|   - = |aiz|   + , then locus of z is

    (a) x-axis (b) axisy -

    (c) yx = (d) 1yx 22 =+

    10. If ,8|zz||zz|   =-++  then z lies on(a) a circle (b) a straight line

    (c) a square (d) None of these11. If z is a complex number satisfying

    |z – i Re(z)| = |z – Im(z)| then z lies on

    (a) xy = (b) xy   -=

    (c) 1xy   += (d) 1xy   +-=

    ANSWER KEY

    1. (b) 2. (b) 3. (a) 4. (c) 5. (b) 6. (a) 7. (a) 8. (d) 9. (a) 10. (c) 11. (a, b)

    1. 21 z| – |z  is the least value of | z1 + z2 | and 21 zz   +  is the greatest value of 21 zz   +

    Thus 222121 zzzzzz   +£+£-

    2. |z|)zRe(|z|   ££-

    3. |z|)zIm(|z|   ££-

    4. | z | < | Re(z) | + | Im(z) | < |z|2

    5. If ,az

    1z   =+  a is positive real number then

    2

    4aa|z|

    2

    4aa 22 ++££

    ++-

  • 8/9/2019 4-Chapter Complex Number

    22/35

    22 Phys ics  

    1. If the complex number z satisfies the equation

    iz3 + z2 – z + i = 0, then

    (a) z lies on a unit circle

    (b) Re(z) = Im (z)

    (c) | z | = 1

    (d) None of these

    Sol. iz3 + z2  – z + i = 0 Þ  i2z3 + iz2 – iz + i2 = 0(Multiply with i)

    Þ  – z3 + iz2 – iz + i2 = 0 (i2 = –1)Þ  –z(z2 + i) + i (z2 + i) = 0 Þ  (z2 + i) (z – i) = 0

    Either z = i Þ  |z| = 1 or z2 = –i Þ  |z2| = 1 Þ |z| = 1Hence, |z| = 1, implies that z lies on unit circle.

    Answer (a, c)

    2. All non zero complex numbers z satisfying the equation

    2izz =  are(a) i (b) –i

    (c) i2

    1

    2

    3- (d) i

    2

    1

    2

    3--

    Sol.  Let z = x + iy, x, y Î  R[Note that the problems with lower powers of z can easily be solved using z = x + iy]

    Then 2izz =   Þ  x – iy = i (x + iy)2

    Þ x – iy = i (x2 – y2 + 2ixy) = i (x2 – y2) – 2xyEquating real and imaginary parts x = –2xy and 

     –y = x2 –y2

    x = – 2xy Þ  x (1 + 2y) = 0 Þ  x = 0 or y =2

    1-

    If x = 0, from second equation, y (y – 1) = 0 Þ  y = 0 or 1

    If y =2

    1-  from second equation

    2

    3x

    4

    3x

    4

    1x

    2

    1 22 ±=Þ=Þ-=

    Discording the solution x = 0, y = 0 (for it is z = 0)

    We get the solution z = 0 + 1i = i,

     z = i2

    1

    2

    3zand i

    2

    1

    2

    3-

    -=- Answer (a, c & d)

    3. The minimum value of |z| + | z – i| is

    (a) 0 (b) 1 (c) 2 (d) none

    Sol.  

    Using the result |z1+z

    2| £ |z

    1| + |z

    2|, we get |z| + |z – i| = |z|

    + |i – z| [since |z| = | – z|]£ | z + i – z | = |i| = 1\ minimum value of |z| + |z–i| is 1

    ALTERNATE :We may obtain the above answer using geometricalrepresentation. Consider a triangle which has vertices O(origin) P (z) and Q (z – i) thenOP = |z|. OQ = | z – i| and PQ | z + i–z| = |i| = 1 Now in a triangle sum of two sides ³ third sideThat is OP + OQ ³ PQ[The equality holds, when O, P and Q are collinear]Thus | z | + | z – i| ³ 1 Answer (b)

    4. If the roots of 0i2izz23

    =++  represent the vertices of aDABC in the Argand plane, then the area of the triangle is

    (a)2

    73(b)

    4

    73(c) 2 (d) None

    Sol. 0)2iz2z)(iz(i2izz 223 =-+-=++

    i – 1 – ,i1,iz   -=ÞLet A = (0,1), B = (1,–1), C=(–1, –1),

    2|22|2

    1

    111

    111

    110

    2

    1ABC   =--=

    --

    -=D\ Answer (c)

    5. The complex number z satisfying the equations

    0|i5z||iz|4|z|   =+--=- , is

    (a) i3 - (b) i232   - (c) i232   -- (d) 0

    Sol. We have two equations

    04|z|   =-  and 0|i5z||iz|   =+--

    Putting ,iyxz   +=  these equations become

    4|iyx|   =+  i.e. 16yx 22 =+ ...(1)

    and |i5iyx||iiyx|   ++=-+

    or 2222 )5y(x)1y(x   ++=-+   i.e y = – 2 ...(2)

  • 8/9/2019 4-Chapter Complex Number

    23/35

    Laws of Motion 23

    Hence the complex numbers z satisfying the given

    equations are )2,32(z1   -=  and )2,32(z2   --=

    that is, i232z,i232z 21   --=-=   Answer (b, c)

    6. If nn ii)n(S   -+= , where 1i   -=   and n is a positiveinteger, then the total number of distinct values of )n(S is

    (a) 1 (b) 2(c) 3 (d) 4

    Sol. We have, n

    n2

    nnnn

    i

    1i

    i

    1iii)n(S

      +=+=+=   -

    ,...4,3,2,1n,i

    1)1(n

    n

    =+-

    =

    \  values of )n(S are 0, –2, 0, 2, 0, –2, ....

    \  Total number of distinct values of )n(S is 3.Answer (c)

    7. If z1, z2 , z3, z4 are represented by the vertices of a rhombustaken in the anticlock wise order, then

    (a) 4321 zzzz   +=+ (b) 0zzzz 4321   =-+-

    (c)2 4

    1 3

    z zamp

    z z 2

    -   p=

    - (d) 2zz

    zzamp

    43

    21   p=-

    -

    Sol. Since diagonals of a rhombus bisect each other 

    )say(z2

    zz

    2

    zz0

    4231 =+

    =+

    \

    0zzzz 4321   =-+-ÞAlso, since diagonals of a rhombus are at right angles

     

    z2 z1

    z3   z4

    z0O

    2zz

    zzamp

    01

    02   p=-

    -\

    2

    2

    zzz

    2

    zzz

    amp31

    1

    422 p

    =+

    -

    +-

    Þ2zz

    zzamp

    31

    42   p=-

    Answers (b), (c)

    8. If z in any complex number satisfying 1|1z|   =- , thenwhich of the following is correct ?

    (a) zarg2)1zarg(   =-

    (b) )zzarg(3

    2)zarg(2 2 -=

    (c) )1zarg()1zarg(   +=-

    (d) )1zarg(2zarg   +=

    Sol. Since 1|1z|   =-

    ,e1z iq=-\  where q=- |1z|arg

    q+q+=\ sinicos1z

    2/ie.2

    cos22

    sini2

    cos2

    cos2   qq

    =úû

    ùêë

    é   q+

    qq=

    2cos

    2sini2

    2cos2 2   qq+q=   )1zarg(212zarg   -=q=\

    Thus, .zarg2)1zarg(   =- Answer (a)9. Let z be a complex number having the argument

    20,

      p

  • 8/9/2019 4-Chapter Complex Number

    24/35

    24 Phys ics  

    \   Real part of tan (a + ib) is )ee(2cos2

    2sin222   b-b ++a

    a

    11. If |z| ³ 3, then find the least value ofz

    1z +

    Sol. : Let z = r (cos q + i sin q ). Then | z | = r ³ 3

    Let t =z

    1z +

    t2 =

    2

    )sini(cosr 

    1)sini(cosr    q-q+q+q

    =

    2

    sinr 

    1r icos

    1r    q÷

     ø

     öçè 

    æ -+q÷

     ø

     öçè 

    æ +

    = q÷ ø

     öçè 

    æ  -+q÷ ø

     öçè 

    æ  + 22

    22

    sinr 

    1r cos

    1r 

     = q+÷÷ ø

     öççè 

    æ + 2cos2

    1r 

    22

    t2 is least if cos2 q = – 1 (occurs when q =2

    p)

    \  for a given value of r 

    (t2)least

     =

    2

    22

    1r 2

    1r    ÷

     ø

     öç

    è 

    æ  -=-+   ÷

     ø

     öç

    è 

    æ -=\

    1r )t( least

     Now3

    8

    3

    13t3r  least   =-³Þ³ .

    3

    8

    z

    1ztof ValueLeast   =+=\

    12. Find the set of exhaustive values of real number a   for 

    which the equation 0i2|1z|z   =+-a+ has a solution

    Sol. Let iyxz   +=

    We have, 0i2|1z|z   =+-a+

    0y)1x()2y(ix 22 =+-a+++Þ

    Equating real and imaginary parts

    02y   =+ 2y   -=\  and 04)1x(x 2 =+-a+

    \   )5x2x(x 222 +-a=  or 2 2 2 2(1 )x 2 x 5 0- a + a - a =

    Since x is real, 0AC4BD 2 ³-=\   (For 2 1,a =   the

    equation already has solution)

    0)1(204 224 ³a-a+aÞ   054 24 ³a+a-Þ

    04

    54 22 £÷

     ø

     öçè 

    æ -aaÞ

     Now a   being real implies 2a   is +ve and hence we

    conclude that4

    52 -a  is –ve orúúû

    ù

    êêë

    é-a

    úúû

    ù

    êêë

    é+a

    2

    5

    2

    5 is -ve

    2

    5

    2

    5£a£-Þ

    13. If w is complex cube root of unity and a, b, c are three realnumbers such that

    22c

    1

     b

    1

    a

    1w=

    w++

    w++

    w+

     and w=w+

    +w+

    +w+

    2c

    1

     b

    1

    a

    1222

    Then show that

    1c

    1

    1 b

    1

    1a

    1

    ++

    ++

    +  = 2

    (a) 1 (b) 2 (c) 3 (d) None

    Sol. Sincew

    =w12   and

    2

    1

    w=w   the given relation may be

    rewritten as w=w++w++w+

    2

    c

    1

     b

    1

    a

    1

    and2222

    2

    c

    1

     b

    1

    a

    1

    w=

    w++

    w++

    w+Clearly w and w2 are the roots of 

    x

    2

    xc

    1

    x b

    1

    xa

    1=

    ++

    ++

    +...(1)

    or x

    2

    )xc)(x b)(xa(

    )x b)(xa()xc)(xa()xc)(x b(=

    +++

    ++++++++

    or  ]abca bcx)c ba(2x3[x 2 ++++++

    = ]xx)c ba(x)abca bc(abc[2 32 +++++++

    0abc2x)abca bc(x3 =-++-Þ

     Now if a is the third root of this equation then sum of the

    roots, 102 =aÞ=w+w+aHence, 1 is the root of equation (1) we get

    21c

    1

    1 b

    1

    1a

    1=

    ++

    ++

    +Answer (b)

  • 8/9/2019 4-Chapter Complex Number

    25/35

    Laws of Motion 25

    Fill in the Blanks

    1. If | z | = 2 and arg ( z) =4

    p then z = .............

    2. The greatest and the least absolute value of z + 1 where

    | z + 4 | £  3 is ............. and .............3. In the Argand plane, the vector z = 4 – 3i is turned in the

    clockwise sense through 180° and stretched 3 times. Thecomplex number represented by the new vector is .............

    4. The value of | |a , where a is a non-real cube root of unity is .............

    5. For any two complex numbers

    | az1 – bz2 |2 + | bz1 + az2 |

    2 .............

    6. If x + iy =a ib

    c id 

    +

    +, then ( x2 + y2)2 = .............

    7. The real value of ‘a’ for which 3i3 – 2ai2 + (1 – a)i + 5 isreal is .............

    8. If zn

     = cos(2 1) (2 3)n n

    æ öp

    ç ÷+ +è ø + sin

    (2 1) (2 3)n n

    æ öp

    ç ÷+ +è ø,

    then limn ®¥

    ( z1  z2 ...... z3) is equal to .............

    9. The real value of ‘a’ for which 3i3 – 2ai2 + (1 – a) i + 5 isreal is .............

    10. If (2 + i) (2 + 2i) (2 + 3i) .... (2 + ni) = x + iy then 4. 8. 13....... (4 + n2) = .............

    11. The value of 4 3( 1) n-- - , where n Î  N, is .....

    True or False

    12. Multiplication of a non-zero complex number by i rotates

    it through a right angle in the anti-clockwise direction.13. The complex number cos q + i sin q can be zero for some

    q.14. If a complex number coincides with its conjugate, then the

    number must lie on imaginary axis.15. The argument of the complex number 

    (1 3)(1 ) (cos sin ) z i i i= + + q + q  is7

    12

    p+ q .

    16. The points representing the complex number z for which| z + 1 | < | z – 1 | lies in the interior of a circle.

    17. If three complex numbers  z1, z2 and  z3 are in A.P., thenthey lie on a circle in the complex plane.

    18. If n is a positive integer, then the value of in + (i)n+1 +(i)n+2 + (i)n+3 is 0.

    19. The points having affixes  z1,  z2,  z3  form an equilateral

    triangle iff1 2 2 3 3 1

    1 1 10

     z z z z z z+ + =

    - - -.

    20. Multiplication of a non-zero complex number by – i rotatesthe vector through a right angle in counter clockwise sense.

    21. If z1, z2, z3 respectively are affixes of points A, B, C then,

    1 2

    3 2

    CBA z z

     z z

    æ ö-Ð = ç ÷

    -è ø

    22. If three complex numbers are in A.P., then they lie on a

    circle in the complex plane.23. The trigonometric form of the complex number 

     z = 1 + i tan a where – p < a < p, a  ¹  ± p / 2, is1

    cosα

    (cos a + i sin a).24. The points representing the complex numbers z for which

    | z + 1 | < | z – i | lie on a circle.25. If a complex number coincides with its conjugate, then the

    number must lie on the imaginary axis.26. The fourth roots of – 1, if plotted, would lie at the vertices

    of a square.

    27. If the complex numbers z1, z2, z3 represent the vertices of an equilateral triangle such that | z1 | = | z2 | = | z3 |, then

     z1 + z2 + z3  ¹  028. If in the Argand plane z1, z2, z3, z4 are four points such that

    | z1  | = |  z2 | = |  z3 | = | z4 |, then the four points are thevertices of a square.

    Short nswer Questions

    29. If 4 x + i  (3 x –  y) = 3 + i (– 6), where  x and  y are realnumbers then find the values of x and y.

    30. Express the following in the form x + iy

    (i)5 2

    1 2

    i

    i

    +

    - (ii)

    31

    2 3 i

    æ ö

    - -ç ÷è ø

    (iii) i –35 + i – 40 (iv)2

    2

    (1 2 )

    i

    i

    -

    +

    31. If ( ) x iy a ib+ = ± +  then show that ( ) x iy b ia- - = ± -

    32. If Re8

    6

     z i

     z

    æ ö-ç ÷+è ø

      = 0 then show that  z  lies on the curve

     x2 + y2 + 6 x – 8 y = 0

    33. Find the conjugate of(3 2 )(2 3 )

    (1 2 ) (2 )

    i i

    i i

    - +

    + -

  • 8/9/2019 4-Chapter Complex Number

    26/35

  • 8/9/2019 4-Chapter Complex Number

    27/35

    Laws of Motion 27

    8. If yixz   -=  and ,iq  pz 31

    +=  then )q  p(q 

    y

     p

    x 22 +÷÷ ø

     öççè 

    æ +

    is equal to [AIEEE 2004](a) –2 (b) –1

    (c) 2 (d) 1

    9. If ,1|z||1z|22 +=-  then z lies on   [AIEEE 2004]

    (a) an ellipse (b) the imaginary axis(c) a circle (d) the real axis

    10. If the cube roots of unity are 1, w , 2w  then the roots of 

    the equation 3)1 – x(  + 8 = 0, are [AIEEE 2005]

    (a) –1, –1 + 2 w , – 1 – 2 2w (b) –1, – 1, – 1

    (c) – 1, 1 – 2 w , 1 – 2 2w (d)– 1, 1 + 2 w , 1 + 22w

    11. If 1z  and 2z  are two non- zero complex numbers suchthat |zz| 21 + = |z| 1  + |z| 2 , then argg 1z – argg 2z is equalto [AIEEE 2005]

    (a)2

    p(b) – p

    (c) 0 (d)2

    p-

    12. If w =i

    3

    1z

    z

    - and | w  | = 1, then z lies on

    [AIEEE 2005]

    (a) an ellipse (b) a circle(c) a straight line (d) a parabola

    13. The value of å=

    ÷ ø

     öçè 

    æ    p+

    p10

    1k 11

    k 2cosi

    11

    k 2sin  is

    [AIEEE 2006]

    (a) i (b) 1(c) – 1 (d) – i

    14. If z2 + z + 1 = 0, where z is complex number, then the valueof 

    2 222 3

    2 3

    1 1 1z z z

    z z z

    æ ö æ öæ ö+ + + + +ç ÷   ç ÷ ç ÷è ø   è ø è ø

    + . . . . . . . . . +

    26

    6

    1z

    z

    æ ö+ç ÷

    è ø is [AIEEE 2006]

    (a) 18 (b) 54(c) 6 (d) 12

    15. If | z + 4 | £  3, then the maximum value of | z + 1 | is[AIEEE 2007]

    (a) 6 (b) 0

    (c) 4 (d) 10

    16. The conjugate of a complex number is1

    i –1then that

    complex number is [AIEEE 2008]

    (a)  –1 –1i (b) 11i +

    (c) –1

    1i +(d)

    1

     –1i

    17. The number of complex numbers z such that

    | z – 1| = | z + 1| = | z – i| equals [AIEEE 2010]

    (a) 1 (b) 2

    (c)   ¥ (d) 018. Let a, b be real and z be a complex number. If z2 + a z + b

    = 0 has two distinct roots on the line Re  z =1, then it is

    necessary that : [AIEEE 2011]

    (a) ( 1,0)b Î - (b) 1b =

    (c) (1, )b Î ¥ (d) (0,1)b Î

    19. If ( 1)w ¹  is a cube root of unity, and ( )7

    1 .+ w = + w A B

    Then ( A, B) equals [AIEEE 2011]

    (a) (1, 1) (b) (1, 0)

    (c) (–1, 1) (d) (0, 1)

    20. If w ¹  1is the complex cube root of unity and matrix

    ω 0

    0   ω H 

    é ù= ê ú

    ë û

    , then H70 is equal to –  [AIEEE 2011]

    (a) 0 (b) –H

    (c) H2 (d) H

    21. If z ¹ 1 and2

    1

     z

     z -is real, then the point represented by the

    complex number z lies : [AIEEE 2012]

    (a) either on the real axis or on a circle passing through

    the origin.

    (b) on a circle with centre at the origin

    (c) either on the real axis or on a circle not passing throughthe origin.

    (d) on the imaginary axis.22. If  z  is a complex number of unit modulus and 

    argument q, then arg1

    1

     z

     z

    +æ öç ÷è ø+

     equals:  [JEE M 2013]

    (a) –  q (b)2

    p –  q

    (c)   q (d)   p – q23. If the cube roots of unity are 1, w, w2, then the roots of the

    equation ( x – 1)3 + 8 = 0 are [IIT 1979]

    (a) – 1, 1 + 2w, 1 + 2w2 (b) – 1, 1 – 2w, 1 – 2w2

    (c) – 1, – 1, – 1 (d) None of these

  • 8/9/2019 4-Chapter Complex Number

    28/35

    28 Phys ics  

    24. The smallest positive integer n for which [IIT 1980]

    11

    1

    +æ ö=ç ÷è ø-

    ni

    i is

    (a) n = 8 (b) n = 16(c) n = 12 (d) none of these

    25. The complex numbers = + z x iy   which satisfy the

    equation – 5

    15

    =+

     z i

     z i lie on [IIT 1981]

    (a) the x-axis(b) the straight line y = 5(c) a circle passing through the origin(d) none of these

    26. If

    5 53 3

    2 2 2 2

    æ ö æ ö= + + -ç ÷ ç ÷

    è ø è ø

    i i z , then [IIT 1982]

    (a) Re( z) = 0 (b) Im( z) = 0(c) Re( z) > 0, Im ( z) > 0 (d) Re( z) > 0, Im ( z) < 0

    27. The inequality  – 4 – 2 0 (d) none of these

    28. If z = x + iy and w = (1–iz)/ (z–1) then |w| = 1 implies that,in the complex plane, [IIT 1983](a)  z lies on the imaginary axis(b)  z lies on the real axis

    (c)  z lies on the unit circle(d) None of these

    29. The points z1, z2, z3, z4 in the complex plane are the verticesof a parallelogram taken in order if and only if 

    [IIT 1983]

    (a) z1 + z4 = z2 + z3 (b) z1 + z3 = z2 + z4(c) z1 + z2 = z3 + z4 (d) None of these

    30. If a, b, c and u, v, w are complex numbers representing thevertices of two triangles such that c = (1 – r) a + rb and w = (1 – r)u + rv, where r is a complex number, then thetwo triangles [IIT 1985](a) have the same area (b) are similar  

    (c) are congruent (d) none of these31. If w (¹ 1) is a cube root of unity and (1 + w)7 = A + Bwthen A and B are respectively [IIT 1995S](a) 0, 1 (b) 1, 1(c) 1, 0 (d) – 1, 1

    32. Let z and w  be two non zero complex numbers such that| z | = | w  | and Arg z + Argg w  = p, then z equals(a)   w (b)   - w [IIT 1995S]

    (c)   w (d)   - w

    33. Let z and w  be two complex numbers such that | z | £  1,

    | w  | £  1 and | z + i w  | = | z – i w | = 2 then z equals(a) 1 or i (b) i or –  i [IIT 1995S]

    (c) 1 or – 1 (d) i or – 1

    34. For positive integers n1, n

    2 the value of the expression

    1 1 2 23 5 7(1 ) (1 ) (1 ) (1 )+ + + + + + +n n n ni i i i , where

    i = 1 –   is a real number if and only if  [IIT 1996]

    (a) n1= n

    2 +1 (b) n

    1= n

    2 –1

    (c) n1= n

    2(d) n

    1> 0, n

    2> 0

    35. If i = 1- , then 4 + 5

    334 3651 3 1 3

    32 2 2 2

    æ ö æ ö- + + - +ç ÷ ç ÷

    è ø è ø

    i i

    is equal to [IIT 1999]

    (a) 1 3- i  (b) – 1 3+ i

    (c) 3i (d) 3- i

    36. If arg( z) < 0, then arg (- z) - arg( z) = [IIT 2000S](a)   p (b)   p-

    (c)2p- (d)

    2p

    37. If z1, z2 and z3 are complex numbers such that[IIT 2000S]

    1 2 3 1 2 31 2 3

    1 1 11, then z= = = + + = + + z z z z z

     z z z

    is(a) equal to 1 (b) less than 1(c) greater than 3 (d) equal to 3

    38. Let z1 and  z2 be nth roots of unity which subtend a right

    angle at the origin. Then n must be of the form

    [IIT 2001S](a) 4k  + 1 (b) 4k  +2(c) 4k  + 3 (d) 4k 

    39. The complex numbers  z1,  z2  and  z3  satisfying

    1 3

    2 3

    1 3

    2

    -   -=

    -

     z z i

     z z are the vertices of a triangle which is

    (a) of area zero [IIT 2001S](b) right-angled isosceles(c) equilateral(d) obtuse-angled isosceles

    40. For all complex numbers  z1,  z2  satisfying | z1|=12 and 

    | z2-3-4i | = 5, the minimum value of | z1- z2| is[IIT 2002S](a) 0 (b) 2(c) 7 (d) 17

    41. Let1 3

    2 2w = - + i , then the value of the det.

    42

    22

    1

    11

    111

    ww

    ww--  is [IIT 2002]

    (a)   w3 (b) )1(3   -ww

    (c) 23w (d) )1(3   w-w

  • 8/9/2019 4-Chapter Complex Number

    29/35

    Laws of Motion 29

    42. If1

    1 and ( where 1)1

    -= w = ¹ -

    + z

     z z z

    , then Re( w ) is

    (a) 0 (b) 21

    1

    -

    + z

    [IIT 2003S]

    (c) 21

    .1 1+   +

     z

     z  z(d) 2