3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1, Stuart A. Newman 2, James...

25
3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1 , Stuart A. Newman 2 , James A. Glazier 1 1.Biocomplexity Institute, Department of Physics, Indiana University 2.New York Medical College

Transcript of 3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1, Stuart A. Newman 2, James...

Page 1: 3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1, Stuart A. Newman 2, James A. Glazier 1 1.Biocomplexity Institute, Department.

3D Substitution Model for Limb Growth and Pattern

Formation

Ying Zhang1, Stuart A. Newman2, James A. Glazier1

1.Biocomplexity Institute, Department of Physics, Indiana University

2.New York Medical College

Page 2: 3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1, Stuart A. Newman 2, James A. Glazier 1 1.Biocomplexity Institute, Department.

:Substitution model

Page 3: 3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1, Stuart A. Newman 2, James A. Glazier 1 1.Biocomplexity Institute, Department.

Tetsuya Tabata, et al. Nature, 2001

Patterning a Developmental Field by Long-range Signalling

Page 4: 3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1, Stuart A. Newman 2, James A. Glazier 1 1.Biocomplexity Institute, Department.

Mechanisms of pattern formation in development and evolution

Salazar-Ciudad I et al. Development 2003 I

Page 5: 3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1, Stuart A. Newman 2, James A. Glazier 1 1.Biocomplexity Institute, Department.

Relation: Embryonic Development & Substitution Model

• Cellular autonomy Neighbor independent substitution system Example: cell growth, cell differentiation

• Cell signaling relay, cell-cell interaction model neighbor-dependent substitution model Example: cell-cell adhesion, cell sorting, cell migration, cell growth and death

• Positional information/Morphogenesis field theory Probability substitution model Example: FGF

Page 6: 3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1, Stuart A. Newman 2, James A. Glazier 1 1.Biocomplexity Institute, Department.

Development of Limb Bud

Newman SA. et al. Science 1979 Gilbert et al 2003

Page 7: 3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1, Stuart A. Newman 2, James A. Glazier 1 1.Biocomplexity Institute, Department.

FGFs & FGFRs

Xu X. et al. Cell Tissue Res. 1999

Page 8: 3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1, Stuart A. Newman 2, James A. Glazier 1 1.Biocomplexity Institute, Department.

Hox Gene ExpressionNelson et al. Development 1996

Page 9: 3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1, Stuart A. Newman 2, James A. Glazier 1 1.Biocomplexity Institute, Department.

Expansion of Cell Populations

Vargesson N. et al. Development, 1997

Page 10: 3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1, Stuart A. Newman 2, James A. Glazier 1 1.Biocomplexity Institute, Department.

Niswander, L. et al. Nature Reviews 2003

FGF ---outgrowth of the limb bud

BMP--- Cartilage formation & Cell Death

SHH<->Gli3—Patterning

SHH->HOX—Patterning

Gene Regulatory Network

Gene & Function

Page 11: 3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1, Stuart A. Newman 2, James A. Glazier 1 1.Biocomplexity Institute, Department.

51015

20

5 10 15 200

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

51015

20

5 10 15 200

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

51015

20

5 10 15 200

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

Growth Rule && Growth Probability Field

Division

Differentiation

Condensation

Growth Probability Field

Page 12: 3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1, Stuart A. Newman 2, James A. Glazier 1 1.Biocomplexity Institute, Department.

2D Subsitution Model

Shubin et al. 1986

Page 13: 3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1, Stuart A. Newman 2, James A. Glazier 1 1.Biocomplexity Institute, Department.

3D Substitution Simulation

With Physical Branching and Differentiation rule

Page 14: 3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1, Stuart A. Newman 2, James A. Glazier 1 1.Biocomplexity Institute, Department.

Fate Mapping

Vargesson N. et al. Development, 1997

Page 15: 3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1, Stuart A. Newman 2, James A. Glazier 1 1.Biocomplexity Institute, Department.

Multilevel Modeling

Tissue LevelTissue Geometry Tissue Pattern Formation

Cellular Level--MitosisCell Division with DifferentiationCell Division without DifferentiationCell DeathCell CondensationRest

C e l l M o tio nB ia s e d R a n d o m W a lkD i ffu s io n B ia s e d R a n d o m W a lkC e l l C e l l In te ra c tio n

E ffe c ts fro m th e M o le c u la r L e ve lC e l l G ro w th Pro b a b i l i tyC e l l D e a th Pro b a b i l i tyD i ffe re n tia t io n Pro b a b i l i ty (G e o m e tr ic a l Pa ra m e te r )B ra n c h in g

Page 16: 3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1, Stuart A. Newman 2, James A. Glazier 1 1.Biocomplexity Institute, Department.

Morphogen Gradient Field

• Example:SHH-Gli3

0 5 10 15 20

0

5

10

15

20

Reaction Diffusion

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

Oscillation or no Oscillation

0 5 10 15 20

0

5

10

15

20

Page 17: 3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1, Stuart A. Newman 2, James A. Glazier 1 1.Biocomplexity Institute, Department.

Activator Inhibitor

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

With Different Activator strength, form different Pattern Initial

AS=2.9

AS=2.0

Page 18: 3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1, Stuart A. Newman 2, James A. Glazier 1 1.Biocomplexity Institute, Department.

Fate Map Methods

Page 19: 3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1, Stuart A. Newman 2, James A. Glazier 1 1.Biocomplexity Institute, Department.

Limb Bud Outgrowth

Page 20: 3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1, Stuart A. Newman 2, James A. Glazier 1 1.Biocomplexity Institute, Department.

Limb Bud Outgrowth

Page 21: 3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1, Stuart A. Newman 2, James A. Glazier 1 1.Biocomplexity Institute, Department.

Summary

• 1. The substitution system is a suitable tool to enumerate growth process in embryonic development.

• 2.The substitution system as applied here can simulate real biological process, like cell division and differentiation.

• 3. Global behavior can be described by probability fields, which can link the molecular-signaling level to the cellular level.

• 4. Under certain growth probabilities to, the cell motion is still random according to fate map test.

Page 22: 3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1, Stuart A. Newman 2, James A. Glazier 1 1.Biocomplexity Institute, Department.

Future Work

• Find out the suitable growth probability function.• Implement the molecular information into the

model.• Application in other developmental system.• Explore random/robustness effects in embryonic

development.• Explore surface tension constraints using the

Cellular Potts model.

Page 23: 3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1, Stuart A. Newman 2, James A. Glazier 1 1.Biocomplexity Institute, Department.

Acknowledgement

Page 24: 3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1, Stuart A. Newman 2, James A. Glazier 1 1.Biocomplexity Institute, Department.

Reference• Wolfram S., A new kind of science (2003).• Wolfram S., Theory and Application of cellular automata (1986)• Newman, S. A., and Frisch H. L., Dynamics of skeletal pattern formation in developin

g chick limb. Science 205, 662-668 (1979)• Newman M. E. J., Barkema G.T., Monte Carlo Methods (1999).• Salazar-Ciudad I., Jernvall J. and Newman S.A., Mechanisms of pattern formation in

development and evolution, Development 130, 2027-2037 (2003). • Adrian C., Life's Patterns: no need to spell it out?  Science 303, 782-783 (2004)• Chaplain M.A.J., On growth and form: Spatio-temporal pattern formation in Biology, (1

999).• Deneen M., Hox10 and Hox11 genes are required to globally pattern the mammalian

skeleton. Science 301, 363-368 (2003).• Murray J. D., Mathematical biology I: An introduction (2001).• Murray J. D., Mathematical biology II: Spatial models and biomedical applications (20

01).• Vargesson N., Cell fate in the chick limb bud and relationship to gene expression. De

velopment 124, 1909-18 1997.• Glazier J. A., Simulation of differential adhesion driven rearrangement of biological ce

lls, Phy. Rev. E, 47,2128-2155 (1993).

Page 25: 3D Substitution Model for Limb Growth and Pattern Formation Ying Zhang 1, Stuart A. Newman 2, James A. Glazier 1 1.Biocomplexity Institute, Department.

What matters most is how you do your modeling