3D Flash/CT memoriescorsi.dei.polimi.it/ess/nvm/NVM_3a.pdf · Feb. 26, 2010 D. Ielmini, "Non...

15
25/02/2010 1 3D Flash/CT memories Daniele Ielmini DEI - Politecnico di Milano, Milano, Italy [email protected] Flash scaling overview Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 2 1. Flash scaling: 2. Evolutionary scenario: 3. Paradigm shift H. Tanaka et al., VLSI Symp. 2007 M. Lee, et al., IEDM Tech. Dig. 2007 T. Kamaigaichi, et al., IEDM Tech. Dig. 2008 www.micron.com

Transcript of 3D Flash/CT memoriescorsi.dei.polimi.it/ess/nvm/NVM_3a.pdf · Feb. 26, 2010 D. Ielmini, "Non...

Page 1: 3D Flash/CT memoriescorsi.dei.polimi.it/ess/nvm/NVM_3a.pdf · Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 18 • BL have 2F pitch, USG have 3F pitch since they must surround

25/02/2010

1

3D Flash/CT memories

Daniele Ielmini

DEI - Politecnico di Milano, Milano, [email protected]

Flash scaling overview

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 2

1. Flash scaling: 2. Evolutionary scenario:

3. Paradigm shift

H. Tanaka et al., VLSI Symp. 2007

M. Lee, et al., IEDM Tech. Dig. 2007

T. Kamaigaichi, et al.,

IEDM Tech. Dig. 2008

www.micron.com

Page 2: 3D Flash/CT memoriescorsi.dei.polimi.it/ess/nvm/NVM_3a.pdf · Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 18 • BL have 2F pitch, USG have 3F pitch since they must surround

25/02/2010

2

3D memories

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 3

• 2D memory stacking:

– NAND stacking (Samsung, 2006)

– TFT NAND (Macronix, 2006)

• 3D charge trapping memories

– Bit cost scalable (BICS) memory (Toshiba, 2007)

– Terabit Cell array transistor (TCAT) memory(Samsung, 2009)

• Resistive-based crossbar arrays

Multichip package

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 4

• e.g. the Samsung 64GB moviNAND measures 1.4 mm in height, consists of 16 30nm-class 32Gb MLC NAND chips and a controller. The 17-die stack was achieved by using 30-micron thick chips (0.03*17 = 0.51mm) and advanced package technology

• This is a ‘fake’ 3D technology: the cost is not reduced (cost isproportional to manufactured area, not package area), only the package area/thickness is affected(attractive for handsets, MP3 players, etc.)

Page 3: 3D Flash/CT memoriescorsi.dei.polimi.it/ess/nvm/NVM_3a.pdf · Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 18 • BL have 2F pitch, USG have 3F pitch since they must surround

25/02/2010

3

3D NAND

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 5

• Stacking of NAND layers (not chips) in a single chip

• Motivation: further costreduction

• In fact, cost scaling slows down because of lithography

limitations (immersion litho, double/triple/quadruple patterning,

or EUV with huge investments and reduced throughput)

• 3D allows less aggressive F scaling � better reliability

• Stacking (and 3D) has better costs by avoiding advanced litho

tools and adopting relaxed F

EUV

3D NAND

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 6

• 2nd layers is SOI with epitaxial Si on ILD

• 63 nm TANOS technology, erase by source (thinbody does not allow erase by body bias)

S. M. Jung, et al., IEDM Tech. Dig. 2006

Page 4: 3D Flash/CT memoriescorsi.dei.polimi.it/ess/nvm/NVM_3a.pdf · Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 18 • BL have 2F pitch, USG have 3F pitch since they must surround

25/02/2010

4

3D NAND layout

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 7

Reliability impact

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 8

• No degradation seen in 2nd layer

• P/E characteristics not degraded either

Page 5: 3D Flash/CT memoriescorsi.dei.polimi.it/ess/nvm/NVM_3a.pdf · Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 18 • BL have 2F pitch, USG have 3F pitch since they must surround

25/02/2010

5

TFT 3D NAND

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 9

• Alternative: poly-Si finFET BE-SONOS (Macronix, 2006)

• polySi TFT: a-Si LPCVD + 600°C annealing

• tSi = 60 nm, WG = 90 nm, LG = 200 nm

60 nm

E. K. Lai, et al., IEDM Tech. Dig. 2006

90 nm

Reliability

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 10

• Reasonable reliability, no significantdegradation in the top layer

Page 6: 3D Flash/CT memoriescorsi.dei.polimi.it/ess/nvm/NVM_3a.pdf · Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 18 • BL have 2F pitch, USG have 3F pitch since they must surround

25/02/2010

6

Impact of grain boundary (GB)

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 11

• tSi = 50 nm, WG = LG = 30 nm

• Annealing of 600°C for 30 hours results in 200 nmaverage grain size � 30 x 30 nm2 channels can be marginally affected

T.-H. Hsu, et al., IEDM Tech. Dig. 629, 2009

TFT vs. bulk devices

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 12

• Large TFT devices are worse than bulk (GB effect)

• Small TFT devices are similar to bulk, because ofnearly zero GB

• Bad P/E distributions due to GB statistics

GB distance

Page 7: 3D Flash/CT memoriescorsi.dei.polimi.it/ess/nvm/NVM_3a.pdf · Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 18 • BL have 2F pitch, USG have 3F pitch since they must surround

25/02/2010

7

3D (stacked) NAND limits

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 13

• One decoder for each layers � area overhead

• Critical (and costly) litho steps to make minimum feature size are necessary for each layer

• Epy-Si layer is a high temperature process �

number of stacked layers is limited by thermalbudget

� A simpler, cheaper 3D architecture is needed

2D NAND architecture

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 14

• NAND is inherently 3D:

– BL coordinate � x

– String coordinate � y

– WL coordinate � z

• In planar NAND, BL and string along the same direction

• � 3D NAND is straightforward

BL1

DSLWL1

WL2WL3

SSL

DSLWL1

WL2WL3

SSL

string1

string2

Page 8: 3D Flash/CT memoriescorsi.dei.polimi.it/ess/nvm/NVM_3a.pdf · Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 18 • BL have 2F pitch, USG have 3F pitch since they must surround

25/02/2010

8

Bit-cost scalable (BiCS)

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 15

• BL (x) and upper SG (y) select a vertical string

• Planar WL (z) select a single cell along the string

• String area = 6F2, cell area = 6F2/N

Process sequence

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 16

• String in three steps (lower

SG plug + memory plug +

upper SG plug)

• Slit to reduce disturbs

• Only one critical litho step =

memory plug

• CG formation:

Page 9: 3D Flash/CT memoriescorsi.dei.polimi.it/ess/nvm/NVM_3a.pdf · Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 18 • BL have 2F pitch, USG have 3F pitch since they must surround

25/02/2010

9

String

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 17

• Punch + plug � polysilicon for best hole filling

• Undoped or n- doped � depletion mode verticalFETs to avoid separate n+/p+ doping

From 6F2 To 4F2

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 18

• BL have 2F pitch, USG have 3F pitch since theymust surround the plug (2x0.5F) and be isolated (F)

• 2-layer USG can achieve 2F pitch � 4F2 string area

Page 10: 3D Flash/CT memoriescorsi.dei.polimi.it/ess/nvm/NVM_3a.pdf · Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 18 • BL have 2F pitch, USG have 3F pitch since they must surround

25/02/2010

10

Program/erase

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 19

• Program:

– select strings by USG+BL

– High CG for e- injection from

poly-channel

• Erase:

– High BL/SL, CG = 0

– BBT holes by GIDL at

n+SL/LSG

– Holes populate poly channel

and raise body potential

– Holes injection into charge

traps

Program/erase characteristics

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 20

• P/E window improves for decreasing diameter, as a

result of the larger E-field in the inner oxide for small

diameter

Page 11: 3D Flash/CT memoriescorsi.dei.polimi.it/ess/nvm/NVM_3a.pdf · Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 18 • BL have 2F pitch, USG have 3F pitch since they must surround

25/02/2010

11

Macaroni channel

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 21

• Better control of body potential � better STS

• Higher density of grain boundaries � better VT distribution

Reliability issues

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 22

• Retention to be improved (SONS dielectric stack, ONO oxide would be damaged by HF diluted etchused to improve poly-poly contact in the plug)

• Limited scaling of macaroni FET

• Charge migration in the trapping layer mitigated bychannel length in the z direction � no limits

Page 12: 3D Flash/CT memoriescorsi.dei.polimi.it/ess/nvm/NVM_3a.pdf · Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 18 • BL have 2F pitch, USG have 3F pitch since they must surround

25/02/2010

12

Advantages over 3D NAND

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 23

• 3D NAND = 4F2 while

BiCS = 6F2 � 3D NAND

better for 1 layer only

• 12 layer-BiCS is equal to 2

layers – 4bc 3D NAND

• 12 layer-BiCS is equal to 1

layer – 2bc at half F (e.g.

22 nm instead of 45 nm) �

when planar Flash will be

no more scalable (e.g. 10

nm), BiCS will show up in

a previous technology

node (e.g. 50 nm)

3d nand bc = 1 2 3 4

layers = 1 4 2 1,333333 1

2 2 1 0,666667 0,5

3 1,333333 0,666667 0,444444 0,333333

4 1 0,5 0,333333 0,25

BiCS bc = 1 2 3 4

layers = 1 6 3 2 1,5

2 3 1,5 1 0,75

3 2 1 0,666667 0,5

4 1,5 0,75 0,5 0,375

5 1,2 0,6 0,4 0,3

6 1 0,5 0,333333 0,25

7 0,857143 0,428571 0,285714 0,214286

8 0,75 0,375 0,25 0,1875

9 0,666667 0,333333 0,222222 0,166667

10 0,6 0,3 0,2 0,15

11 0,545455 0,272727 0,181818 0,136364

12 0,5 0,25 0,166667 0,125

13 0,461538 0,230769 0,153846 0,115385

14 0,428571 0,214286 0,142857 0,107143

15 0,4 0,2 0,133333 0,1

16 0,375 0,1875 0,125 0,09375

22 nm

45nm

Cost comparison

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 24

• Cf is relatively large for BiCS (USG, BSG, punch and plug)

• Cv is relatively large for 3DNAND (each layer must replicate

DSL and SSL, drivers, etc.)

• Yield degradation for 3DNAND (epi-Si deposition with high

thermal budget)

Page 13: 3D Flash/CT memoriescorsi.dei.polimi.it/ess/nvm/NVM_3a.pdf · Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 18 • BL have 2F pitch, USG have 3F pitch since they must surround

25/02/2010

13

Pipe-shaped BiCS

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 25

• Some problems to be addressed:

1. Bad reliability because of SONS

2. Series resistance due to diffused source line

3. Uncontrollable LSG due to thermal budget

• Pipe-shaped BiCS solves these issues

Reliability improvement

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 26

• Reliability improvement thanks to SONOS

instead of SONS structure (poly is plugged

all at once, no need for HF etch)

Page 14: 3D Flash/CT memoriescorsi.dei.polimi.it/ess/nvm/NVM_3a.pdf · Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 18 • BL have 2F pitch, USG have 3F pitch since they must surround

25/02/2010

14

Other issues and solutions

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 27

• Other issues include:

– Gate material is p+ polysilicon, no metal gate (e.g. W or TaN as in TANOS) can be integratedbecause of etching limitations

– Erase: GIDL at VG < 0 needed � circuit overhead

• Those issues are solved by Terabit Cell Array

Transistor (TCAT), the Samsung answer to

BiCS

Terabit Cell Array Transistor (TCAT)

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 28

• Very similar to BiCS but:

– Gate-last process where sacrificial nitride isreplaced by metal gate (W)

Page 15: 3D Flash/CT memoriescorsi.dei.polimi.it/ess/nvm/NVM_3a.pdf · Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 18 • BL have 2F pitch, USG have 3F pitch since they must surround

25/02/2010

15

Gate-last process

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 29

Program/erase characteristics

Feb. 26, 2010 D. Ielmini, "Non volatile memories" – 3 30

• P-doped channel connected to the substrate allows for bulk

erase similar to NAND (not in BiCS with n-channel tied to n+

source)

• Erase saturation at VT = -1 V to be improved by diameter

scaling