36828-b00

download 36828-b00

of 110

Transcript of 36828-b00

  • 8/10/2019 36828-b00

    1/110

    3GPP TR 36.828 V11.0.0 (2012-06)Technical Report

    3rd Generation Partnership Project;

    Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access E!UTRA";

    #urther enhance$ents to %TE Ti$e &ivision &uple'T&&"

    for &ownlink!Uplink &%!U%" interference $ana(e$entand traffic adaptation

    Release ))"

    The present document has been developed within the 3rdGeneration Partnership Project (3GPPTM) and may be further elaborated for the purposes of 3GPP.

    The present document has not been subject to any approval process by the 3GPP Orani!ational Partners and shall not be implemented.

    This "eport is provided for future development wor# within 3GPPonly. The Orani!ational Partners accept no liability for any use of this $pecification.

    $pecifications and "eports for implementation of the 3GPPTMsystem should be obtained via the 3GPP Orani!ational Partners% Publications Offices.

  • 8/10/2019 36828-b00

    2/110

    &eywordsUMTS, radio

    3GPP

    Postal address

    3GPP support office address

    650 Route des Luio!es - So"#ia $%ti"o!isVa!&o%%e - 'R$*

    Te!.+ 33 2 2 00 'a/+ 33 3 65 16

    'nternet

    #tt"+.3"".or

    Copyright Notification

    o part may be reproduced ecept as authori!ed by written permission.The copyriht and the foreoin restriction etend to reproduction in all media.

    * +,-+ 3GPP Orani!ational Partners (/"'0 /T'$ 11$/ 2T$' TT/ TT1).

    /ll rihts reserved.

    MT$4 is a Trade Mar# of 2T$' reistered for the benefit of its members

    3GPP4 is a Trade Mar# of 2T$' reistered for the benefit of its Members and of the 3GPP Orani!ational Partners

    5T24 is a Trade Mar# of 2T$' currently bein reistered for the benefit of its Members and of the 3GPPOrani!ational Partners

    G$M6 and the G$M loo are reistered and owned by the G$M /ssociation

  • 8/10/2019 36828-b00

    3/110

    o%te%ts

    7oreword..........................................................................................................................................................

    'ntroduction......................................................................................................................................................

    - $cope......................................................................................................................................................

    + "eferences..............................................................................................................................................

    3 8efinitions symbols and abbreviations..................................................................................................3.- 8efinitions...........................................................................................................................................................3.+ $ymbols...............................................................................................................................................................3.3 /bbreviations.......................................................................................................................................................

    9 Objectives of study.................................................................................................................................

    : 7easibility study.....................................................................................................................................:.- Methodoloies.....................................................................................................................................................

    :.+ $cenario -.................................................................................................................................................... ........:.+.- 8eterministic evaluations...............................................................................................................................:.+.+ $ystem simulation evaluations.......................................................................................................................:.3 $cenario +................................................................................................................................................. .........:.3.- 8eterministic evaluations.............................................................................................................................:.3.+ $ystem simulation evaluations.....................................................................................................................

    :.9 $cenario 3................................................................................................................................................. .........:.9.- 8eterministic evaluations.............................................................................................................................:.9.+ $ystem simulation evaluations.....................................................................................................................:.: $cenario 9................................................................................................................................................. .........:.:.- 8eterministic evaluations.............................................................................................................................:.:.+ $ystem simulation evaluations.....................................................................................................................

    :.; $cenario :................................................................................................................................................. .........

    :.;.- 8eterministic evaluations.............................................................................................................................:.;.+ $ystem simulation evaluations.....................................................................................................................:.< $cenario ;................................................................................................................................................. .........:.

  • 8/10/2019 36828-b00

    4/110

  • 8/10/2019 36828-b00

    5/110

    'oreord

    This Technical "eport has been produced by the 3rdGeneration Partnership Project (3GPP).

    The contents of the present document are subject to continuin wor# within the T$G and may chane followin formalT$G approval. $hould the T$G modify the contents of the present document it will be re@released by the T$G with an

    identifyin chane of release date and an increase in version number as follows?

    Cersion .y.!

    where?

    the first diit?

    - presented to T$G for informationD

    + presented to T$G for approvalD

    3 or reater indicates T$G approved document under chane control.

    y the second diit is incremented for all chanes of substance i.e. technical enhancements corrections

    updates etc.

    ! the third diit is incremented when editorial only chanes have been incorporated in the document.

    4%trodutio%

    T88 offers fleible deployments without reEuirin a pair of spectrum resources. 7or T88 deployments in eneral

    interference between 5 and 85 includin both basestation@to@basestation and 2@to@2 interference needs to beconsidered. One eample includes layered heteroeneous networ# deployments where it may be of interest to consider

    different uplin#@downlin# confiurations in different cells. /lso of interest are deployments involvin different carriersdeployed by different operators in the same band and employin either the same or different uplin#@downlin#confiurations where possible interference may include adjacent channel interference as well as co@channelinterference such as remote basestation@to@basestation interference.

    1urrently 5T2 T88 allows for asymmetric 5@85 allocations by providin seven different semi@statically confiureduplin#@downlin# confiurations. These allocations can provide between 9,F and >,F 85 subframes. The semi@staticallocation may or may not match the instantaneous traffic situation. The current mechanism for adaptin 5@85allocation is based on the system information chane procedure. /dditional mechanisms could include e.. dynamic

    allocation of subframes to 5 or 85.

  • 8/10/2019 36828-b00

    6/110

    1 So"e

    The scope of this study item is iven in +H

    2 Reere%es

    The followin documents contain provisions which throuh reference in this tet constitute provisions of the present

    document.

    @ "eferences are either specific (identified by date of publication edition number version number etc.) ornon@specific.

    @ 7or a specific reference subseEuent revisions do not apply.

    @ 7or a non@specific reference the latest version applies. 'n the case of a reference to a 3GPP document (includina G$M document) a non@specific reference implicitly refers to the latest version of that document in the same

    Release as the present document.

    -H 3GPP T" +-.>,:? ICocabulary for 3GPP $pecificationsI.

    +H "P@--,9:, $tudy 'tem 8escription for 7urther 2nhancements to 5T2 T88 for 85@5'nterference Manaement and Traffic /daptation

    3 ei%itio%s, s7&o!s a%d a&&re9iatio%s

    Delete from the above heading those words which are not applicable.

    Clause numbering depends on applicability and should be renumbered accordingly.

    3.1 ei%itio%s

    7or the purposes of the present document the terms and definitions iven in T" +-.>,: H and the followin apply. /term defined in the present document ta#es precedence over the definition of the same term if any in T" +-.>,: H.

    Definition format (Normal)

    :.

    example:tet used to clarify abstract rules by applyin them literally.

    3.2 S7&o!s

    7or the purposes of the present document the followin symbols apply?

    ymbol format (!")

    JsymbolK J2planationK

    3.3 $&&re9iatio%s

    7or the purposes of the present document the abbreviations iven in T" +-.>,: H and the followin apply. /nabbreviation defined in the present document ta#es precedence over the definition of the same abbreviation if any inT" +-.>,: -H.

  • 8/10/2019 36828-b00

    7/110

    :&;eti9es o stud7

    Objectives of the study item include?

    7or the isolated cell scenario i.e. without co@channel interference?

    "/- should evaluate the benefits of uplin#@downlin# re@confiuration dependent upon traffic conditions.

    o 'dentify the proper simulation assumptions includin traffic models.

    o /ssess the appropriate time scale for uplin#@downlin# re@confiuration.

    o /ssess the benefits at least in terms of performance and enery savin.

    "/9 should perform coeistence analysis with multiple operator deployments in adjacent channels.

    7or the multi@cell scenario i.e. with co@channel interference?

    "/- should evaluate the benefits of uplin#@downlin# re@confiuration dependent upon traffic conditions.

    o 'dentify the proper simulation assumptions includin traffic models.

    o /ssess the appropriate time scale for uplin#@downlin# re@confiuration.

    o /ssess the benefits at least in terms of performance and enery savin.

    "/- and "/9 should identify the multi@cell scenarios for which T88 85@5 interference may arise and

    additional T88 85@5 interference mitiation would be beneficial.

    o 8eployments comprisin the same or different uplin#@downlin# confiurations should be investiated.

    "/9 should perform co@eistence analysis for the above identified scenarios includin co@channel and

    adjacent channel interference where adjacent channel interference may be from other operator(s).

    7or all the studies above deployment scenarios should include reular homoeneous macro deployments and

    layered heteroeneous deployments.

    7or both isolated cell scenario and multi@cell scenario?

    'f sinificant benefits are identified by "/- evaluations "/- should identify potential air interface

    solutions includin necessary 2T"/B2 measurements to mitiate 85@5 interference ta#in into

    account the "/9 co@eistence analysis.

    0ac#ward compatibility of "el@=B>B-, terminals should be maintained.

    $pecification impact should be identified and assessed.

    5 'easi&i!it7 stud7

    5.1 Met#odo!oies

    The followin two approaches are used for the feasibility study.

    /pproach -? 8eterministic calculations mainly for 0$@0$ interference case

    o Obtain the minimum reEuired site separation distance in certain scenarios when different T88

    confiurations are applied in neihbourin cells.

    o ,.=d0 de@sensitivity criteria is applied for neliible interference level for 0$.

  • 8/10/2019 36828-b00

    8/110

    /pproach +? Monte 1arlo simulations for both 0$@0$ and 2@2 interference case

    o Obtain the 85B5 eometry andBor throuhput to see the performance loss due to different T88

    confiurations in the networ# based on the areed simulation assumptions.

    7or approach + the difference of the 85B5 eometry with and without different T88 confiurations and the absolute

    85B5 eometry with different T88 confiurations are used as criteria to evaluate the feasibility of applyin differentT88 confiurations in different cells. 7urther studies of the criteria are not precluded. 't is noted that the feasibilitystudy in this section assumes full buffer traffic model.

    5.2 Se%ario 1

    This scenario assumes multiple 7emto cells deployed on the same carrier freEuency. The simulation assumptions areincluded in /nne /.

    5.2.1 eteri%isti e9a!uatio%s

    The evaluation results usin the deterministic approach are shown in Tables :.+.-@- :.+.-@+ and :.+.-@3

    Ta*le +,-,)!).Resu!ts o deteri%isti a""roa#

    /ini$u$ separation distance k$"

    Source ) Source - Source 3 Source 0 Source +

    0.0 0.0 0.00 0.0 0.05

    ote+ t#e reere%e se%siti9it7 o 10M? is ta@e% as t#e 9iti ae"ta&!e i%terere%e, i.e. -8.5 d>

    Ta*le +,-,)!-.Resu!ts o deteri%isti a""roa# ro Soure 6

    /ini$u$ separation distance $"

    "!aed i% 1st %e/ta"arte%t 2523.8

    2%d %e/t a"arte%t 633.8

    3rd %e/t a"arte%t 15.22

    t# %e/t a"arte%t 3.

    5t# %e/t a"arte%t 10.06

    Ta*le +,-,)!3. Resu!ts o deteri%isti a""roa# ro Soure

    /ini$u$ separation distance k$"

    Re1uire$ent ) 0.00

    Re1uire$ent - 0.006

    ote+ ReAuiree%t 1 ea%s 4%terere%e si%a! ea% "oer is d> !oer t#a% %oise !oorB ReAuiree%t 2 ea%s4%terere%e si%a! ea% "oer is t#e !e9e! i% d7%ai ra%e reAuiree%t.

    5.2.2 S7ste siu!atio% e9a!uatio%s

    The evaluation results by system simulations for scenario - are shown in 7iures :.+.+@- to :.+.+@;. The followin casesare simulated?

  • 8/10/2019 36828-b00

    9/110

    1ase -? 0aseline is the transmission directions of all cells are the same

    1ase +? The transmission direction of 7emto cells is randomly set as 85 and 5 with a :,F probability.

    #e$to!#e$to co!channel with &% power control

    -5 0 5 10 15 20 250

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    UL Geometry of femto UE(dB)

    CDF

    UL Geometry of HUE (co-channel)

    Baseline: all Femto cells UL

    Femto cells UL/DL random

    -5 0 5 10 15 20 25 30 35 400

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    DL Geometry of femto UE(dB)

    CDF

    DL Geometry of HUE (co-channel)

    Baseline: all Femto cells DL

    Femto cells UL/DL random

    #e$to!#e$to co!channel without &% power control

    -40 -30 -20 -10 0 10 20 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    UL Geometry of femto UE(dB)

    CDF

    UL Geometry of HUE(co channel)

    Baseline:all Femto cells UL

    Femto cells UL/DL random

    -20 -10 0 10 20 30 40 50 60 700

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    DL Geometry of femto UE(dB)

    CDF

    DL Geometry of HUE(co channel)

    Baseline:all Femto cells DL

    Femto cells UL/DL random

    #i(ure +,-,-!). Si$ulation results fro$ Source )

    #e$to!#e$to co!channel with &% power control

    -30 -20 -10 0 10 20 300

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    CDF[%]

    Femto-Femto UL geometry (Co-Channel)

    UE UL SINR [dB]

    Baseline:All Femto Cells UL

    Femto Cells UL/DL Random

    -30 -20 -10 0 10 20 30 40 500

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    CDF[%]

    Femto-Femto DL geometry (Co-Channel)

    UE DL SINR [dB]

    Baseline:All Femto Cells DL

    Femto Cells UL/DL Random

    #e$to!#e$to co!channel without &% power control

  • 8/10/2019 36828-b00

    10/110

    -50 -40 -30 -20 -10 0 10 20 300

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    CDF[%]

    Femto-Femto UL geometry (Co-Channel)

    UE UL SINR [dB]

    Baseline:All Femto Cells UL

    Femto Cells UL/DL Random

    -40 -20 0 20 40 60 800

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    CDF[%]

    Femto-Femto DL geometry (Co-Channel)

    UE DL SINR [dB]

    Baseline:All Femto Cells DL

    Femto Cells UL/DL Random

    #i(ure +,-,-!-. Si$ulation results fro$ Source -

    #e$to!#e$to co!channel without &% power control

    -50 -40 -30 -20 -10 0 10 20 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    UL geometry (dB)

    CDF

    Co-channel, without interference management

    Ful:FUL

    Ful:FR

    -20 -10 0 10 20 30 40 50 60 700

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    DL geometry (dB)

    CDF

    Co-channel, without interference management

    Fdl:FDL

    Fdl:FR

    #i(ure +,-,-!3. Si$ulation results fro$ Source 3

    #e$to!#e$to co!channel with and without &% power control

    #i(ure +,-,-!0. Si$ulation results fro$ Source 0

    #e$to!#e$to co!channel with &% power control

  • 8/10/2019 36828-b00

    11/110

    -40 -30 -20 -10 0 10 20 30 400

    0.2

    0.4

    0.6

    0.8

    1

    CDF

    SINR, dB

    FUE UL SINR, Co-channel, Femto Tx Power -10 dBm

    FUE: 100% UL Femto

    FUE: 20% DL+80% UL Femto

    FUE: 40% DL+60% UL Femto

    FUE: 50% DL+50% UL Femto

    FUE: 60% DL+40% UL Femto

    FUE: 80% DL+20% UL Femto

    -40 -20 0 20 40 600

    0.2

    0.4

    0.6

    0.8

    1

    CDF

    SINR, dB

    FUE DL SINR, Co-channel, Femto Tx Power -10 dBm

    FUE: 20% DL+80% UL Femto

    FUE: 40% DL+60% UL Femto

    FUE: 50% DL+50% UL Femto

    FUE: 60% DL+40% UL Femto

    FUE: 80% DL+20% UL Femto

    FUE: 100% DL Femto

    #e$to!#e$to co!channel without &% power control

    -40 -30 -20 -10 0 10 20 30 400

    0.2

    0.4

    0.6

    0.8

    1

    CDF

    SINR, dB

    FUE UL SINR, Co-channel, Femto Tx Power 20 dBm

    FUE: 100% UL Femto

    FUE: 20% DL+80% UL Femto

    FUE: 40% DL+60% UL FemtoFUE: 50% DL+50% UL Femto

    FUE: 60% DL+40% UL Femto

    FUE: 80% DL+20% UL Femto

    -40 -20 0 20 40 600

    0.2

    0.4

    0.6

    0.8

    1

    CDF

    SINR, dB

    FUE DL SINR, Co-channel, Femto Tx Power 20 dBm

    FUE: 20% DL+80% UL Femto

    FUE: 40% DL+60% UL Femto

    FUE: 50% DL+50% UL FemtoFUE: 60% DL+40% UL Femto

    FUE: 80% DL+20% UL Femto

    FUE: 100% DL Femto

    #i(ure +,-,-!+. Si$ulation results fro$ Source +

    #e$to!#e$to co!channel with &% power control

    #e$to!#e$to co!channel without &% power control

  • 8/10/2019 36828-b00

    12/110

    #i(ure +,-,-!2. Si$ulation results fro$ Source 2

    5.3 Se%ario 2

    This scenario assumes multiple 7emto cells deployed on the same carrier freEuency and multiple Macro cells deployedon an adjacent carrier freEuency where all Macro cells have the same 5@85 confiuration and 7emto cells can adjust5@85 confiuration. The simulation assumptions are included in /nne /.

    5.3.1 eteri%isti e9a!uatio%s

    The evaluation results usin the deterministic approach are shown in Tables :.3.-@- to :.+.-@:.

    Ta*le +,3,)!).Resu!ts o deteri%isti a""roa#

    a((ressor !victi$

    A((ressor T' powerd4$"

    5icti$ Accepta*le 6nterference

    d4$"

    /ini$u$ separation distancek$"

    Source ) 7 -Source 3 7 0 7 +

    'eto -CMaro 20 -106.5 0.05 0.08

    Maro -C'eto 6 -8.5 0.1 0.1

    Ta*le +,3,)!-.Resu!ts o deteri%isti a""roa# ro Soure 6

    a((ressor !victi$

    $ini$u$ distance R k$"

    1st ad;ae%t #a%%e!Maro-C'eto 0.

    'eto-CMaro 0.16

    2%d ad;ae%t#a%%e!

    Maro-C'eto 0.36

    'eto-CMaro 0.12

    S"urious doai%Maro-C'eto 0.16

    'eto-CMaro 0.05

  • 8/10/2019 36828-b00

    13/110

    Ta*le +,3,)!3. Resu!ts o deteri%isti a""roa# ro Soure

    a((ressor ! victi$/ini$u$ separation distancek$"

    Re1uire$ent ) Re1uire$ent -

    Maro-C 'eto 0.1 0.003

    'eto -CMaro 0.08 0.00

    ote+ ReAuiree%t 1 ea%s 4%terere%e si%a! ea% "oer is d> !oer t#a% %oise !oorB ReAuiree%t 2 ea%s4%terere%e si%a! ea% "oer is t#e !e9e! i% d7%ai ra%e reAuiree%t.

    Ta*le +,3,)!0+ ReAuired $dditio%a! 4so!atio%, 4S D 500 ro Soure 8

    &eplo8$ent Scenarios4S!4S 6solation

    d4"Notes

    Maro-'eto

    o-#a%%e! 1.2 d> 4%door >S it# 20d> a!! !oss

    $d;ae%t #a%%e! - 25.8 d>

    o% $d;ae%t #a%%e! -31.8 d>

    Ta*le +,3,)!++ ReAuired $dditio%a! 4so!atio%, 4S D 132 ro Soure 8

    &eplo8$ent Scenarios4S!4S 6solation

    d4"Notes

    Maro-'eto

    o-#a%%e! - 1.1 d> 4%door >S it# 20d> a!! !oss

    $d;ae%t #a%%e! - 6.1 d>

    o% $d;ae%t #a%%e! - 52.1 d>

    5.3.2 S7ste siu!atio% e9a!uatio%s

    The evaluation results by system simulations for scenario + are shown in 7iures :.3.+@- to :.3.+@;. The followin cases

    are simulated?

    1ase -? 0aseline is the transmission directions of all cells (includin Macro and 7emto) are the same.

    1ase +? /ll Macro cells are of the same transmission direction (i.e. either 85 or 5) and the transmission

    direction of 7emto cells is randomly set as 85 and 5 with a :,F probability.

    #e$to!/acro adjacent channel without &% power control

  • 8/10/2019 36828-b00

    14/110

    -5 0 5 10 15 20 250

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    UL Geometry(dB)

    CDF

    UL Geometry (adjacent channel)

    MUE baseline: all Macro and Femto cells UL

    HUE baseline: all Macro and Femto cells UL

    MUE: all Macro cells UL and Femto cells UL/DL random

    HUE: all Macro cells UL and Femto cells UL/DL random

    HUE: all Macro cells DL and Femto cells UL/DL random

    -20 -10 0 10 20 30 400

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    DL Geometry(dB)

    CDF

    DL Geometry (adjacent channel)

    MUE baseline: all Macro and Femto cells DL

    HUE baseline: all Macro and Femto cells DL

    MUE: all Macro cells DL and Femto cells UL/DL random

    HUE: all Macro cells DL and Femto cells UL/DL random

    HUE: all Macro cells UL and Femto cells UL/DL random

    #i(ure +,3,-!). Si$ulation results fro$ Source )

    #e$to!/acro adjacent channel without &% power control

    -40 -30 -20 -10 0 10 20 300

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    CDF[%]

    Hetnet UL geometry (Adj-Channel)

    UE UL SINR[dB]

    MUE Baseline:All Macro and LPN Cells UL

    LPN UE Baseline:All Macro and LPN Cells UL

    MUE:All Macro Cells UL and LPN Cells UL/DL Random

    LPN UE:All Macro Cells UL and LPN Cells UL/DL Random

    LPN UE:All Macro Cells DL and LPN Cells UL/DL Random

    -40 -30 -20 -10 0 10 20 30 40 500

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    CDF[%]

    Hetnet DL geometry (Adj-Channel)

    UE DL SINR[dB]

    MUE Baseline:All Macro and LPN Cells DL

    LPN UE Baseline:All Macro and LPN Cells DL

    MUE:All Macro Cells DL and LPN Cells UL/DL Random

    LPN UE:All Macro Cells DL and LPN Cells UL/DL Random

    LPN UE:All Macro Cells UL and LPN Cells UL/DL Random

    #e$to!/acro adjacent channel without &% power control

    -50 -40 -30 -20 -10 0 10 20 300

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    CDF[%]

    Hetnet UL geometry (Adj-Channel)

    UE UL SINR[dB]

    MUE Baseline:All Macro and LPN Cells UL

    LPN UE Baseline:All Macro and LPN Cells UL

    MUE:All Macro Cells UL and LPN Cells UL/DL Random

    LPN UE:All Macro Cells UL and LPN Cells UL/DL Random

    LPN UE:All Macro Cells DL and LPN Cells UL/DL Random

    -40 -20 0 20 40 60 800

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    CDF[%]

    Hetnet DL geometry (Adj-Channel)

    UE DL SINR[dB]

    MUE Baseline:All Macro and LPN Cells DL

    LPN UE Baseline:All Macro and LPN Cells DL

    MUE:All Macro Cells DL and LPN Cells UL/DL Random

    LPN UE:All Macro Cells DL and LPN Cells UL/DL Random

    LPN UE:All Macro Cells UL and LPN Cells UL/DL Random

    #i(ure +,3,-!-. Si$ulation results fro$ Source -

    #e$to!/acro adjacent channel without &% power control

  • 8/10/2019 36828-b00

    15/110

    -50 -40 -30 -20 -10 0 10 20 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    UL geometry (dB)

    CDF

    Adj-channel, without interference management

    Mul:MUL/FUL

    Ful:MUL/FUL

    Mul:MUL/FR

    Ful:MUL/FR

    Ful:MDL/FR

    -20 -10 0 10 20 30 40 50 60 700

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    DL geometry (dB)

    CDF

    Adj-channel, without interference management

    Mdl:MDL/FDL

    Fdl:MDL/FDL

    Mdl:MDL/FR

    Fdl:MDL/FR

    Fdl:MUL/FR

    #i(ure +,3,-!3. Si$ulation results fro$ Source 3

    #e$to!/acro adjacent channel without &% power control

    #e$to!/acro adjacent channel with &% power control

    #i(ure +,3,-!0. Si$ulation results fro$ Source 0

    #e$to!/acro adjacent channel with &% power control

  • 8/10/2019 36828-b00

    16/110

    -40 -30 -20 -10 0 10 200

    0.2

    0.4

    0.6

    0.8

    1

    CDF

    SINR, dB

    MUE UL SINR, Adjacent Channel, Femto Tx Power -10dBm

    MUE: 100% UL Macro, 100% UL Femto

    MUE: 100% UL Macro, 50% DL+50% UL Femto

    -40 -30 -20 -10 0 10 200

    0.2

    0.4

    0.6

    0.8

    1

    CDF

    SINR, dB

    FUE UL SINR, Adjacent Channel, Femto Tx Power -10dBm

    FUE: 100% UL Macro, 100% UL Femto

    FUE: 100% DL Macro, 50% DL+50% UL Femto

    FUE: 100% UL Macro, 50% DL+50% UL Femto

    -10 0 10 20 30 400

    0.2

    0.4

    0.6

    0.8

    1

    CDF

    SINR, dB

    MUE DL SINR, Adjacent Channel, Femto Tx Power -10dBm

    MUE: 100% DL Macro, 100% DL Femto

    MUE: 100% DL Macro, 50% DL+50% UL Femto

    -10 0 10 20 30 400

    0.2

    0.4

    0.6

    0.8

    1

    CDF

    SINR, dB

    FUE DL SINR, Adjacent Channel, Femto Tx Power -10dBm

    FUE: 100% DL Macro, 100% DL Femto

    FUE: 100% DL Macro, 50% DL+50% UL Femto

    FUE: 100% UL Macro, 50% DL+50% UL Femto

    #e$to!/acro adjacent channel without &% power control

    -40 -30 -20 -10 0 10 200

    0.2

    0.4

    0.6

    0.8

    1

    CDF

    SINR, dB

    MUE UL SINR, Adjacent Channel, Femto Tx Power 20 dBm

    MUE: 100% UL Macro, 100% UL Femto

    MUE: 100% UL Macro, 50% DL+50% UL Femto

    -10 0 10 20 30 40 50 60 700

    0.2

    0.4

    0.6

    0.8

    1

    CDF

    SINR, dB

    MUE DL SINR, Adjacent Channel, Femto Tx Power 20 dBm

    MUE: 100% DL Macro, 100% DL Femto

    MUE: 100% DL Macro, 50% DL+50% UL Femto

  • 8/10/2019 36828-b00

    17/110

    -40 -30 -20 -10 0 10 200

    0.2

    0.4

    0.6

    0.8

    1

    CDF

    SINR, dB

    FUE UL SINR, Adjacent Channel, Femto Tx Power 20 dBm

    FUE: 100% UL Macro, 100% UL Femto

    FUE: 100% DL Macro, 50% DL+50% UL Femto

    FUE: 100% UL Macro, 50% DL+50% UL Femto

    -10 0 10 20 30 40 50 60 700

    0.2

    0.4

    0.6

    0.8

    1

    CD

    F

    SINR, dB

    FUE DL SINR, Adjacent Channel, Femto Tx Power 20 dBm

    FUE: 100% DL Macro, 100% DL Femto

    FUE: 100% DL Macro, 50% DL+50% UL Femto

    FUE: 100% UL Macro, 50% DL+50% UL Femto

    #i(ure +,3,-!+. Si$ulation results fro$ Source +

    #e$to!/acro adjacent channel without &% power control

    #i(ure +,3,-!2. Si$ulation results fro$ Source 2

    5. Se%ario 3

    This scenario assumes multiple outdoor Pico cells deployed on the same carrier freEuency. The simulation assumptionsare included in /nne /.

    5..1 eteri%isti e9a!uatio%s

    The evaluation results usin the deterministic approach are shown in Tables :.9.-@- and :.9.-@+.

    Ta*le +,0,)!).Resu!ts o deteri%isti a""roa#

    a((ressor ! victi$Pathloss

    $odel

    A((ressor T'powerd4$"

    5icti$ accepta*leinterference d4$"

    /ini$u$ separationdistance k$"

    Sources ) 9 :

  • 8/10/2019 36828-b00

    18/110

    :utdoor Pio-Coutdoor Pio

    L:S

    2 -8.5

    5.8

    L:S 0.12

    Ta*le+,0,)!-. Resu!ts o deteri%isti a""roa# ro Soure 8

    ote+

    ReAuiree%t 1 ea%s 4%terere%e si%a! ea% "oer is d> !oer t#a% %oise !oorB ReAuiree%t 2ea%s 4%terere%e si%a! ea% "oer is t#e !e9e! i% d7%ai ra%e reAuiree%t.

    5..2 S7ste siu!atio% e9a!uatio%s

    The evaluation results by system simulations for scenario 3 are shown in 7iures :.9.+@- to :.3.+@>. The followin cases

    are simulated?

    1ase -? 0aseline is the transmission directions of all cells are the same

    1ase +? The transmission direction of outdoor Pico cells is randomly set as 85 or 5 with a :,F probability.

    1ase 3 (optional)? Pico with interference manaement. The transmission direction of outdoor Pico cells shall

    be controlled by the interference manaement method.

    Pico!Pico co!channel without an8 interference $iti(ation sche$e

    -50 -40 -30 -20 -10 0 10 200

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    UL Geometry(dB)

    CDF

    UL Geometry (co-hannel)

    Baseline: all Pico cells UL

    Pico cells UL/DL random

    0 10 20 30 40 50 600

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    DL Geometry(dB)

    CDF

    DL Geometry (co-channel)

    Baseline: all Pico cells DL

    Pico cells UL/DL random

    Pico!Pico co!channel with interference $iti(ation sche$e

    a((ressor ! victi$

    /ini$u$ separation distance k$"

    Pathloss ! %S Pathloss ! N%S

    ReAuiree%t 1 ReAuiree%t 2 ReAuiree%t 1 ReAuiree%t 2

    :utdoor Pio-C:utdoor Pio 5.80 1.230 0.120 0.025

  • 8/10/2019 36828-b00

    19/110

    -60 -50 -40 -30 -20 -10 0 10 20 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    UL Geometry(dB)

    CDF

    UL Geometry (co-hannel)

    Baseline: all Pico cells UL

    Pico cells UL/DL random

    Threshold Y=60dB

    Threshold Y=70dB

    Threshold Y=80dB

    #i(ure +,0,-!). Si$ulation results fro$ Source )

    Pico!Pico co!channel without an8 interference $iti(ation sche$e

    -50 -40 -30 -20 -10 0 10 200

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1UL Geometry (co-channel)

    SINR [dB]

    CDF

    Pico cells UL/DL random

    Baseline: all pico cells UL

    -10 -5 0 5 10 15 20 25 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1DL Geometry (co-channel)

    SINR [dB]

    CDF

    Baseline: all pico cells DLPico cells UL/DL random

    #i(ure +,0,-!-. Si$ulation results fro$ Source -

    Pico!Pico co!channel without an8 interference $iti(ation sche$e

    -50 -40 -30 -20 -10 0 10 20 300

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    CDF[%]

    Outdoor Pico - Outdoor Pico deployment (Co-Channel)

    UL Geometry[dB]

    Baseline: Pico All UL

    Pico UL/DL Random

    -10 0 10 20 30 40 50 60 700

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    CDF[%]

    Outdoor Pico - Outdoor Pico deployment (Co-Channel)

    DL Geometry[dB]

    Baseline: Pico All DL

    Pico UL/DL Random

    #i(ure +,0,-!3. Si$ulation results fro$ Source 3

  • 8/10/2019 36828-b00

    20/110

    Pico!Pico co!channel without an8 interference $iti(ation sche$e

    #i(ure +,0,-!0. Si$ulation results fro$ Source 0

    Pico!Pico co!channel without an8 interference $iti(ation sche$e

    -50 -40 -30 -20 -10 0 10 20 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    UL geometry (dB)

    CDF

    Co-channel, without interference managment

    Pul:PUL

    Pul:PR

    -10 0 10 20 30 40 50 60 700

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    DL geometry (dB)

    CDF

    Co-channel, without interference managment

    Pdl:PDL

    Pdl:PR

    Pico!Pico co!channel with interference $iti(ation sche$e

    -20 -15 -10 -5 0 5 10 15 20 250

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    UL geometry (dB)

    CDF

    Co-channel, with interference managment

    Pul:PUL

    Pul:PR

    -10 0 10 20 30 40 50 60 700

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    DL geometry (dB)

    CDF

    Co-channel, with interference managment

    Pdl:PDL

    Pdl:PR

    #i(ure +,0,-!+. Si$ulation results fro$ Source +

    Pico!Pico adjacent channel with and without interference $iti(ation sche$e

  • 8/10/2019 36828-b00

    21/110

    #i(ure +,0,-!2. Si$ulation results fro$ Source 2

    Pico!Pico co!channel without an8 interference $iti(ation sche$e

    ote -H? 'n all these simulations 2s are connected to Pico base stations.

    ote +H? Pico cells 5B85 random in above fiures refers to the case where the transmission direction of a Pico cell is

    randomly set as 85 or 5 with a probability of :,F.

    #i(ure +,0,-!:. Si$ulation results fro$ source :

    Pico!Pico co!channel without an8 interference $iti(ation sche$e

  • 8/10/2019 36828-b00

    22/110

    -50 -40 -30 -20 -10 0 10 20 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    CDF

    SINR, dB

    PUE U% S 6NR< =o!=hannel

    100% UL Pico

    50% UL+50% DL Pico

    50% UL Pico, 50% Pico Off

    50% DL Pico, 50% Pico Off

    -10 0 10 20 30 40 50 600

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    CDF

    SINR, dB

    PUE &% S6NR< =o!=hannel

    100% DL Pico

    50% UL+50% DL Pico

    50% UL Pico, 50% Pico Off

    50% DL Pico, 50% Pico Off

    #i(ure +,0,-!>. Si$ulation results fro$ Source >

    Pico!Pico co!channel without an8 interference $iti(ation sche$e

    -50 -40 -30 -20 -10 0 10 20 300

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    UL geometry [dB]

    CDF[%]

    Outdoor Pico - Ourdoor Pico, UL Geometry (co-channel)

    baseline:all pico cells DL

    pico cells UL/DL random

    -10 0 10 20 30 40 50 60 70 800

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    DL geometry [dB]

    CDF[%]

    Outdoor Pico - Ourdoor Pico,DL Geometry (co-channel)

    baseline:all pico cells UL

    pico cells UL/DL random

    #i(ure +,0,-!?. Si$ulation results fro$ Source ?

    5.5 Se%ario

    This scenario assumes multiple outdoor Pico cells deployed on the same carrier freEuency and multiple Macro cells

    deployed on an adjacent carrier freEuency where all Macro cells have the same 5@85 confiuration and outdoor Picocells can adjust 5@85 confiuration. The simulation assumptions are included in /nne /.

    5.5.1 eteri%isti e9a!uatio%s

    The evaluation results usin the deterministic approach are shown in Tables :.:.-@- to :.:.-@:.

    Ta*le +,+,)!).Resu!ts o deteri%isti a""roa#

    a((ressor !

    victi$

    Pathloss

    $odel

    A((ressor T'power

    d4$"

    5icti$ accepta*le

    interference d4$"

    /ini$u$ separationdistance

    k$"

    Source ) 9 + Source 2

  • 8/10/2019 36828-b00

    23/110

    :utdoor Pio

    -CMaro

    L:S

    2 -106.5

    1.5 0.3

    L:S 0.33 0.33

    Maro >S

    -Coutdoor Pio

    L:S

    6 -8.5

    .68 .68

    L:S 0. 0.

    Ta*le +,+,)!-.Resu!ts o deteri%isti a""roa# ro Soure

    1st ad;ae%t #a%%e!

    a((ressor !victi$

    used path loss $odel $ini$u$ distance R k$"

    Maro-CPio100.23.5!o10(R) .68

    125.236.3!o10(R) 0.

    Pio-CMaro

    100.23.5!o10(R) 1.5

    125.236.3!o10(R) 0.32

    2%d ad;ae%t#a%%e!

    Maro-CPio100.23.5!o10(R) .

    125.236.3!o10(R) 0.58

    Pio-CMaro100.23.5!o10(R) 1.1

    125.236.3!o10(R) 0.2

    S"urious doai%

    Maro-CPio100.23.5!o10(R) 1.32

    125.236.3!o10(R) 0.25

    Pio-CMaro100.23.5!o10(R) 0.33

    125.236.3!o10(R) 0.1

    Ta*le +,+,)!3.Resu!ts o deteri%isti a""roa# ro Soure 8

    a((ressor ! victi$

    /ini$u$ separation distance k$"

    Pathloss ! %S Pathloss ! N%S

    ReAuiree%t 1ReAuiree%t 2ReAuiree%t 1ReAuiree%t 2

    Maro-CPio .6 0.55 0.8 0.13

    Pio-CMaro 1.3 0.138 0.325 0.058

    ote+ ReAuiree%t 1 ea%s 4%terere%e si%a! ea% "oer is d> !oer t#a% %oise !oorB ReAuiree%t 2 ea%s4%terere%e si%a! ea% "oer is t#e !e9e! i% d7%ai ra%e reAuiree%t.

    Ta*le +,+,)!0. ReAuired $dditio%a! 4so!atio%, 4S D 500 ro Soure

    &eplo8$ent Scenarios4S!4S 6solation

    d4"Notes

    Maro-:utdoorPio

    o-#a%%e! 6. d> L:S "at# !oss ode! is used

    $d;ae%t #a%%e! 1. d>

  • 8/10/2019 36828-b00

    24/110

    o% $d;ae%t #a%%e! - .3 d>

    Ta*le +,+,)!+. ReAuired $dditio%a! 4so!atio%, 4S D 132 ro Soure

    &eplo8$ent Scenarios

    4S!4S 6solation

    d4" Notes

    Maro-:utdoorPio

    o-#a%%e! 2.1 d> L:S "at# !oss ode! is used

    $d;ae%t #a%%e! - 1. d>

    o% $d;ae%t #a%%e! - 23. d>

    5.5.2 S7ste siu!atio% e9a!uatio%s

    The evaluation results by system simulations for scenario 9 are shown in 7iures :.:.+@- to :.:.+@>. The followin cases

    are simulated?

    1ase -? 0aseline is the transmission directions of all cells are the same

    1ase +? The transmission direction of outdoor Pico cells is randomly set as 85 or 5 with a :,F probability.

    1ase 3 (optional)? Pico with interference manaement. The transmission direction of outdoor Pico cells shall

    be controlled by the interference manaement method

    Pico!/acro adjacent channel without an8 interference $iti(ation sche$e

    -50 -40 -30 -20 -10 0 10 200

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    UL Geometry(dB)

    CDF

    UL Geometry (adjacent channel)

    MUE baseline: all Macro and Pico cells UL

    PUE baseline: all Macro and Pico cells UL

    MUE: all Macro cells UL and Pico cells UL/DL random

    PUE: all Macro cells UL and Pico cells UL/DL random

    PUE: all Macro cells DL and Pico cells UL/DL random

    0 10 20 30 40 50 60 700

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    DL Geometry(dB)

    CDF

    DL Geometry (adjacent channel)

    MUE baseline: all Macro and Pico cells DL

    PUE baseline: all Macro and Pico cells DL

    MUE: all Macro cells DL and Pico cells UL/DL random

    PUE: all Macro cells DL and Pico cells UL/DL random

    PUE: all Macro cells UL and Pico cells UL/DL random

    Pico!/acro adjacent channel with interference $iti(ation sche$e

  • 8/10/2019 36828-b00

    25/110

    -50 -40 -30 -20 -10 0 10 20 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    UL Geometry(dB)

    CDF

    UL Geometry (adjacent channel)

    MUE baseline: all Macro and Pico cells UL

    PUE baseline: all Macro and Pico cells UL

    MUE: all Macro cells UL and Pico cells UL/DL random

    PUE: all Macro cells UL and Pico cells UL/DL random

    MUE: all Macro cells UL and Pico cells threshold X=70,Y=80dB

    PUE: all Macro cells UL and Pico cells threshold X=70,Y=80dB

    PUE: all Macro cells DL and Pico cells threshold X=70,Y=80dBPUE: all Macro cells DL and Pico cells UL/DL random

    #i(ure +,+,-!). Si$ulation results fro$ Source )

    Pico!/acro adjacent channel without an8 interference $iti(ation sche$e

    -50 -40 -30 -20 -10 0 10 200

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1UL Geometry (adjacent channel)

    SINR [dB]

    CDF

    PUE: all macro cells UL and pico cells UL/DL random

    PUE Baseline: all pico and macro cells UL

    -10 -5 0 5 10 15 20 25 30 350

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1DL Geometry (adjacent channel)

    SINR [dB]

    CDF

    Baseline: all macro and pico cells DL

    PUE: all macro cells DL and pico cells UL/DL random

    #i(ure +,+,-!-. Si$ulation results fro$ Source -

    Pico!/acro adjacent channel without an8 interference $iti(ation sche$e

  • 8/10/2019 36828-b00

    26/110

    -50 -40 -30 -20 -10 0 10 20 300

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    CDF[%]

    Macro - Outdoor Pico deployment (Adjacent-Channel)

    UL Geometry[dB]

    Macro UE Baseline: Macro and Pico All UL

    Pico UE Baseline: Macro and Pico All UL

    Macro UE: Macro All UL, Pico UL/DL Random

    Pico UE: Macro All UL, Pico UL/DL Random

    Pico UE: Macro All DL, Pico UL/DL Random

    -10 0 10 20 30 40 50 60 70 800

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    CDF[%]

    Macro - Outdoor Pico deployment (Adjacent-Channel)

    DL Geometry[dB]

    Macro UE Baseline: Macro and Pico All DL

    Pico UE Baseline: Macro and Pico All DL

    Macro UE: Macro All DL, Pico UL/DL Random

    Pico UE: Macro All DL, Pico UL/DL Random

    Pico UE: Macro All UL, Pico UL/DL Random

    #i(ure +,+,-!3. Si$ulation results fro$ Source 3

    Pico!/acro adjacent channel without an8 interference $iti(ation sche$e

    #i(ure +,+,-!0. Si$ulation results fro$ Source 0

    Pico!/acro adjacent channel without an8 interference $iti(ation sche$e

    -50 -40 -30 -20 -10 0 10 20 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    UL geometry (dB)

    CDF

    Adj-channel, without interference managment

    Mul:MUL/PUL

    Pul:MUL/PUL

    Mul:MUL/PR

    Pul:MUL/PR

    Pul:MDL/PR

    -10 0 10 20 30 40 50 60 700

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    DL geometry (dB)

    CDF

    Adj-channel, without interference managment

    Mdl:MDL/PDL

    Pdl:MDL/PDL

    Mdl:MDL/PR

    Pdl:MDL/PR

    Pdl:MUL/PR

    Pico!/acro adjacent channel with interference $iti(ation sche$e

  • 8/10/2019 36828-b00

    27/110

    -30 -20 -10 0 10 20 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    UL geometry (dB)

    CDF

    Adj-channel, with interference managment

    Mul:MUL/PUL

    Pul:MUL/PUL

    Mul:MUL/PR

    Pul:MUL/PR

    Pul:MDL/PR

    -10 0 10 20 30 40 50 60 700

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    DL geometry (dB)

    CDF

    Adj-channel, with interference managment

    Mdl:MDL/PDL

    Pdl:MDL/PDL

    Mdl:MDL/PR

    Pdl:MDL/PR

    Pdl:MUL/PR

    #i(ure +,+,-!+. Si$ulation results fro$ Source +

    /acro!Pico adjacent channel with@without an8 interference $iti(ation sche$e

    #i(ure +,+,-!2. Si$ulation results fro$ Source 2

    Pico!/acro adjacent channel without interference $iti(ation sche$e

  • 8/10/2019 36828-b00

    28/110

    ote -H? Pico cells 5B85 random in above fiures refers to the case where the transmission direction of a Picocell is randomly set as 85 or 5 with a probability of :,F.

    #i(ure +,+,-!:. Si$ulation results fro$ Source :

    Pico!/acro adjacent channel without interference $iti(ation sche$e

    -50 -40 -30 -20 -10 0 10 200

    0.2

    0.4

    0.6

    0.8

    1

    CDF

    SINR, dB

    MUE UL SINR, Adjacent Channel

    MUE: 100% UL Macro, 100%UL Pico

    MUE: 100% UL Macro, 50%UL+50%DL Pico

    MUE: 100% UL Macro, 100% DL Pico

    -50 -40 -30 -20 -10 0 10 200

    0.2

    0.4

    0.6

    0.8

    1

    CDF

    SINR, dB

    PUE UL SINR, Adjacent Channel

    PUE: 100% UL Macro, 100% UL Pico

    PUE, 100% DL Macro, 100%UL Pico

    PUE: 100% UL Macro, 50%UL+50%DL Pico

    PUE: 100% DL Macro, 50%UL+50%DL Pico

    0 10 20 30 40 50 60 700

    0.2

    0.4

    0.6

    0.8

    1

    C

    DF

    SINR, dB

    MUE DL SINR, Adjacent Channel

    MUE: 100% DL Macro, 100% DL Pico

    MUE: 100% DL Macro, 50%UL+50%DL Pico

    0 10 20 30 40 50 60 700

    0.2

    0.4

    0.6

    0.8

    1

    CDF

    SINR, dB

    PUE DL SINR, Adjacent Channel

    PUE: 100% DL Macro, 100% DL Pico

    PUE: 100% UL Macro, 100% DL Pico

    PUE: 100% DL Macro, 50%UL+50%DL Pico

    PUE: 100% UL Macro, 50%UL+50%DL Pico

    #i(ure +,+,-!>. Si$ulation results fro$ Source >

    Pico!/acro adjacent channel without interference $iti(ation sche$e

  • 8/10/2019 36828-b00

    29/110

    -60 -50 -40 -30 -20 -10 0 10 20 300

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    UL geometry [dB]

    CDF[%]

    Macro - Outdoor Pico (Adjacent channel)

    MUE baseline: all UL

    PUE baseline: all UL

    MUE: pico random UL/DL

    PUE: macro UL,pico random UL/DL

    PUE:macro DL, pico random UL/DL

    -20 -10 0 10 20 30 40 50 60 70 800

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    DL geometry [dB]

    CDF[%]

    Macro - Outdoor Pico (Adjacent channel)

    MUE baseline:all DL

    PUE baseline: all DL

    MUE:macro DL,pico random UL/DLPUE:macro DL,pico random UL/DL

    PUE:macro UL,pico random UL/DL

    Pico!/acro adjacent channel with interference $iti(ation sche$e

    -60 -50 -40 -30 -20 -10 00

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    UL geometry [dB]

    CDF[%]

    Macro - Outdoor Pico (Adjacent channel)

    MUE baseline: all UL

    PUE baseline: all UL

    MUE: pico random UL/DL

    MUE: pico random UL/DL Interf. Mitig.

    PUE: macro UL,pico random UL/DL

    PUE:macro UL,pico random UL/DL, interf Mitig.

    PUE:macro DL, pico random UL/DL

    PUE:macro DL,pico random UL/DL, interf Mitig.

    #i(ure +,+,-!?. Si$ulation results fro$ Source ?

    5.6 Se%ario 5

    This scenario assumes multiple 7emto cells and multiple Macro cells deployed on the same carrier freEuency where allMacro cells have the same 5@85 confiuration and 7emto cells can adjust 5@85 confiuration. The simulation

    assumptions are included in /nne /.

    5.6.1 eteri%isti e9a!uatio%s

    The evaluation results usin the deterministic approach are shown in Table :.;.-@-.

    Ta*le +,2,)!).Resu!ts o deteri%isti a""roa#

    a((ressor !victi$

    A((ressor T'power

    d4$"

    5icti$ cell accepta*le interferenced4$")

    /ini$u$ 4S separationdistance

    k$"

  • 8/10/2019 36828-b00

    30/110

    Sources ) 9 0

    'eto -CMaro 20 -106.5 0.6

    Maro -C'eto 6 -8.5 2.0

    5.6.2 S7ste siu!atio% e9a!uatio%s

    The evaluation results by system simulations for scenario : are shown in 7iures :.;.+@- to :.;.+@:. The followin casesare simulated?

    1ase -? 0aseline is the transmission directions of all cells (includin Macro and 7emto) are the same.

    1ase +? /ll Macro cells are of the same transmission direction (i.e. either 85 or 5) and the transmission

    direction of 7emto cells is randomly set as 85 and 5 with a :,F probability.

    #e$to!/acro co!channel with #e$to &% power control

    #i(ure +,2,-!). Si$ulation results fro$ Source )

    #e$to!/acro co!channel with #e$to &% power control

    -40 -30 -20 -10 0 10 200

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    UL Geometry(dB)

    CDF

    UL Geometry (co-channel)

    MUE baseline: all Macro and Femto cells ULHUE baseline: all Macro and Femto cells UL

    MUE: all Macro cells UL and Femto cells UL/DL random

    HUE: all Macro cells UL and Femto cells UL/DL random

    HUE: all Macro cells DL and Femto cells UL/DL random

    -50 -40 -30 -20 -10 0 10 20 30 400

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    DL Geometry(dB)

    CDF

    DL Geometry (co-channel)

    MUE baseline: all Macro and Femto cells DL

    HUE baseline: all Macro and Femto cells DL

    MUE: all Macro cells DL and Femto cells UL/DL random

    HUE: all Macro cells DL and Femto cells UL/DL random

    HUE: all Macro cells UL and Femto cells UL/DL random

    #i(ure +,2,-!-. Si$ulation results fro$ Source -

  • 8/10/2019 36828-b00

    31/110

    #e$to!/acro co!channel without #e$to &% power control

    -50 -40 -30 -20 -10 0 10 20 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    UL geometry (dB)

    CDF

    Co-channel

    Mul:MUL/FUL

    Ful:MUL/FUL

    Mul:MUL/FRFul:MUL/FR

    Ful:MDL/FR

    -40 -20 0 20 40 60 800

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    DL geometry (dB)

    CDF

    Co-channel

    Mdl:MDL/FDL

    Fdl:MDL/FDL

    Mdl:MDL/FRFdl:MDL/FR

    Fdl:MUL/FR

    #i(ure +,2,-!3. Si$ulation results fro$ Source 3

    #e$to!/acro co!channel without #e$to &% power control

    -70 -60 -50 -40 -30 -20 -10 0 10 200

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    CDF

    SINR, dB

    MUE UL SINR, Co-Channel, Femto Tx Power 20 dBm

    MUE: 100% UL Macro, 100% UL Femto

    MUE: 100% UL Macro, 50% DL+50% UL Femto

    MUE: 100% UL Macro, 100% DL Femto

    -70 -60 -50 -40 -30 -20 -10 0 10 200

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    CDF

    SINR, dB

    FUE UL SINR, Co-Channel, Femto Tx Power 20 dBm

    HUE: 100% UL Macro, 100% UL Femto

    HUE: 100% UL Macro, 50% DL+50% UL Femto

    HUE: 100% DL Macro, 100% UL Femto

    HUE: 100% DL Macro, 50% DL+50% UL Femto

    -50 -40 -30 -20 -10 0 10 20 30 40 50 600

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    CDF

    SINR, dB

    MUE DL SINR, Co-Channel, Femto Tx Power 20dBm

    MUE: 100% DL Macro, 100% DL Femto

    MUE: 100% DL Macro, 50% DL+50% UL Femto

    MUE: 100% DL Macro, 100% UL Femto

    -50 -40 -30 -20 -10 0 10 20 30 40 50 600

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    CD

    F

    SINR dB

    FUE DL SINR, Co-Channel, Femto Tx Power 20dBm

    FUE: 100% DL Macro, 100% DL Femto

    FUE: 100% DL Macro, 50% DL+50% UL Femto

    FUE: 100% UL Macro, 100% DL Femto

    FUE: 100% UL Macro, 50% DL+50% UL Femto

    #e$to!/acro co!channel with #e$to &% power control

  • 8/10/2019 36828-b00

    32/110

    -40 -30 -20 -10 0 10 20 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    C

    DF

    SINR, dB

    FUE UL SINR, Co-Channel, Femto Tx Power -10 dBm

    FUE: 100% DL Macro, 50% DL+50% UL Femto

    FUE: 100% DL Macro, 100% DL Femto

    FUE: 100% UL Macro, 100% UL Femto

    FUE: 100% UL Macro, 50% DL+50% UL Femto

    -40 -30 -20 -10 0 10 20 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    CD

    F

    SINR, dB

    MUE UL SINR, Co-Channel, Femto Tx Power -10 dBm

    MUE: 100% UL Macro, 100% UL Femto

    MUE: 100% UL Macro, 50% DL+50% UL Femto

    MUE: 100% UL Macro, 100% DL Femto

    -50 -40 -30 -20 -10 0 10 20 30 400

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    C

    DF

    SINR, dB

    FUE DL SINR, Co-Channel, Femto Tx Power -10dBm

    FUE: 100% DL Macro, 100% DL Femto

    FUE: 100% DL Macro, 50% DL+50% UL Femto

    FUE: 100% UL Macro, 100% DL Femto

    FUE: 100% UL Macro, 50% DL+50% UL Femto

    -50 -40 -30 -20 -10 0 10 20 30 400

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    CD

    F

    SINR, dB

    MUE DL SINR, Co-Channel, Femto Tx Power -10dBm

    MUE: 100% DL Macro, 100% DL Femto

    MUE: 100% DL Macro, 50% DL+50% UL Femto

    MUE: 100% DL Macro, 100% UL Femto

    #i(ure +,2,-!0. Si$ulation results fro$ Source 0

    #e$to!/acro co!channel without #e$to &% power control

    #i(ure +,2,-!+. Si$ulation results fro$ Source +

    5. Se%ario 6

    This scenario assumes multiple outdoor Pico cells and multiple Macro cells deployed on the same carrier freEuencywhere all Macro cells have the same 5@85 confiuration and outdoor Pico cells can adjust 5@85 confiuration. The

    simulation assumptions are included in /nne /.

    5..1 eteri%isti e9a!uatio%s

    The evaluation results usin the deterministic approach are shown in Table :.

  • 8/10/2019 36828-b00

    33/110

    Ta*le +,:,)!).Resu!ts o deteri%isti a""roa#

    a((ressor! victi$

    Pathloss$odel

    A((ressorT' power

    d4$"

    5icti$ cellaccepta*leinterference

    d4$")

    /ini$u$ 4S separation distance k$"

    Sources

    ) 9 -

    Source

    3

    Source

    0

    Source

    +

    Source

    2

    :utdoorPio

    -CMaro

    L:S

    2 -106.5131.568 131 131.5 131.02 131.03

    L:S. .8 0.0 .6 .

    Maro

    -CoutdoorPio

    L:S

    6 -8.5518.63 51 518.6 516.5 516.53

    L:S12.06 12 12.10 12.06 12.0

    5..2 S7ste siu!atio% e9a!uatio%s

    The evaluation results by system simulations for scenario ; are shown in 7iures :.

  • 8/10/2019 36828-b00

    34/110

    -80 -60 -40 -20 0 20 400

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1Cochannel macro and pico

    UL geometry [dB]

    CD

    F

    PUL: MUL/PUL

    MUL: MUL/PUL

    PUL: MUL/PR

    MUL: MUL/PR

    PUL: MDL/PR

    -20 -10 0 10 20 30 40 50 60 70 800

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    DL geometry [dB]

    CD

    F

    Macro and pico in cochannel

    MDL: MDL/PDL

    PDL: MDL/PDL

    PDL: MUL/PR

    MDL: MDL/PR

    PDL: MDL/PR

    #i(ure +,:,-!-. Si$ulation results fro$ Source -

    Pico!/acro co!channel without interference $iti(ation sche$e

    #i(ure +,:,-!3. Si$ulation results fro$ Source 3

    Pico!/acro co!channel without interference $iti(ation sche$e

    #i(ure +,:,-!0. Si$ulation results fro$ Source 0

    Pico!/acro co!channel without interference $iti(ation sche$e

  • 8/10/2019 36828-b00

    35/110

    #i(ure +,:,-!+. Si$ulation results fro$ Source +

    Pico!/acro co!channel without interference $iti(ation sche$e

    -60 -50 -40 -30 -20 -10 0 10 200

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    UL Geometry(dB)

    CDF

    UL Geometry (co-hannel)

    MUE baseline: all Macro and Pico cells UL

    PUE baseline: all Macro and Pico cells UL

    MUE: all Macro cells UL and Pico cells UL/DL random

    PUE: all Macro cells UL and Pico cells UL/DL random

    PUE: all Macro cells DL and Pico cells UL/DL random

    -10 0 10 20 30 40 50 600

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    DL Geometry(dB)

    CDF

    DL Geometry (co-channel)

    MUE baseline: all Macro and Pico cells DLPUE baseline: all Macro and Pico cells DL

    MUE: all Macro cells DL and Pico cells UL/DL random

    PUE: all Macro cells DL and Pico cells UL/DL random

    PUE: all Macro cells UL and Pico cells UL/DL random

    Pico!/acro co!channel with interference $iti(ation sche$e

    -70 -60 -50 -40 -30 -20 -10 0 10 20 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    UL Geometry(dB)

    CDF

    UL Geometry (co channel)

    /UE *aseline. a ll /acro and P ico cells U%

    PUE *aseline. a ll /acro and Pico cells U%

    /UE. all /acro cells U% and Pico cells threshold AB:+d4Dd4

    PUE. all /acro cells U% and Pico cells threshold AB:+d4Dd4/UE. all /acro cells U% and Pico cells threshold AB>Dd4Dd4

    PUE. all /acro cells U% and Pico cells threshold AB>Dd4Dd4

    /UE. all /acro cells U% and Pico cells threshold AB>+d4Dd4

    PUE. all /acro cells U% and Pico cells threshold AB>+d4Dd4

    /UE. all /acro cells U% and Pico cells threshold AB?Dd4Dd4

    PUE. all /acro cells U% and Pico cells threshold AB?Dd4Dd4

    PUE.all /acro cells &% and Pi co cells U%@&% rando$

    PUE.all /acro cells &% and Pico cells threshold AB:+d4Dd4

    PUE.all /acro cells &% and Pico cells threshold AB>Dd4Dd4

    PUE.all /acro cells &% and Pico cells threshold AB>+d4Dd4

    #i(ure +,:,-!2. Si$ulation results fro$ Source 2

  • 8/10/2019 36828-b00

    36/110

    Pico!/acro co!channel without interference $iti(ation sche$e

    -70 -60 -50 -40 -30 -20 -10 0 10 20 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    UL geometry (dB)

    CDF

    Co-channel

    Mul:MUL/PUL

    Pul:MUL/PUL

    Mul:MUL/PRPul:MUL/PR

    Pul:MDL/PR

    -20 -10 0 10 20 30 40 50 60 700

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    DL geometry (dB)

    CDF

    Co-channel

    Mdl:MDL/PDL

    Pdl:MDL/PDL

    Mdl:MDL/PR

    Pdl:MDL/PR

    Pdl:MUL/PR

    Pico!/acro co!channel with interference $iti(ation sche$e

    -15 -10 -5 0 5 10 15 20 250

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    UL geometry (dB)

    CDF

    Co-channel, with interference managment

    Mul:MUL/PUL

    Pul:MUL/PUL

    Mul:MUL/PR

    Pul:MUL/PR

    Pul:MDL/PR

    -20 -10 0 10 20 30 40 50 60 700

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    DL geometry (dB)

    CDF

    Co-channel, with interference managment

    Mdl:MDL/PDL

    Pdl:MDL/PDL

    Mdl:MDL/PR

    Pdl:MDL/PR

    Pdl:MUL/PR

    #i(ure +,:,-!:. Si$ulation results fro$ Source :

    Pico!/acro co!channel without interference $iti(ation sche$e

    -60 -50 -40 -30 -20 -10 0 10 20 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    CDF

    SINR, dB

    MUE UL SINR, Co-Channel

    MUE: 100% UL Macro, 100% UL Pico

    MUE: 100% UL Macro, 50% DL+50% UL Pico

    MUE: 100% UL Macro, 100% DL Pico

    -10 0 10 20 30 40 50 600

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    CDF

    SINR, dB

    MUE DL SINR, Co-Channel

    MUE: 100% DL Macro, 100% DL Pico

    MUE: 100% DL Macro, 50% DL+50% UL Pico

    MUE: 100% DL Macro, 100% UL Pico

  • 8/10/2019 36828-b00

    37/110

    -60 -50 -40 -30 -20 -10 0 10 20 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    C

    D

    F

    SINR, dB

    PUE UL SINR, Co-channel

    PUE: 100% UL Macro, 100% UL Pico

    PUE: 100% UL Macro, 50% DL+50% UL Pico

    PUE: 100% DL Macro, 100% UL Pico

    PUE: 100% DL Macro, 50% DL+50% UL Pico

    -10 0 10 20 30 40 50 600

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    C

    D

    F

    SINR, dB

    PUE DL SINR, Co-Channel

    PUE: 100% DL Macro, 100% DL Pico

    PUE: 100% DL Macro, 50% DL+50% UL Pico

    PUE: 100% UL Macro, 100% DL Pico

    PUE: 100% UL Macro, 50% DL+50% UL Pico

    Pico!/acro co!channel with interference $iti(ation sche$e

    -60 -50 -40 -30 -20 -10 0 10 20 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    C

    D

    F

    SINR, dB

    MUE UL SINR, Co-Channel

    MUE: 100% UL Macro, 50% DL+50% UL Pico

    MUE: 100% UL Macro, XMP-75

    MUE: 100% UL Macro, XMP-85

    MUE: 100% UL Macro, XMP-95

    MUE: 100% UL Macro, XMP-75 X

    PP-70

    MUE: 100% UL Macro, XPP-70

    -60 -50 -40 -30 -20 -10 0 10 20 300

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    C

    D

    F

    SINR, dB

    PUE UL SINR, Co-Channel

    PUE: 100% UL Macro, 50% DL+50% UL Pico

    PUE: 100% UL Macro, XMP-75

    PUE: 100% UL Macro, XMP-85

    PUE: 100% UL Macro, XMP-95

    PUE: 100% UL Macro, XMP-75 X

    PP-70

    PUE: 100% UL Macro, XPP-70

    #i(ure +,:,-!>. Si$ulation results fro$ Source >

    Pico!/acro co!channel without interference $iti(ation sche$e

    #i(ure +,:,-!?. Si$ulation results fro$ Source ?

    Pico!/acro co!channel with and without interference $iti(ation sche$e

  • 8/10/2019 36828-b00

    38/110

    #i(ure +,:,-!)D. Si$ulation results fro$ Source )D

    5.8 Se%ario

    This scenario assumes multiple Macro cells deployed on the same carrier freEuency for one operator and multiple

    Macro cells deployed on an adjacent carrier freEuency for another operator where all victim Macro cells deployed onthe same carrier have the same 5@85 confiuration and all aressor Macro cells deployed on an adjacent carrierfreEuency can adjust 5@85 confiuration. The simulation assumptions are included in /nne /.

    5.8.1 eteri%isti e9a!uatio%s

    The evaluation results usin the deterministic approach are shown in Table :.=.-@-.

    Ta*le +,>,)!).Resu!ts o deteri%isti a""roa#

    a((ressor !victi$

    A((ressor T'powerd4$"

    5icti$ cell accepta*leinterference d4$"

    /ini$u$ 4S separation distance

    k$"

    Sources )9 -

    Source-

    Source3

    Source0

    Maro-CMaro 6 -106.5 112.850 113 112.8 112.3

    ote? The results are calculated based on the Macro 0$@0$ pathloss modelPLD8.520!o10(R), R i% @

    5.8.2 S7ste siu!atio% e9a!uatio%s

    The evaluation results by system simulations for scenario < are shown in 7iures :.=.+@- to :.=.+@

  • 8/10/2019 36828-b00

    39/110

    /acro!/acro adjacent!channel

    -50 -40 -30 -20 -10 0 10 200

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    SINR [dB]

    CDF

    Aggressor cells UL, Victim cells UL

    Aggressor cells DL, Victim cells DL

    -10 -5 0 5 10 15 200

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    SINR [dB]

    CDF

    Aggressor cells DL, Victim cells DL

    Aggressor cells UL, Victim cells DL

    #i(ure +,>,-!). Si$ulation results fro$ Source )

    /acro!/acro adjacent!channel

    #i(ure +,>,-!-. Si$ulation results fro$ Source -

    /acro!/acro adjacent!channel

    #i(ure +,>,-!3. Si$ulation results fro$ Source 3

  • 8/10/2019 36828-b00

    40/110

    /acro!/acro adjacent!channel

    #i(ure +,>,-!0. Si$ulation results fro$ Source 0

    /acro!/acro adjacent!channel

    -35 -30 -25 -20 -15 -10 -5 0 5 10 150

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    U% Geo$etr8 d4"

    =

    U% Geo$etr8 of /acro UE $ultiple operators"

    4aseline. a((ressor s8ste$ cells all U%

    A((ressor s8ste$ cells all &%

    -15 -10 -5 0 5 10 15 200

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    DL Geometry (dB)

    CDF

    DL Geometry of Macro UE (multiple operators)

    4aseline. a((ressor s8ste$ cells all &%

    A((ressor s8ste$ cells all U%

    #i(ure +,>,-!+. Si$ulation results fro$ Source +

    /acro!/acro adjacent!channel

    -50 -40 -30 -20 -10 0 10 200

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    UL geometry [dB]

    CDF[%]

    Macro - macro of multiple operators (Adjacent channel)

    Baseline: all UL

    Victim UL, Aggressor DL

    -40 -30 -20 -10 0 10 200

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    DL geometry [dB]

    CDF[%]

    Macro - macro of multiple operators (Adjacent channel)

    Baseline: all DL

    Victim DL, Aggressor UL

    #i(ure +,>,-!2. Si$ulation results fro$ Source 2

    /acro!/acro adjacent!channel

  • 8/10/2019 36828-b00

    41/110

    -10 0 10 20 300

    0.2

    0.4

    0.6

    0.8

    1

    CD

    F

    SINR, dB

    MUE DL SINR, Adjacent Channel

    MUE: One network DL, One network UL

    MUE: Baseline - two networks in DL

    -30 -20 -10 0 10 200

    0.2

    0.4

    0.6

    0.8

    1

    CD

    F

    SINR, dB

    MUE UL SINR, Adjacent Channel

    MUE: One network UL, One network DL

    MUE: Baseline - two networks in UL

    #i(ure +,>,-!:. Si$ulation results fro$ Source :

    5. Se%ario 8

    This scenario assumes multiple Macro cells deployed on the same carrier freEuency for one operator. The simulationassumptions are included in /nne /. This scenario is studied mainly based on deterministic approach.

    5..1 eteri%isti e9a!uatio%s

    The evaluation results usin the deterministic approach are shown in Table :.>.-@-.

    Ta*le +,?,)!).Resu!ts o deteri%isti a""roa#

    a((ressor !victi$

    A((ressor T'powerd4$"

    5icti$ cell accepta*leinterference d4$"

    /ini$u$ 4S separation distance

    k$"

    Source)7-707+ Source 3 Source )

    Maro-CMaro 6 -106.5 150 1 16000 1 3.82

    ote -H The results are calculated based on the Macro 0$@0$ pathloss model PLD8.520!o10(R), R i% @

    ote +H The results are calculated based on the Macro 0$@0$ pathloss model

    >++

    +=

    #mRR

    #mRR$%

    ;.-,)(lo9,);.-,(lo+,9:.>=

    ;.-,)(lo+,9:.>=

    -,-,

    -,

    5. 10 Suar7

    0ased on the co@eistence evaluations for the eiht scenarios followin conclusions are made?

    $inificant 0$@0$ co@eistence challenes have been observed to apply different T88 5@85 confiurations

    in different cells for scenarios -@9 without any interference mitiation mechanisms.

    't is feasible to apply different T88 5@85 confiurations in different cells for scenarios - A 9 only provided

    sufficient interference mitiation mechanisms are adopted. The interference mitiation schemes need furtherstudy.

    $inificant 0$@0$ coeistence challenes have been observed when different T88 5@85 confiurations are

    applied in different cells for scenarios :@= without any interference mitiation schemes. Preliminary results

  • 8/10/2019 36828-b00

    42/110

    with interference mitiation mechanisms were submitted but it has not been discussed. o conclusion oncoeistence feasibility with interference mitiation mechanisms has been made.

    6 Perora%e e9a!uatio%

    6.1 Met#odo!oies

    To evaluate the benefits of T88 5@85 reconfiuration based on traffic adaptation at least in terms of performance andenery savin the followin metrics can be used?

    Pac#et throuhput defined as the pac#et si!e over the pac#et transmission time includin the pac#et waitin

    time in the buffer

    2 averae pac#et throuhput defined as the averae of pac#et throuhput for the 2

    :F :,F >:FN 2 averae pac#et throuhput from the 187 of averae pac#et throuhput from all 2s

    1ell averae pac#et throuhput defined as the mean of averae pac#et throuhput from all 2s

    Other metrics e..

    o Pac#et drop statistics

    o Pac#et delay statistics

    o 7reEuency resource (P"0s) utili!ations

    o Time resource (subframes) utili!ations

    o 187 of pac#et throuhput

    o Total number of confiured 85B5 subframes

    The ain of T88 5@85 reconfiuration is assessed by comparin its performance relative to a fied reference T885@85 confiuration where the ain is evaluated over different fied reference T88 5@85 confiurations and

    different downlin#Buplin# traffic loads. 8ownlin# and uplin# transmissions are evaluated in an interated simulatorwith metrics collected separately for downlin# and uplin#. 8ifferent time scales for T88 5@85 reconfiuration arealso evaluated to show its impact on the performance.

    6.2 Se%ario 1+ 4so!ated "io e!!

    This section captures the simulation assumptions and evaluation results for the isolated pico cell scenario. Theevaluation assumptions are shown in Table ;.+@-.

    Ta*le 2,-!). Evaluation assu$ptions for isolated pico cell scenario

    Parameters /ssumptions

    Pico deployment sinle cell with a radius of 9, m

    Pico antenna ain : d0i

    Pico antenna pattern +8 Omni@directional

    Pico noise fiure -3 d0

  • 8/10/2019 36828-b00

    43/110

    2 antenna ain , d0i

    2 noise fiure > d0

    2 power class +3 d0m (+,, m)

    Minimum distance between 2 andpico

    -, m

    umber of 2s per pico cell -,

    $hadowin standard deviation 3d0 for 5O$ and 9d0 for 5O$

    Pathloss P55O$(")-,3.=Q+,.>lo-,(")

    P55O$(")-9:.9Q3

  • 8/10/2019 36828-b00

    44/110

    5in# adaptation M1$ selection with -,F 052" assumin ideal 1$'

    'f the hihest M1$ is selected the 052" may be less than -,F which

    shall be modeled

    $et of T88 5@85 confiurations The seven T88 5@85 confiurations defined in "el@= can be used

    for reconfiurations

    $mall scale fadin ot modeled

    1arrier freEuency + GR!

    1yclic prefi lenth ormal 1P in both downlin# and uplin#

    $pecial subframe confiuration 1onfiuration L=

    Pac#et drop time The pac#et drop time is either not modeled or modeled accordin to3;.=-9 (i.e. =s for ,.:M0 and 3+s for +M0)

    8ownlin#Buplin# receiver type MM$2 for both downlin# and uplin#

    5 modulation order UP$& -;U/M ;9U/MN

    Tables ;.+@+ to ;.+@; show the evaluation results of isolated pico cell scenario for different fied reference T88 5@85

    confiurations and different downlin#Buplin# traffic loads. The values are relative ain or loss of T88 5@85reconfiuration based on traffic adaptation compared to the fied reference T88 5@85 confiuration.

    Ta*le 2,-!-. #i'ed reference T&& U%!&% confi(uration D< ratio of &%@U% arrival rates of ).-

    85 arrival

    rateMetric Time scale

    "elative ain umber of

    sourcesMean Ma Min

    ,.+:

    averae 85 PTP

    -,ms --:.9=F -3;.93F >9.:9F +

    +,,ms ;:.-3F ;:.-3F ;:.-3F -

    ;9,ms 9+.:3F :,.9+F 39.;9F +

    averae 5 PTP

    -,ms @+.9-F @-.9-F @3.9-F +

    +,,ms @3-.

  • 8/10/2019 36828-b00

    45/110

    averae 5 PTP

    -,ms @+.3+F @,.:,F @3.;-F ;

    +,,ms @

  • 8/10/2019 36828-b00

    46/110

    ;9,ms @+=.-,F @+.,,F +

    :F 85 PTP

    -,ms =3.:

  • 8/10/2019 36828-b00

    47/110

    :F 85 PTP

    -,ms @,.-,F @,.-,F @,.-,F +

    +,,ms ,.-,F ,.-,F ,.-,F -

    ;9,ms ,.,:F ,.-,F ,.,,F +

    :F 5 PTP

    -,ms ,.,,F ,.,,F ,.,,F +

    +,,ms ,.,,F ,.,,F ,.,,F -

    ;9,ms @,.,-F ,.,,F @,.,-F -

    Ta*le 2,-!3. #i'ed reference T&& U%!&% confi(uration )< ratio of &%@U% arrival rates of ).)

    85 arrival

    rateMetric Time scale

    "elative ain umber of

    sourcesMean Ma Min

    ,.+:

    averae 85 PTP

    -,ms :,.,+F :.:3F 3

    +,,ms 3,.=3F +

    ;9,ms >.;>F -;.-,F 9.+F +;.,,F =

    +,,ms +:.3-F 93.,F @-,.3,F =

    averae 5 PTP

    -,ms 9-.,+F -9.>+F =

    +,,ms -;.:>F +.,,F -3.+:F @+=.;,F =

    :F 5 PTP -,ms ;+.,;F =3.;,F 9:.-,F =

    +,,ms 9,.-+F

  • 8/10/2019 36828-b00

    48/110

    ;9,ms +.+.,,F 3

    +,,ms 3=.=,F 3=.=,F 3=.=,F -

    ;9,ms >..=,F -

    ;9,ms @,.93F -:.9,F @+-.9,F 3

    :F 5 PTP

    -,ms 9;.+3F :,.-,F 3>.=+F 3

    +,,ms -9.;,F -9.;,F -9.;,F -

    ;9,ms @>.F -:.>+F @3:.-,F 3

    -.:

    averae 85 PTP

    -,ms 9;F ::.-,F 9,.=+F +

    +,,ms 3+.;,F 3+.;,F 3+.;,F -

    ;9,ms >.,,F --.9,F ;.;,F +

    averae 5 PTP

    -,ms 9

  • 8/10/2019 36828-b00

    49/110

    ;9,ms ,.=-F +,.:,F 9

    :F 5 PTP

    -,ms ;+.,:F =3.9>F 3>.9F @9.F

  • 8/10/2019 36828-b00

    50/110

    ;9,ms @3.F +

    +,,ms -.;,F -.;,F -.;,F -

    ;9,ms ,.--F @,.,+F @-.=,F +

    +,,ms @+.+,F @+.+,F @+.+,F -

    ;9,ms @,.>;F @,.,-F @-.>,F +

    Ta*le 2,-!0. #i'ed reference T&& U%!&% confi(uration )< ratio of &%@U% arrival rates of -.)

    85 arrival

    rateMetric Time scale

    "elative ain umber of

    sourcesMean Ma Min

    ,.+:

    averae 85 PTP

    -,ms :.,,F >.,,F -

    ;9,ms ,.3-F >.,3F @=.9,F +

    :F 85 PTP

    -,ms ;3.-,F >3.:,F 3+.;>F +

    +,,ms ::.;,F ::.;,F ::.;,F -

    ;9,ms @3.;+F 3.+,F @-,.9:F +

    :F 5 PTP

    -,ms +>.3:F 9=.9,F -,.3-F +

    +,,ms -+.,,F -+.,,F -+.,,F -

    ;9,ms @3,.-=F @+-..3,F 9>.3,F :

    +,,ms 39.:>F :9.>,F -+.=,F 9

    ;9,ms -+.+-F 3:.-,F @-,.3,F :

    averae 5 PTP

    -,ms 93.93F 9,F 3.3,F 9

    ;9,ms 9.

  • 8/10/2019 36828-b00

    51/110

    +,,ms -=.-3F 9-.>:F :.-,F 9

    ;9,ms @-9.:;F 39.,:F @9:.9,F :

    -

    averae 85 PTP

    -,ms ;,..9,F >.9,F -

    ;9,ms @+=.+:F @-=..,F 9

    +,,ms :,.;:F .;-F -:.=+F 3.9,F +

    ;9,ms @3.,+F 3.>,F @-,.3,F 9

    :F 85 PTP -,ms .:,F -3+.9=F 9;.9,F 9

  • 8/10/2019 36828-b00

    52/110

    +,,ms 3>.9:F :+.+,F +;.F -;.>3F ;..+,F -:.+,F 3.+,F +

    ;9,ms @++.;:F @=.-,F @3;.9,F 9

    +.:

    averae 85 PTP

    -,ms ;=.9,F -,.-+F 33.->F 3+.+;F =.3,F 9

    +,,ms -F @+;..=:F 3

    averae 5 PTP

    -,ms ,.>:F +.;,F @,.=3F 3

    +,,ms @9.;,F @3.>,F @:.3,F +

    ;9,ms @->.::F @-=.9,F @+-..>,F +>.>,F -

    ;9,ms -9.:-F ->.;,F >.9-F +

    averae 5 PTP -,ms @:>.>>F @9:.>=F @

  • 8/10/2019 36828-b00

    53/110

    +,,ms @

  • 8/10/2019 36828-b00

    54/110

    ;9,ms @33.>+F @-;.>,F @99.-,F ;

    :F 5 PTP

    -,ms ++>.3;.-,F ;

    +,,ms -::.=9F ->3.++F -+>.-,F 9

    ;9,ms >+.,3F -3F >.;;F =.+,F +

    +,,ms +.,,F +.,,F +.,,F -

    ;9,ms @-+.3-F @>.-+F @-:.:,F +

    averae 5 PTP

    -,ms +->.>.99F +

    +,,ms -:=.,,F -:=.,,F -:=.,,F -

    ;9,ms --9.9-F -++.+,F -,;.;+F +

    :F 85 PTP

    -,ms 3.=;F 9.=,F +.>+F +

    +,,ms @-=.9,F @-=.9,F @-=.9,F -

    ;9,ms @3:.-+F @+:.,9F @9:.+,F +

    :F 5 PTP

    -,ms +=3.,.,,F ->>.,,F ->>.,,F -

    ;9,ms >;.

  • 8/10/2019 36828-b00

    55/110

    :F 85 PTP

    -,ms +.+=F >.+,F @3.:=F 9

    +,,ms @--.>.,,F +

    ;9,ms -3-.,=F -=3F @,.:F +:3.93F 9

    +,,ms +9>.+9F +;=.9-F ++=.+,F 3

    ;9,ms -=9.>>F +,=.:,F -::.-3F 9

    :F 85 PTP

    -,ms @+.=:F @-.-:F @:.+,F 9

    +,,ms @-;.:,F @-,.+3F @->.>,F 3

    ;9,ms @39.-:F @+=.::F @9;.+,F 9

    :F 5 PTP

    -,ms 33.;3F 9

    +,,ms 39,.:-F 9--.3,F +F 3

    ;9,ms +3=.++F +

  • 8/10/2019 36828-b00

    56/110

    averae 5 PTP

    -,ms :

  • 8/10/2019 36828-b00

    57/110

    +,,ms @,.99F -+.-,F @+-.-:F 9

    ;9,ms @++..9;F ;

    :F 5 PTP

    -,ms +,9.

  • 8/10/2019 36828-b00

    58/110

    ;9,ms ;9.,:F =3.,,F +,.,,F 9

    :F 85 PTP

    -,ms =.=:F -;.>,F @+.+;F 9

    +,,ms +.9,F 3.+,F -.;,F +

    ;9,ms @-:.=3F @+.,,F @3:.9,F 9

    :F 5 PTP

    -,ms ->.9,F -9>.:=F 9

    +,,ms -33.+:F -3;.,,F -3,.:,F +

    ;9,ms ;,.--F

  • 8/10/2019 36828-b00

    59/110

    ;9,ms @3.,+F @+.,,F @9.,9F +

    averae 5 PTP

    -,ms @=.,:F -.,,F ;.,,F @99.,,F +

    :F 85 PTP

    -,ms -,.33F -9.;:F ;.,,F +

    +,,ms :.3,F :.3,F :.3,F -

    ;9,ms F :.>+F @-=.-,F +

    +,,ms @->.-,F @->.-,F @->.-,F -

    ;9,ms @=.-;F ;.->F @++.:,F +

    6.3 Se%ario 2+ Mu!ti-e!! "io se%ario

    This section captures the simulation assumptions and evaluation results for the multi@cell pico scenario. The evaluationassumptions are shown in Table ;.3@-.

    Ta*le 2,3!). Evaluation assu$ptions for $ulti!cell pico scenario

    Parameters /ssumptions

    $cenario 1o@channel and multiple pico cells

    $ystem bandwidth -, MR!

    1arrier freEuency + GR!

    'nter@site distance :,, m

    Macro deployment The typical ->@cell and 3@sectored heaon system layout

    ote that macro cells are deployed but not activated

    Pico deployment 9,m radius random deployment

    umber of pico cells per sector 9

    Minimum distance between pico cells 9, m

    Minimum distance between 2 and

    pico

    -, m

    Pico antenna pattern +8 Omni@directional

    Pico antenna ain : d0i

  • 8/10/2019 36828-b00

    60/110

    2 antenna ain , d0i

    Pico noise fiure -3 d0

    2 noise fiure > d0

    Maimum pico TS power +9 d0m

    2 power class +3 d0m (+,, m)

    umber of 2s per pico cell -, 2s uniformly dropped around each of the Pico cells within aradius of 9,m

    $hadowin standard deviationbetween outdoor Pico cells

    ; d0

    $hadowin correlation between 2s ,

    $hadowin correlation between picos ,.:

    Pico@to@pico pathloss 5O$? if "J+B3 #m P5(")>=.9Q+,lo-,(") free space lossHelse P5(")-,-.>Q9,lo-,(") " in #m 8ual slop model T"+:>9+

    section:.-.9.3H

    5O$? P5 9,lo-,(")Q-;>.3; " in #m +:.>9+?section lo-,(")

    P55O$(")-9:.9Q3=.9:Q+,Vlo-,(") " in #m

    'f "K:,m P5::.

  • 8/10/2019 36828-b00

    61/110

    ,.: ,.;+: -.+: -.=

  • 8/10/2019 36828-b00

    62/110

    averae 5 PTP-,ms 99.+:F 99.+:F 99.+:F -

    ;9,ms 93.=-F 93.=-F 93.=-F -

    :F 85 PTP-,ms 3>.=.=.=.:9F +>.:9F +>.:9F -

    ;9,ms 9.=+F 9.=+F 9.=+F -

    ,.:

    averae 85 PTP

    -,ms 9-.9-F :3.,3F -.:,F +

    ;9,ms @9.>=F 9.>,F @-+.:,F :

    averae 5 PTP

    -,ms 9;.-:F ;:.==F +;.,,F ;

    +,,ms 39.;:F 99.:,F +9.=,F +

    ;9,ms +9..>F :

    :F 85 PTP

    -,ms 99.>:F ;;.,,F ++.:=F ;

    +,,ms +F +=.-

  • 8/10/2019 36828-b00

    63/110

    ;9,ms +3.-=F ::.=,F @>.99F +

    :F 5 PTP

    -,ms :9.,

  • 8/10/2019 36828-b00

    64/110

    :F 5 PTP

    -,ms @3.=;F @3.=;F @3.=;F -

    +,,ms @3.;:F @3.;:F @3.;:F -

    ;9,ms @9.9-F @9.9-F @9.9-F -

    Ta*le 2,3,)!-. #i'ed reference T&& U%!&% confi(uration )< ratio of &%@U% arrival rates of -.)

    85 arrival

    rateMetric Time scale

    "elative ain umber of

    sourcesMean Ma Min

    ,.+:

    averae 85 PTP-,ms 9+.;:F :9.;-F 3,.F @-+.9>F @-+.9>F -

    ,.:

    averae 85 PTP

    -,ms 99.>.-3F .-3F 3

    ;9,ms -,.9+F 3>.,,F @-9.+=F :

    :F 85 PTP

    -,ms 9=.9-F F @-:.;9F :

    :F 5 PTP

    -,ms 3,.99F

  • 8/10/2019 36828-b00

    65/110

    ;9,ms @-.:

  • 8/10/2019 36828-b00

    66/110

    averae 5 PTP

    -,ms @-,.++F @;.9,F @-9.,3F +

    +,,ms @-:.3=F @>.;,F @+-.-:F +

    ;9,ms @+.:-F -

    :F 5 PTP

    -,ms @;-.9+F @;-.9+F @;-.9+F -

    +,,ms @;-.9=F @;-.9=F @;-.9=F -

    ;9,ms @;,.>+F @;,.>+F @;,.>+F -

    Ta*le 2,3,)!3. #i'ed reference T&& U%!&% confi(uration -< ratio of &%@U% arrival rates of -.)

    85 arrival

    rateMetric Time scale

    "elative ain umber of

    sourcesMean Ma Min

    ,.+:averae 85 PTP

    -,ms -+.=,F -+.=,F -+.=,F -

    ;9,ms @33.=+F -

    ;9,ms ->+.,;F ->+.,;F ->+.,;F -

    :F 85 PTP-,ms 9.>:F 9.>:F 9.>:F -

    ;9,ms @9;.,:F @9;.,:F @9;.,:F -

    :F 5 PTP -,ms -F -F -F -

    ;9,ms -->.--F -->.--F -->.--F -

  • 8/10/2019 36828-b00

    67/110

    ,.:

    averae 85 PTP

    -,ms >.,3F -9.,:F 3.,,F ;

    +,,ms @-,...+3F -:>.F -9:.,>F 9

    +,,ms --

  • 8/10/2019 36828-b00

    68/110

    +

    averae 85 PTP

    -,ms @9.9=F 3.,>F @-=.,3F 9

    +,,ms @->.39F +

    ;9,ms @+;.>.::F +

  • 8/10/2019 36828-b00

    69/110

    :F 5 PTP-,ms -+

  • 8/10/2019 36828-b00

    70/110

    ;9,ms +,.39F 33.3,F F +

    +.:

    averae 85 PTP

    -,ms -9.-9F -9.:,F -3..=,F ->.,,F +

    +,,ms >;.,-F >;.,-F >;.,-F -

    ;9,ms 3;.:-F ;:.>+F

  • 8/10/2019 36828-b00

    71/110

    rate sources

    ,.+:

    averae 85 PTP-,ms 9.+=F -

    averae 5 PTP

    -,ms 9;.9;F 9;.9;F 9;.9;F -

    ;9,ms 3=.

  • 8/10/2019 36828-b00

    72/110

    ;9,ms @+;.==F @-=.9F +

    averae 5 PTP-,ms =>.+,F --,.-9F ;=.+:F +

    ;9,ms ;.;:F :,.+;F +

    :F 85 PTP-,ms @3+.>-F @-=.>.+=F +

    ;9,ms 9F >9.>9F 9=.>:F +

    +.:

    averae 85 PTP-,ms @-.>:F @-.>:F @-.>:F -

    ;9,ms @-9.33F @-9.33F @-9.33F -

    averae 5 PTP

    -,ms :9.=>F :9.=>F :9.=>F -

    ;9,ms 9+.,+F 9+.,+F 9+.,+F -

    :F 85 PTP-,ms ,.,,F ,.,,F ,.,,F -

    ;9,ms ,.,,F ,.,,F ,.,,F -

    :F 5 PTP-,ms ,.,,F ,.,,F ,.,,F -

    ;9,ms ,.,,F ,.,,F ,.,,F -

    Ta*le 2,3,-!-. #i'ed reference T&& U%!&% confi(uration )< ratio of &%@U% arrival rates of -.)

    85 arrival

    rateMetric Time scale

    "elative ain umber of

    sourcesMean Ma Min

    ,.+:

    averae 85 PTP-,ms :+.,9F :+.,9F :+.,9F -

    ;9,ms @3F -

    ;9,ms 3;.;9F 3;.;9F 3;.;9F -

    :F 85 PTP

    -,ms 3=.:3F 3=.:3F 3=.:3F -

    ;9,ms @+,.99F @+,.99F @+,.99F -

    :F 5 PTP-,ms 3-.:+F 3-.:+F 3-.:+F -

    ;9,ms @+=.-:F @+=.-:F @+=.-:F -

    ,.:

    averae 85 PTP

    -,ms 9-.:>F 99.+9F 3=.3;F 3

    +,,ms +-.--F +-.--F +-.--F -

    ;9,ms ;.>=F F -.==F @;.=;F +

  • 8/10/2019 36828-b00

    73/110

    :F 85 PTP

    -,ms 3:..->F 3

    +,,ms :.;F -

    ;9,ms @-;.F -

    ;9,ms @-.3+F -;.;F +9.,>F -

    ;9,ms @:.3>F @,.>-F @-+.F @>.>F +:.>>F -

    averae 5 PTP-,ms @+.,;F -3.9F -

    ;9,ms @-;.3

  • 8/10/2019 36828-b00

    74/110

    +,,ms 3;.,,F 3;.,,F 3;.,,F -

    ;9,ms 3,.-9F ;3.3-F +.3

  • 8/10/2019 36828-b00

    75/110

    -

    averae 85 PTP

    -,ms 3.;-F 9.,=F +.;>F 3

    +,,ms @-;.->F @-;.->F @-;.->F -

    ;9,ms @++.::F @+,.;;F @+:.,

  • 8/10/2019 36828-b00

    76/110

    Ta*le 2,3,-!0. #i'ed reference T&& U%!&% confi(uration -< ratio of &%@U% arrival rates of 0.)

    85 arrival

    rateMetric Time scale

    "elative ain umber of

    sourcesMean Ma Min

    ,.+:

    averae 85 PTP

    -,ms @3+.+

  • 8/10/2019 36828-b00

    77/110

    $cenario Multi@cell macro@pico scenario

    $ystem bandwidth -, MR!

    1arrier freEuency + GR!

    'nter@site distance :,, m

    Macro deployment The typical ->@cell and 3@sectored heaon system layout

    Pico deployment 9,m radius random deployment

    umber of pico cells per sector 9

    Minimum distance between pico cells 9, m

    Minimum distance between outdoorpico and macro

    d0

    Maimum macro T power 9;d0m

    Maimum pico TS power +9 d0m

    Macro 85 power control ot modeled i.e. assumin ma macro T power

    2 power class +3 d0m (+,, m)

  • 8/10/2019 36828-b00

    78/110

    umber of 2s per macro cell on@uniform ;,2Bmacro cell (i.e. +, Macro 2s randomly anduniformly dropped per Macro cell)

    umber of 2s per pico cell -, 2s uniformly dropped around each of the Pico cells within aradius of 9,m

    ser distribution 1luster Photspot+B3

    $hadowin standard deviationbetween outdoor Pico cells

    ; d0

    $hadowin standard deviationbetween outdoor Pico and Macro

    ; d0

    $hadowin correlation between 2s ,

    $hadowin correlation between picos ,.:

    $hadowin correlation betweenoutdoor pico and macro

    ,.:

    $hadowin correlation between macrocells

    / shadowin correlation factor of ,.: for the shadowin between sites(reardless aressin or victim system) and of - between sectors ofthe same site shall be used

    Outdoor Pico to outdoor Pico pathloss 5O$? if "J+B3 #m P5(")>=.9Q+,lo-,(") free space lossH

    else P5(")-,-.>Q9,lo-,(") " in #m 8ual slop model T"+:>9+section:.-.9.3H

    5O$? P5 9,lo-,(")Q-;>.3; " in #m +:.>9+?section lo-,(") P55O$(")-9:.9Q3=.9:Q+,Vlo-,(") " in #m

    'f "K:,m P5::.

  • 8/10/2019 36828-b00

    79/110

    7or +GR! " in #m.

    1ase -? Prob(")min(,.,-=B"-)V(-@ep(@"B,.,;3))Qep(@"B,.,;3)3;.=-9? table /+.-.-.:@+ H

    Macro to outdoor Pico P55O$(") -,,.

  • 8/10/2019 36828-b00

    80/110

    ot modeled

    1P lenth ormal 1P in both downlin# and uplin#.

    $pecial subframe confiuration $pecial subframe confiuration L=

    Pac#et drop time The pac#et drop time is either not modeled or model accordin to3;.=-9 (i.e. =s for ,.:M0 and 3+s for +M0).

    "eceiver type MM$2 receiver

    5 modulation order UP$& -;U/M ;9U/MN

    Traffic model 7TP model - in T"3;.=-9

    Poisson distributed with arrival rate

    umber of 2s accordin to the simulated scenario

    / pac#et is randomly assined to a 2 with eEual probability

    'ndependent traffic modelin for 85 and 5 per 2

    7ied si!e of ,.:Mbytes and +Mbytes as in T"3;.=-9

    Possible rane of file arrivin rate () shall cover both low and

    hih load cases. Proposed value rane of for 85 is ,.+: ,.: --.: + +.: :

  • 8/10/2019 36828-b00

    81/110

    6..1 *9a!uatio% resu!ts it#out i%terere%e itiatio%

    Tables ;.9.-@- to ;.9.-@9 show the evaluation results of co@channel multi@cell macro@pico scenario for different fiedreference T88 5@85 confiurations and different downlin#Buplin# traffic loads without interference mitiation. The

    values are relative ain or loss of T88 5@85 reconfiuration based on traffic adaptation compared to the fiedreference T88 5@85 confiuration.

    Table ;.9.-@-a collects the metrics separately for pico and macro and Table ;.9.-@-b collects the metrics jointly for picoand macro.

    Ta*le 2,0,)!)a. #i'ed reference T&& U%!&% confi(uration )< ratio of &%@U% arrival rates of -.)

    85 arrival

    rateMetric Time scale

    "elative ainum of

    sourcesMean Ma Mean

    Pico Macro Pico Macro Pico Macro

    ,.+:

    /verae

    85 PTP-,ms 3:.

  • 8/10/2019 36828-b00

    82/110

    ;9,ms 99.;+F -.=;F =,.,;F 3.9:F >.-=F ,.+

  • 8/10/2019 36828-b00

    83/110

    ;9,ms