33 Telescope Array - indico.icrr.u-tokyo.ac.jp

41
1 33 Telescope Array - Explore the origin of the highest energy cosmic rays - Hiroyuki Sagawa (ICRR, University of Tokyo) on behalf of the Telescope Array Collaboration ICRR External Review 16 May 2019 1

Transcript of 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

Page 1: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

1

33Telescope Array

- Explore the origin of the highest energy cosmic rays -

Hiroyuki Sagawa (ICRR, University of Tokyo)on behalf of the Telescope Array Collaboration

ICRR External Review 16 May 20191

Page 2: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

2

• Introduction• Telescope Array (TA) results

– Energy spectrum– Composition– Anisotropy

• TA extension– TAx4– TALE

Outline

Page 3: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

3

Surface Detector (SD)507 plastic scintillator SDs

1.2 km spacing~700 km2

Fluorescence Detector(FD)3 stations

38 telescopes

TA detector3 com. towers

14 telescopes

12 telescopes

12 telescopes

Refurbished HiResMiddle Drum

(MD)

Black Rock Mesa (BR)

LongRidge(LR)

Hybrid observation since 2008

Utah39oN1400 m asl

3

3 m2 scintillator

Page 4: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

4

R.U. Abbasi1, M. Abe2, T. Abu-Zayyad1, M. Allen1, R. Azuma3, E. Barcikowski1, J.W. Belz1, D.R. Bergman1, S.A. Blake1, R. Cady1, B.G. Cheon4, J. Chiba5, M. Chikawa6, A. Di Matteo7, T. Fujii1, K. Fujita9, M. Fukushima8,10, G. Furlich1, T. Goto9, W. Hanlon1, M. Hayashi11, Y. Hayashi9, N. Hayashida12, K. Hibino12, K. Honda13, D. Ikeda8, N. Inoue2, T. Ishii13, R. Ishimori3, H. Ito14, D. Ivanov1, H.M. Jeong15, S. Jeong15, C.C.H. Jui1, K. Kadota16, F. Kakimoto3, O. Kalashev17, K. Kasahara18, H. Kawai19, S. Kawakami9, S. Kawana2, K. Kawata8, E. Kido8, H.B. Kim4, J.H. Kim1, J.H. Kim20, S. Kishigami9, S. Kitamura3, Y. Kitamura3, V. Kuzmin17, M. Kuznetsov17, Y.J. Kwon21, K.H. Lee15, B. Lubsandorzhiev17, J.P. Lundquist1, K. Machida13, K. Martens10, T. Matsuyama19, J.N. Matthews1, R. Mayta9, M. Minamino9, K. Mukai13, I. Myers1, K. Nagasawa2, S. Nagataki14, R. Nakamura22, T. Nakamura23, T. Nonaka8, H. Oda9, S. Ogio9, J. Ogura3, M. Ohnishi8, H. Ohoka8, T. Okuda24, Y. Omura9, M. Ono14, R. Onogi9, A. Oshima9, S. Ozawa18, I.H. Park15, M.S. Pshirkov17,25, J. Remington1, D.C. Rodriguez1, G. Rubtsov17, D. Ryu20, H. Sagawa8, R. Sahara9, K. Saito8, Y. Saito22, N. Sakaki8, N. Sakurai9, L.M. Scott26, T. Seki22, K. Sekino8, P.D. Shah1, F. Shibata13, T. Shibata8, H. Shimodaira8, B.K. Shin9, H.S. Shin8, J.D. Smith1, P. Sokolsky1, B.T. Stokes1, S.R. Stratton1,26, T.A. Stroman1, T. Suzawa2, Y. Takagi9, Y. Takahashi9, M. Takamura5, M. Takeda8, R. Takeishi15, A. Taketa27, M. Takita8, Y. Tameda28, H. Tanaka9, K. Tanaka29, M. Tanaka30, S.B. Thomas1, G.B. Thomson1, P. Tinyakov7,17, I. Tkachev17, H. Tokuno3, T. Tomida22, S. Troitsky17, Y. Tsunesada9, K. Tsutsumi3, Y. Uchihori31, S. Udo12, F. Urban32, T. Wong1, M. Yamamoto22, R. Yamane9, H. Yamaoka30, K. Yamazaki12, J. Yang33, K. Yashiro5, Y. Yoneda9, S. Yoshida19, H. Yoshii34, Y. Zhezher17, and Z. Zundel11High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA, 2The Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan, 3Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan, 4Department of Physics and The Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul, Korea, 5Department of Physics, Tokyo University of Science, Noda, Chiba, Japan, 6Department of Physics, Kindai University, Higashi Osaka, Osaka, Japan, 7Service de Physique Th´eorique, Universit´e Libre de Bruxelles, Brussels, Belgium, 8Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan, 9Graduate School of Science, Osaka City University, Osaka, Osaka, Japan, 10Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa, Chiba, Japan, 11Information Engineering Graduate School of Science and Technology, Shinshu University, Nagano, Nagano, Japan, 12Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, Japan, 13Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi, Japan, 14Astrophysical Big Bang Laboratory, RIKEN, Wako, Saitama, Japan, 15Department of Physics, Sungkyunkwan University, Jang-an-gu, Suwon, Korea, 16Department of Physics, Tokyo City University, Setagaya-ku, Tokyo, Japan, 17Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia, 18Advanced Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan, 19Department of Physics, Chiba University, Chiba, Chiba, Japan, 20Department of Physics, School of Natural Sciences, Ulsan National Institute of Science and Technology, UNIST-gil, Ulsan, Korea, 21Department of Physics, Yonsei University, Seodaemun-gu, Seoul, Korea, 22Academic Assembly School of Science and Technology Institute of Engineering, Shinshu University, Nagano, Nagano, Japan, 23Faculty of Science, Kochi University, Kochi, Kochi, Japan, 24Department of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan, 25Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Moscow, Russia, 26Department of Physics and Astronomy, Rutgers University – The State University of New Jersey, Piscataway, New Jersey, USA, 27Earthquake Research Institute, University of Tokyo, Bunkyo-ku, Tokyo, Japan, 28Department of Engineering Science, Faculty of Engineering, Osaka Electro-Communication University, Neyagawa-shi, Osaka, Japan, 29Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Hiroshima, Japan, 30Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki, Japan, 31National Institute of Radiological Science, Chiba, Chiba, Japan, 32CEICO, Institute of Physics, Czech Academy of Sciences Prague, Czech Republic, 33Department of Physics and Institute for the Early Universe, Ewha Womans University, Seodaaemun-gu, Seoul, Korea, 34Department of Physics, Ehime University, Matsuyama, Ehime, Japan

TA Collaboration6 countries (Japan, USA, Korea, Russia, Belgium, Czech)

4

Page 5: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

5

Energy Spectrum Results

Page 6: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

6

SD Event Reconstruction

Time

Lateral Distribution

S800

Z =

Col

or =

log 1

0(E/

eV)

Y =

log 1

0 [S

800

(VEM

m-2

)]

X = Secant of zenith angle

1) SD footprint example

2) reconstruction

Time fit -> trajectoryCounter signal lateral distrib. fit -> S800

ETBL = f[S800,sec(θ)]

3) First energy estimation

4) SD energy scale to FD

EFINAL = ETABL / 1.27

MC lookup table

Page 7: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

7

TA SD Spectrum (9 years data)

Log(E/eV) Ankle= 18.69 Âą 0.02

Log(E/eV) Cutoff=19.81 Âą 0.04

Normalized Log Likelihood / NDOF = 21.96/22 N_EXPECT (> GZK, no cut-off) : 79.8N_OBSERVE (data > GZK) : 22GZK CHANCE PROBABILITY : 2×10-12 ~7σBEREZINSKY E_1/2, log10(E/eV) : 19.80 ± 0.05

fit to broken power law

J. Matthews ICRC2017, CRI 172

ICRC2017

Page 8: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

8

TA & Auger Spectra

Page 9: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

9

Declination dependence of breaksTA, Auger common declination band

-15.7° < declination 𝛿𝛿 < 24.8°

TAAuger

Break points are the same

TA only

𝛿𝛿 > 24.8o𝛿𝛿 < 24.8o

submitted to ApJ, arXiv:1801.07820

Page 10: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

10

TA Low Energy Extension (TALE)Galactic to Extra-Galactic Transition

10 new telescopes to look higher in the sky (31-59o) to see shower development to much lower energiesIn operation since 2013

Graded infill surface detector array - more densely packed surface detectors (lower energy threshold)Partially operated since 2013Fully in operation since Feb. 2017

(fund from JSPS [JFY2015-2019])

Page 11: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

11

TALE FD SpectrumR.U. Abbasi et al., ApJ 865:74, 2018

(2nd knee)

(low-energy ankle)

Page 12: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

12

TA combined, Auger, KASCADE-GrandeD. Ivanov, UHECR2018

Page 13: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

13

TALE hybrid event example

TALE-FDTA-FD

5time[Âľs]

4

3

2

1

0

TALE-FD

TA-FD (MD)

Zen.[deg] Azi.[deg]

23.6 -33.5

CoreX[km] CoreY[km]

7.33 17.63

Xmax[g/cm2] E[eV]

823 1017.94

Hybrid event reconstruction

rcoretcore

shower axis

tSD

rSD

FD

shower front plane

𝜓𝜓 𝛼𝛼𝑖𝑖

SD timing information

𝛼𝛼𝑖𝑖 [deg]

EFD > 1017.5 eV

13

SD for better Xmax measurement

Page 14: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

Composition Results

14

Page 15: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

15

Xmax Distributions for different energies

p

HeN

Fe TA data

Shower maxima data over 8.5 years using hybrid events (two southern FDs with the SDs)

(1) (2)

(3) (4)

(5) (6)

(7) (8)

(9) (10)

(11)

9

R.U. Abbasi et al., Ap. J., 858, 76 (2018)

MC: QGSJET II-04

Page 16: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

16

<Xmax> vs logE

p

NHe

Fe

TA data

R.U. Abbasi et al., Ap. J., 858, 76 (2018)

Page 17: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

17

Xmax Shape analysis

• max. log𝐿𝐿 derived 𝑝𝑝 rejects (at 95% C.L.) all species except H (E<1019.0eV)• max. log𝐿𝐿 derived 𝑝𝑝 FAILS to reject (at 95% C.L.) any species (E>1019.2eV)

Color indicates the amount of shift in Xmax applied to data for best fit to MC (in g/cm2)

18.2 ≤ log10(E/eV) < 18.3

pHe

NFe

p

He N

Fe5%p: +29 g/cm2 He: +7 g/cm2

N: --19 g/cm2 Fe: --41 g/cm2

Compatible Shift

R.U. Abbasi et al., Ap. J., 858, 76 (2018)

Page 18: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

18

• Auger and TA data cannot compare directly due to different approach of data analysis• Indirect comparison

– Auger x TA: (Auger mix composition model) x (TA simulation/reconstruction/analysis) TA result• This simulates TA acceptance and biases

<Xmax>: Auger vs TA measurementsby Auger&TA Working Group

compare

TA agrees with Auger within systematic uncertainty.

Page 19: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

19

Anisotropy Results

Page 20: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

20

R.U. Abbasi et al., ApJL 790, L21, 2014

• 5-year by the TA SD• 72 events with E > 57 EeV• Non = 19, Nbg = 4.49• Local significance 5.1σ

• Assume 5 search window radii (15o, 20o, 25o, 30o, 35o)

• Global significance 3.5σ

Hotspot (5 years)

Equatorial coordinates

SuperGalactic Plane (SGP)

Hotspot center shifted from SGP by ~19o

Page 21: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

21

• With original 20o oversampling• Hotspot looks larger than

originally thought• Scan over 15o, 20o, 25o, 30o, 35o

• With 25o oversampling• Max post-trial significance of ~3σ

Hot Spot update (2018)157 events above 5.7x1019 eV for 10 years

SGP SGP

Equatorial coordinates

Kawata, UHECR2018

Page 22: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

22

Ursa Major Cluster(D=20Mpc)

Virgo Cluster(D=20Mpc)

Nearby Galaxy Clusters

Perseus-PiscesSupercluster

(D=70Mpc)

EridanusCluster

(D=30Mpc)

Fornax ClusterCentaurusSupercluster (D=60Mpc)

Huchra, et al, ApJ, (2012)Dots : 2MASS catalog Heliocentric velocity <3000 km/s (D<~45MpC)

TA hotspot is found near the Ursa Major ClusterTA & PAO see no excess in the direction of Virgo

M82(3.4Mpc)

NGS4945(3.7Mpc)

NGS253(2.5Mpc)

Starburst GalaxiesAab et al. (Auger) 2018

M83(3.7Mpc)

IC342(3.7Mpc)

NGC1068(16.7Mpc)

Page 23: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

23

Spectral Anisotropy(from the point of regions with more/less nearby objects)

Super-Galactic Plane (SGP)

Off source region

On source region

log(EON/EeV)= 1.83

log(EOFF /EeV)= 1.67

EON and EOFF: 3.2σ difference

Equatorial coordinates Colored dots: 2MRS galaxies (E < 75Mpc)

(within 30o from SGP)

more nearby objects

TA energy distributions(5 years of SD data)

submitted to PRL, arXiv:1707.04967

Page 24: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

24

Spectral anisotropy (cold/hot spot)

R.U. Abbasi et al., ApJ 862:91, 2018

r = 28.43o

Page 25: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

25

• quadruple TA to accelerate data collection speed – Surface detector(~3000 km2)

• 500 scintillator SDs with 2.1 km spacing

• Fund from JSPS (JFY2015-2019) +KRF(2017-)

• Deployed 257 SDs in 2019

– Fluorescence detector• Xmax meas. & SD energy check• 2 FD stations (HiRes-II telescopes)

– First light at the northern station– The southern station: under

construction• Fund from NSF (2016 -)

TAx4

TAx4 FD FOV

TAx4 FD FOV

SD array

SD array

SD array

SD array

Page 26: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

26

• Assembly of scintillator counters– 260 counters (230 in Japan, 30 in Korea*)

• Final assembly in CRC**

TAx4 SD

*: fund from KRF

Photo at CRC in Jan. 2019CRC** = Cosmic Ray Center in Delta Citynear TA site

Akeno Observatory

Some modifications (fiber layout, PMT[ET -> HP], new WLAN modem and DAQ etc.)

Page 27: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

27

• Permission of the deployment by BLM*: delayed– EA (Environmental Assessment) approval in 2019.02 due to

• related surveys (animals, plants, remains, landownership) etc.• another 1 mon. delay by US government shutdown in 2018.12-2019.01

• Deployment work by helicopter in Feb and Mar of 2019– Bird habitation period (Mar – Aug)

• Helicopter work is not allowed• But a special permission this March

TAx4 SD

BLM* = Bureau of Land Management

(~1.5 months)

Page 28: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

28

TAx4 SD

(1) SDs from CRC

(1) SDs to SA

4) SD tuning

3) Tower const.

2) SD from SA2) to SD site

SA* = Staging Area

Page 29: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

TAx4 SD event example

29

Âľs

Wave forms of hit SDs

Distance East, [2080m]

Dist

ance

Nor

th, [

2080

m]

x4 x4 [Âľs]80

79

78

77

76

75

74

73

72

71

70early

late

Page 30: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

30

• MD site: in operation since Feb. 2018~

• BRM site: under construction

TAx4 FD

TA FD

TAx4 FD

Plan to be commissioning by the end of June, 2019

The mirrors: installed

TALE FD TA FD

TAx4 FD

Page 31: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

31

• Resume fine tuning for deployed SDs (ATVs) from June, 2019

• Plan to increase the effective area toward full TAx4 SD• Full TAx4 in 10 years gives ~50 years of TA SD data

adding previous TA data– This can give discovery level for the current aniso. hints (~2σ)– Even with the current ~2.5 times TA SD in 5 years (TA SD 23.5

years),• 5σ or beyond expected for the current evidences (3σ or beyond) of

anisotropy

TAx4

Page 32: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

32

• TA SD/FD and TALE FD energy spectrum shows spectral features (1015.4 eV < E < over 1020 eV)– cutoff (1019.81 eV), ankle (1018.69 eV)– 2nd knee (1016.22 eV) and low-energy ankle (1017.04 eV)

• TA Xmax: compatible with light composition (E > ~1018.2 eV)– Need more statistics for E > 1019 eV

• We are seeing evidences of anisotropy (~3σ)• TA and Auger Working Group worked very well to understand the

initially-claimed differences

• TAx4 (SD+FD) has partially started• Full TALE SD was deployed and is in operation.

Summary

Page 33: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

33

END

Page 34: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

34

Observation timeFD SD

BR

LR

BR

LR

SK

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Page 35: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

35

(SD scaled to FD energy: calorimetric)

ESD/1.27 = EFD

Hybrid events

E > 1019 eVAngular resolution = 1.4o

E > 1019 eVEnergy resolution < 20%

Energy Scale Check and Resolution

Page 36: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

36

Comparison with other measurementsC. Jui, SuGAR2018

Page 37: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

37

Cluster events with E > 100 EeV

Page 38: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

38

Xmax distributionsR.U. Abbasi et al., ApJ, 858 :76 (27pp), 2018

data

Fe

He

N

P

Page 39: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

39

Comparison to MCσ(Xmax) vs <Xmax>

TA data(1) (2)

(3) (4)

(5) (6)

Page 40: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

40

Comparison to MC

18.8 - 18.9

19.0 - 19.2

19.4 - 19.9

18.9 - 19.0

19.2 - 19.4log E > 18.8

small statistics

σ(Xmax) vs <Xmax>

(7) (8)

(9)

(11)

TA data

Page 41: 33 Telescope Array - indico.icrr.u-tokyo.ac.jp

41

• Auger SD@TA– Problem: µ deficit in AS MC– Phase I: station-level

comparisons at TA CLF

• EUSO-TA– JEM-EUSO prototype– Comparisons with TA events

• TALMA (TA Lightning Mapping Array)

– Coincidence with TA SD events

• FD for large ground array

Other researches

FAST CRAFFTMono-eye Fresnel lens4-eye reflection mirror

(aiming low cost)

TA FD

EUSO-TA

TA CLF 2 Auger SDs

9 antennas in TA