3264.TI_ECG_Fundamentals_condensed_v08.pdf

105
1 Analog Fundamentals of the ECG Signal Chain Prepared by Matthew Hann, Texas Instruments Precision Analog Applications Manager Presented by Jose Duenas, Precision Analog Product Marketing Engineer

Transcript of 3264.TI_ECG_Fundamentals_condensed_v08.pdf

  • 1Analog Fundamentals of the ECG

    Signal ChainPrepared by

    Matthew Hann,

    Texas Instruments

    Precision Analog Applications Manager

    Presented by

    Jose Duenas,

    Precision Analog Product Marketing Engineer

  • 2Objectives

    Introduce Basic ECG Concepts

    Motivate the Need for TINA and SPICE Simulation for ECG Analysis

    Introduce Discrete Analog Functions of the ECG Signal Chain

    Motivate Need for Low Cost Integrated ECG Conditioning System

    Introduce the ADS1298 and Its Embedded ECG Circuitry and Functions

  • 3Analog Fundamentals of the

    ECG Signal Chain

    What is a Biopotential? What is ECG? The Einthoven Triangle Analog Lead Definitions, Derivations, and Purpose Modeling the Electrode Interface Input Filtering and Defibrillation Protection The INA front end AC vs. DC coupling Right Leg Drive (RLD) Amplifier Selection and Design The ECG Shield Drive Lead Off Detection PACE Detection INA post Gain + Analog Filtering A/D Conversion Options and Filtering ADS129x Introduction, Features, and Advantages

  • 41

    What is a Biopotential?

  • 5What is a BiopotentialAn electric potential measured between living cells

  • 6What is a BiopotentialEvery cell is like a little battery

    Intracellular medium/

    Cytoplasmic fluid

    Extracellular

    medium/fluid Ion channels

    (proteins)

    Cell membrane

    (lipids)

    Resting ion chs.Active ion pumpsGated ion chs.

  • 7What is a BiopotentialEvery cell is like a little battery

    K+ is 30 to 50x

    higher @ rest

    Na+ conc. is 10x

    higher @ rest Ion channels

    (proteins)

    Cell membrane

    (lipids)

    Resting ion chs.Active ion pumpsGated ion chs.

    Diffusional

    force

    Electrostatic

    Force

  • 8What is a BiopotentialEvery cell is like a little battery

    Intracellular medium/

    Cytoplasmic fluid

    Extracellular

    medium/fluid Ion channels

    (proteins)

    Cell membrane

    (lipids)

    Resting ion chs.Active ion pumps

    Gated ion chs.

    Neurotransmitter are

    received at dendrites

  • 9What is a BiopotentialBiopotentials from cells electrodes

  • 101

    What is ECG?

  • 11

    What is ECG?A measure of the electrical activity of the heart

  • 12

    What is ECG?ECG and blood pressure waves

  • 13

    What is ECG?Actual ECG-normal

  • 14

    What is ECG?ECG irregular tracings due to external artifacts

  • 15

    What is ECG?Modeling the electrode interface

    Electrical characteristics include a DYNAMIC resistance,

    capacitance, and offset voltage

  • 161

    Analog Lead Derivation

  • 17

    3 Body Electrodes, 3 Derived Leads = I, II, III

    LEAD I = VLA-RL VRA-RLLEAD II = VLL-RL VRA-RLLEAD III = VLL-RL VLA-RL

    Einthovens Law

    In electrocardiogram at any

    given instant the potential of

    any wave in Lead II is equal

    to the sum of the potentials

    in Lead I and III.

    Right Leg

    Reference,

    RL

    Analog Lead DerivationECG Einthoven Triangle, 1907

  • 18

    *Drawing Taken From Bioelectromagnetism, Jaako Malmivuo and Robert Plonsey

    WCT

    RA LA LL

    3

    Assuming:

    3WCT

    RRA

    RA LA LL

    RRA

    RRA = RLA = RLL

    Then:

    Analog Lead DerivationThe Wilson Central (WCT) Provides Chest Lead

    Reference at Center of Einthoven Triangle

  • 19

    The Wilson Central

    is used to derive a

    reference potential

    for the Chest Leads,

    V1 V6

    RRA

    RLA

    RLL

    VOUT = V(1-6) - VWCT

    Analog Lead DerivationThe Wilson Central is the AVERAGE potential

    between RA, LA, and LL

  • 20

    Different Chest Leads

    Provide:

    *Unique ECG Signature

    *Enhanced Pattern

    Recognition

    *Isoelectric Point @ V3-V4

    Analog Lead DerivationChest Lead Signals Provide Different Information at

    Different Cross-Sectional Angles

  • 21

    Each lead provides unique information about

    the ECG Output Signal

    Multiple Angles Give a Better Than 2-D Picture

    of the ECG Output

    AVR, AVL, AVF derived via midpoint of 2 limbs

    (resistor divider) with

    Respect to 3rd limb

    Analog Lead DerivationAugmented Leads Derived via WCT to Provide

    Enhanced Vector Information

  • 22

    Standards Electrodes Needed

    1 Lead LA, RA

    3 Lead LA, RA, LL

    6 Leads LA, RA, LL

    12 Leads LA, RA, LL, V1-6

    Analog Lead DerivationIEC60601-2-51Diagnostic

  • 23

    Analog Lead DerivationDifferent Lead Combinations Reveal Axis Deviation

    +

    =

    and

    QRS in LEAD I QRS in AVF Left Axis

    Deviation

    (LAD)

    Mean QRS Vector Points Toward Area of Infarction (Damage)

  • 24

    Analog Lead DerivationDifferent Lead Combinations Reveal Axis Deviation

    LAD

    Nor

    malRA

    D

    Ext

    rem

    e

    RAD

    I

    AVF

    I

    AVF

    I

    AVF

    I

    AVF

  • 251

    ECG Input Filtering, Defibrillation

    Protection, and Isolation

  • 26

    ECG Input Filtering and ProtectionExample: LEAD I Protection with Input Filtering

    +Vs

    +Vs

    -Vs

    -VsCdiff

    CCM

    CCMCF

    CF

    Rfilter1

    Rfilter1

    Rfilter2

    Rfilter2

    LA

    RA

    NE2H

    NE2H

    Protection

    Diodes

    Zener

    Diode

    Cdiff = 10 x CcmNe2H Lamps/TVS Protect

    Against Defibrillation

    Voltages

    Series Resistance

    Limits Input Current

    CF, Ccm, and Cdiff +

    Rfilter form LPF

    RPatient

    RPatient

    Patient

    Protection 10

    -20k ohms

  • 271

    System Block Diagram

  • 28

    System Block Diagram

    RA

    LA

    LL

    RL

    V1

    V2

    V3

    V4

    V5

    V6

    WilsonI

    II

    III

    aVR

    aVL

    aVF

    INA MUX

    INA

    WCT

    Filter MUX

    A/D

    Isolation

    dV/dt

    QRS and PACE

    Detect

    DIO

  • 291

    The INA Front End

  • 30

    Input Bias Current

    Input Impedance

    Input Current Noise

    Input Voltage Noise

    Power Consumption

    DC/AC CMRR

    *Important*

    Input Offset Voltage

    Input Offset Voltage Drift

    Gain Error

    Nonlinearity

    PSRR

    Less Important

    *DC Errors such as VOS are swamped out by the

    Offsets Introduced by the Skin-Electrode Contacts

    The INA Front EndKey Features of the INA Front End

  • 31

    VrefVref

    R21 1k

    R25 1k

    C6 100p

    R14 100k

    R19 1k

    C7 47n

    R20 1k

    V4 0

    C8 100p

    R22 100k

    R23 1k

    C9 47n

    R24 1k

    V5 0

    R1 63.4k R3 63.4k

    C18 3

    3p

    C19 3

    3p

    R4 63.4k R5 63.4k

    C10 3

    3p

    C12 3

    3p

    C20 3

    30p

    +

    ECGp

    -

    +

    -

    +

    INA 1

    Vout

    nV Vn12 Vnoise

    fAIn12 In_fA

    ECG + Skin

    Impedance

    Electrode

    Impedance +

    Offset

    Input CM +

    Differential

    Filtering

    Ideal INA

    Front End

    The INA Front EndIdeal Simulation Circuit with Current and Voltage Noise

    Sources

  • 32

    T

    Frequency (Hz)

    1.00 10.00 100.00 1.00k

    To

    tal

    no

    ise (

    V)

    0.00

    4.00u

    8.00u

    12.00u

    16.00u

    20.00u

    24.00u

    28.00u

    32.00u

    The INA Front EndSimulation Showing Output-Referred Total RMS Noise

    vs. Bandwidth (G = 1-10)

    Noise may NOT necessarily

    increase linearly with gain

    (INA or PGA topology

    dependent)50k

    50k

    150k

    150k

    Vout

    Va1

    Va2

    -

    +

    A1

    -

    + A2

    Vin-

    Vin+

    Rg 1

    k

    -

    +

    A3

    +

    +

    +

    VCM

    -Vdif2

    Vdif2

    150k

    150k

  • 33

    T

    Time (s)

    8.37m 366.11m 723.85m

    Voltage (

    V)

    2.50

    2.50

    2.51

    Snapshot of R

    Wave from

    ECG Waveform

    ECG Signal Varies

    LINEARLY with

    Increase in Gain

    The INA Front EndTINA Simulations Showing Output-Referred ECG Signal

    (G = 1-10)

  • 34

    (1) (2)

    (3)

    (1) Electrode Offset MAX = +/- 300mV

    (2) Swing of INA = V(+) 50mV

    (3) Integrator Compliance = (ECGp + ECGn +VOS + VOSelectrode)* Gain < VCC - Vref

    Vref

    Integrator Removes

    Gained up DC offsets and

    servos INA output to Vref

    The INA Front EndWhat is the MAX gain on the INA When Using a DC

    Removal Circuit?

  • 35

    Vref

    Vref

    VCC

    1k

    1k

    47n

    52k

    150m

    47n

    52k

    -150m

    63.4k 63.4k

    33p

    33p

    63.4k 63.4k 33p 3

    3p

    330p

    +

    ECGp

    Vout

    100k

    100n

    +

    ECGn +-

    +

    OPA333

    -

    +

    -

    +

    VCVS1 1

    OPA333 Used as Integrator

    to Remove DC and Simulate

    Real Response During

    Saturation

    The INA Front EndSimulation Circuit with Ideal INA and Vref = 2.5V as

    Integrator Input

  • 36Time (s)

    0.00 750.00m 1.50

    Vout[G = 1]

    2.50

    2.50

    Vout[G = 3]

    2.50

    2.50

    Vout[G = 6]

    2.50

    2.50

    Vout[G = 8]

    2.49

    2.50

    Vout[G=9]

    2.70

    2.71

    Vout[G=10]

    3.00

    3.01

    As the output of the

    Integrator Saturates from

    Increased Gain, Vout of the

    INA pulls away from Vref

    The INA Front EndECG + Integrator Output of INA vs. Gain for Vref = 2.5V

  • 37

    *AC Coupling Removes Electrode

    Offsets so that Higher Gain Can Be

    Used for Potentially Better SNR in the

    Signal Chain Path

    VCM + ECGp +

    VOSelectrode1

    VCM + ECGn +

    VOSelectrode2

    ECGp

    ECGn

    (ECGp ECGn)*Gain

    The INA Front EndIf it is Advantageous to Maximize Gain with a Low Noise

    INA up Front, Why not AC Couple?

  • 38

    Vref

    Vref

    Vref

    Vref

    R13 10M

    CCn 1u

    C9

    33

    0p

    C8

    33

    p

    C7

    33

    p

    R11 63.4kR10 63.4kC

    6 3

    3p

    C5

    33

    p

    R9 63.4kR8 63.4k

    V4 0

    R7 52k

    C4 47n

    V3 0

    R4 52k

    C2 47n R14 10M

    CCp 1u

    +

    ECGp

    +

    ECGn

    -

    +

    -

    +

    INA 1

    -

    +

    Vout

    The INA Front EndTINA Simulation Circuit to Show AC-Coupled INA Gain

    Sweep

  • 39Time (s)

    723.18m 969.60m 1.22

    Vo

    lta

    ge

    (V

    )

    1.71

    1.98

    2.25

    2.52

    2.79

    3.06

    The INA Front EndINA Gain = 1-1000 with VREF = 2.5V AC Coupled

  • 40

    ECGp

    ECGn

    VCMVout VOS Gain

    CMRR 20 log10

    V CM

    V OS

    20V CM Gain

    V out

    Vout ECGp ECGn VOSelectrode VOSOPAV CM

    10

    CMRR

    20

    Gain

    Lower CMRR = More

    Unwanted Output Signal

    The INA Front EndWhat is CMRR? Why is it Important in ECG?

  • 41

    The INA includes the

    R and C and must be

    considered in the

    overall CMRR Analysis

    Vdiff_actual Vinp

    Rp12

    Rp12 j

    Cc1

    2

    Vinn

    Rp22

    Rp22 j

    Cc2

    2

    Mismatch in Rp and Cccauses a differential

    signal error

    Even a 1% tolerance on Cc cause a 20dB

    attenuation in CMRR

    AmpAmp

    The INA Front EndWhat is CMRR? Why is it Important in ECG?

    CC1

    CC2

    RP1

    RP2

    ECGp

    ECGn

    VCM

  • 42

    VCCVref

    Vref

    Vref

    R13 10M

    C12 1u

    Vout

    R14 10M

    +

    VCM

    R1 2

    0k

    C2 47n

    R4 52k

    V3 0

    C4 47n

    R7 52k

    V4 0

    R8 63.4k R9 63.4k

    C5 3

    3p

    C6 3

    3p

    R10 63.4k R11 63.4kC

    7 3

    3pC8 3

    3p

    C9 3

    30p

    C1 1u

    RG

    +

    -V-

    RefOut

    V+RG

    U1 INA333_C

    CMR TINA Circuit Test By

    Sweep of Mismatch of Input

    Coupling Capacitors

    The INA Front End50/60Hz Common Mode Simulation Circuit with 1F

    Coupling Capacitors Mismatched

  • 43

    T

    Frequency (Hz)

    100.00m 1.00 10.00 100.00

    Voltage (

    V)

    -100.00

    -80.00

    -60.00

    -40.00

    0% Mismatch

    .5% Mismatch

    The INA Front EndPlot of CMRR vs. Frequency for .01 - .5% Coupling

    Capacitor Mismatch

  • 44

    T

    Time (s)

    0.00 400.00m 800.00m

    Voltage (

    V)

    2.50

    2.51

    Lower Frequency

    Signals Couple

    Directly Into the ECG

    Signal to the Output

    The INA Front EndPlot of ECG Response to 5Hz CM Input Signal (0%-

    .5%) CC Mismatch

  • 45

    T

    Time (s)

    0.00 400.00m 800.00m

    Vout

    2.50

    2.51 50/60Hz Noise Rejection is Virtually Unaffected by AC

    Coupling

    Dependent Primarily on the Noise Magnitude and the

    CMRR of the Front End INA

    The INA Front EndPlot of ECG Response to 50/60 Hz CM Input Signal

  • 461

    The Right Leg Drive Amplifier

  • 47

    Average VCM is

    Inverted and Fed

    Back to RL;

    Cancels 50/60Hz

    noise

    *Tapping off center of split gain

    resistor feeds the following

    voltage to the RL Drive Circuit

    [(Vcm+ ECGP )+ (Vcm+ ECGn )]/ 2

    = Vcm + (ECGp + ECGn )/2

    CMnoise

    CMnoise

    ECGp

    ECGn

    The RL Drive AmplifierThe RL Drive Amplifier Serves 2 Purposes: (1)

    Common Mode Bias (2) Noise Cancellation

  • 48

    Vre

    f

    VCC

    VCC

    Vref

    VCC

    VC

    C

    Vref

    Vout

    RG

    +

    -V-

    RefOut

    V+RG

    U3 INA333

    RG1 10k

    RG2 10k

    R3 10k

    R5 1M

    R6 1kNS

    NS1 2.5

    R13 1

    M

    R14 1

    M

    NS

    NS2 2.5

    +

    ECGn

    +

    ECGp

    R15 1M

    R12 1

    M

    NS

    NS3 2.5

    C10 1u

    +

    -

    +

    U1 OPA333

    R2 1k

    R1 1k

    R7 1k

    C4 47n

    R4 1k

    C2 47n

    R8 63.4k R9 63.4k

    C5 3

    3p

    C6 3

    3p

    R10 63.4k R11 63.4k

    C7 3

    3pC8 3

    3p

    C9 3

    30p

    +N

    ois

    e

    +

    -

    +

    U2 OPA333

    +

    -

    +

    U4 OPA333

    R16 1

    M

    = Included for

    TINA spice

    Convergence

    The RL Drive Amplifier Simulation Circuit for Response to 50/60 Hz CM Noise

    Injection Source

  • 49

    T

    Time (s)

    0.00 665.73m 1.33

    ECGn

    -150.00u

    750.00u

    ECGp

    -150.00u

    750.00u

    Noise

    -1.00

    1.00

    Vout

    2.50

    2.51

    The RL Drive Amplifier TINA Simulation with NO RL Drive; CM Noise is Coupled to

    Output

  • 50

    T

    Time (s)

    5.46m 282.16m 558.86m

    ECGn

    -150.00u

    750.00u

    ECGp

    -150.00u

    750.00u

    Noise

    -1.00

    1.00

    Vout

    2.50

    2.51

    The RL Drive Amplifier TINA Simulation with RL Drive; Output Noise is

    Reduced

  • 51

    VoutA1

    Vcm VECGp Vep Vcm VECGn Ven RG

    RG

    2

    VOSA1

    ECGn

    ECGpVep

    Ven

    VREF

    RF

    RI

    RG/2

    RG/2

    RA

    RA

    VECGp + Vep + VCM

    VECGn + Ven + VCM

    VRL

    Vref VoutA1 RI

    RF Vref

    More Gain = Better CMRRLoop Corrects for Electrode Offset, VOSA1,

    and VOSRLD

    The RL Drive Amplifier Analyzing the RLD Amplifier Loop

  • 52

    The RL Drive Amplifier Simulation Circuit for CMRR of RLD Loop

    Vre

    f

    VCC

    VCC

    Vref

    VCC

    VC

    C

    VCC

    Vref

    RG1 25k

    RG2 25k

    R3 10k

    R14 1

    00k

    R7 52k

    C4 47n

    R4 52k

    C2 47n

    R8 63.4k R9 63.4k

    C5 3

    3p

    C6 3

    3p

    R10 63.4k R11 63.4k

    C7 3

    3pC8 3

    3p

    C9 3

    30p

    +

    -

    +

    U2 OPA333

    +

    -

    +

    U4 OPA333

    RG

    +

    -V-

    RefOut

    V+RG

    U3 INA333

    R12 1

    MC10 1u

    +

    -

    +

    U1 OPA333R15 1M

    R13 1

    00k

    V3 0

    V4 0

    R2 100k

    R16 1

    0M

    R_R

    LD

    52k

    C_R

    LD

    47n R

    17 1

    M

    V1 2.5

    V2 2.5

    NS

    NS1 2.5

    +

    Vcm

    Vout

    RF 10k

    Sweep Feedback

    Resistor Gain to

    show Effects of

    CMRR @ 50/60Hz

  • 53

    The RL Drive Amplifier CMRR Plots vs. Gain in RLD Loop

    T

    Frequency (Hz)

    10.00 100.00

    CM

    RR

    (d

    B)

    -120.00

    -100.00

    -80.00

    RF = 10k

    RF = 1M

    RF = 100k

    RF = 10M

  • 54

    Electrode

    Resistance Varies

    With Contact and

    Moisture, Presents

    Problems for RLD

    Stability

    The RL Drive Amplifier RL Drive Stability Simulation Circuit

    Local RLD Loop is

    Broken to Ensure

    Proper Phase Margin

    Over Range of

    Electrode Resistance

    Vre

    f

    VCC

    VCC

    VrefVCC

    VC

    C

    VCC

    Vref

    RG1 25k

    RG2 25k

    R3 10k

    R14 1

    00k

    R7 52k

    C4 47n

    R4 52k

    C2 47n

    R8 63.4k R9 63.4k

    C5 3

    3p

    C6 3

    3p

    R10 63.4k R11 63.4k

    C7 3

    3pC8 3

    3p

    C9 3

    30p

    +

    -

    +

    U2 OPA333

    +

    -

    +

    U4 OPA333

    RG

    +

    -V-

    RefOut

    V+RG

    U3 INA333

    +

    Vin

    C1 1

    G

    VoA

    R12 1

    MC10 1u

    +

    -

    +

    U1 OPA333R15 1M

    V3 0

    V4 0

    R2 100kL1 1G

    R_R

    LD

    52k

    C_R

    LD

    47n

    Vloop

    R17 1

    M

    V1 2.5

    V2 2.5

    R5 10M

  • 55

    T

    Frequency (Hz)

    1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M

    Gain

    (dB

    )

    -20.00

    0.00

    20.00

    40.00

    60.00

    80.00

    100.00

    120.00

    1/Beta

    AOL

    The RL Drive Amplifier RL Drive Simulation Showing Instability in the RLD

    Feedback Loop

    > 20dB/dec ROC (Rate of

    Closure) = INSTABILITY

  • 56

    T

    Frequency (Hz)

    1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M

    Gain

    (dB

    )

    -20.00

    0.00

    20.00

    40.00

    60.00

    80.00

    100.00

    120.00

    Feedback Comp

    Placed vs. Worst

    Case Electrode

    Resistance and

    RLD AOL

    Intersection

    of 1/ and

    AOL curve > -

    40dB/dec

    The RL Drive Amplifier Using RLD Simulation to Compensate for 1/Beta

    Variation With Electrode Resistance

  • 57

    Vre

    f

    VCC

    VCC

    Vref

    VCC

    VC

    C

    VCC

    Vref

    RG1 25k

    RG2 25k

    R3 10k

    R14 1

    00k

    R7 52k

    C4 47n

    R4 52k

    C2 47n

    R8 63.4k R9 63.4k

    C5 3

    3p

    C6 3

    3p

    R10 63.4k R11 63.4k

    C7 3

    3pC8 3

    3p

    C9 3

    30p

    +

    -

    +

    U2 OPA333

    +

    -

    +

    U4 OPA333

    RG

    +

    -V-

    RefOut

    V+RG

    U3 INA333

    +

    Vin

    C1 1

    G

    VoA

    R12 1

    MC10 1u

    +

    -

    +

    U1 OPA333R15 1M

    R13 1

    00k

    V3 0

    V4 0

    R2 100k

    R16 1

    0M

    L1 1GR_R

    LD

    52k

    C_R

    LD

    47n

    Vloop

    R17 1

    M

    R18 1

    0M

    R19 10M

    V1 2.5

    V2 2.5

    The RL Drive Amplifier RL Drive Stability Simulation Circuit of Feedback #1

  • 58

    The RL Drive Amplifier RL Drive Stability Simulation Circuit of Feedback #2

    Vre

    f

    VCC

    VCC

    Vref

    VCC

    VC

    C

    VCC

    Vref

    Vref

    RG1 25k

    RG2 25k

    R3 10k

    R14 1

    00k

    R7 52k

    C4 47n

    R4 52k

    C2 47n

    R8 63.4k R9 63.4k

    C5 3

    3p

    C6 3

    3p

    R10 63.4k R11 63.4k

    C7 3

    3pC8 3

    3p

    C9 3

    30p

    +

    -

    +

    U2 OPA333

    +

    -

    +

    U4 OPA333

    RG

    +

    -V-

    RefOut

    V+RG

    U3 INA333

    +

    Vin

    C1 1

    G

    VoA

    R12 1

    MC10 1u

    +

    -

    +

    U1 OPA333R15 1M

    R13 1

    00k

    V3 0

    V4 0

    R2 100k

    R16 1

    0M

    L1 1GR_R

    LD

    52k

    C_R

    LD

    47n

    Vloop

    R17 1

    M

    V1 2.5

    V2 2.5

    R1 10M

  • 59

    Vre

    f

    VCC

    VCC

    Vref

    VCC

    VC

    C

    VCC

    Vref

    RG1 25k

    RG2 25k

    R3 10k

    R14 1

    00k

    R7 52k

    C4 47n

    R4 52k

    C2 47n

    R8 63.4k R9 63.4k

    C5 3

    3p

    C6 3

    3p

    R10 63.4k R11 63.4k

    C7 3

    3pC8 3

    3p

    C9 3

    30p

    +

    -

    +

    U2 OPA333

    +

    -

    +

    U4 OPA333

    RG

    +

    -V-

    RefOut

    V+RG

    U3 INA333

    R12 1

    MC10 1u

    +

    -

    +

    U1 OPA333R15 1M

    R13 1

    00k

    V3 0

    V4 0

    R2 100k

    R16 1

    0M

    R_R

    LD

    52k

    C_R

    LD

    47n R

    17 1

    M

    V1 2.5

    V2 2.5

    C3 3.3nR1 10k

    NS

    NS1 2.5

    +

    Vcm

    Vout

    R5 10M

    The RL Drive Amplifier RLD Stability Circuit with Compensated Amplifier

  • 60

    T

    Frequency (Hz)

    1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M

    Gain

    (dB

    )

    -20.00

    0.00

    20.00

    40.00

    60.00

    80.00

    100.00

    120.00

    RLD Local R

    Feedback

    AOL INA+ Electrode

    Loop Feedback

    Composite

    Feedback

    1/

    The RL Drive Amplifier RL Drive Stability Simulation of Separate Feedback

    Paths

    Compensation

    Feedback

  • 61

    T

    Frequency (Hz)

    1.00 3.16k 10.00M

    Gain

    (dB

    )

    -20.00

    0.00

    20.00

    40.00

    60.00

    80.00

    100.00

    120.00

    The RL Drive Amplifier Compensated RLD Circuit Simulation of 1/Beta and

    AOL Intersection

    Intersection of 1/Beta and

    AOL curve is 20dB/dec =

    STABLE

  • 62

    T

    Ga

    in (

    dB

    )

    0.00

    20.00

    40.00

    60.00

    80.00

    100.00

    120.00

    Frequency (Hz)

    1.00 3.16k 10.00M

    Ph

    as

    e [

    de

    g]

    0.00

    45.00

    90.00

    135.00

    180.00

    The RL Drive Amplifier Gain and Phase Margin Plots of Compensated RLD

    Amplifier

    Loop Gain Phase Margin

    @ 0dB = 70 degrees

  • 63

    The RL Drive Amplifier Step Response of RLD Amplifier and ECG Output

    T

    Time (s)

    0.00 5.00m 10.00m

    Vin

    -100.00m

    100.00m

    VoA

    2.45

    2.55

    Vout

    2.20

    2.80

  • 641

    The ECG Shield Drive

  • 65

    The ECG Shield DriveShield drive eliminates leakage to ECG Inputs

    Capacitance of cable can be 500 pF to 1.5 nF Isolation resistor Necessary for improved EMI/RFI filtering

    Shield is driven to (VIN(+) VIN()) /2

    Eliminates Leakagefrom CP1 and CP2

    +

    +

    +

    +

    ECGP

    ECGN

    CP1

    CP2VCC/2

  • 66

    Vref

    Vre

    f

    VCC

    VC

    C

    VC

    C

    VF1R1 10k

    R2 10k

    R15 1M

    R12 1

    M

    NS

    NS3 2.5

    C10 1u

    +

    -

    +

    U1 OPA333

    RG

    +

    -V-

    RefOut

    V+RG

    U2 INA333

    VF2

    VF3

    C9 3

    30p

    C8 3

    3p

    C7 3

    3p

    R11 63.4kR10 63.4k

    C6 3

    3p

    C5 3

    3p

    R9 63.4kR8 63.4kC2 47n

    R5 1k

    C4 47n

    R7 1k

    R4 10k

    R3 10k

    +

    -

    +

    U3 OPA333

    C1 1

    n

    +

    VG

    1

    C3 1

    TVout

    VinP

    VFL1 1T

    VinN

    Effective

    Cable Shield

    Capacitance

    The ECG Shield DriveAC Stability Simulation Circuit for OPA333 as Shield Driver

  • 67

    Frequency (Hz)

    1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M

    Gain

    (d

    B)

    -20.00

    0.00

    20.00

    40.00

    60.00

    80.00

    100.00

    120.00

    The ECG Shield DriveAOL + 1/Beta Response of OPA333 Shield Drive and 1nF

    Cable Capacitance

    -40dB/decade Intersection

    of AOL and 1/Beta =

    UNSTABLE

  • 68

    Vref

    Vre

    f

    VCC

    VC

    C

    VC

    C

    VF1R1 10k

    R2 10k

    R15 1M

    R12 1

    M

    NS

    NS3 2.5

    C10 1u

    +

    -

    +

    U1 OPA333

    RG

    +

    -V-

    RefOut

    V+RG

    U2 INA333

    VF2

    VF3

    C9 3

    30p

    C8 3

    3p

    C7 3

    3p

    R11 63.4kR10 63.4k

    C6 3

    3p

    C5 3

    3p

    R9 63.4kR8 63.4kC2 47n

    R5 1k

    C4 47n

    R7 1k

    R4 10k

    R3 10k

    +

    -

    +

    U3 OPA333

    C1 1

    n +

    VG1

    C3 1T

    Vout

    VinP

    VFL1 1T

    R6 2k

    R13 10k

    C11 1nShield Drive

    Compensation

    Network

    The ECG Shield DriveTINA Simulation Circuit for Stabilized OPA333 Shield Driver

  • 69

    Ga

    in (

    dB

    )

    0.00

    20.00

    40.00

    60.00

    80.00

    100.00

    120.00

    Frequency (Hz)

    1.00 1.00k 1.00M

    Ph

    ase

    [d

    eg

    ]

    -180.00

    -135.00

    -90.00

    -45.00

    0.00

    The ECG Shield DriveTINA Simulation Shows > 45 Degrees Phase Margin for

    OPA333 Shield Driver

  • 701

    Lead Off Detection

  • 71

    Pull up Resistors Force +IN to Comparator High When Lead is Removed

    Comparator Voltage triggers ALERT

    Lead Off Indicative of Weak Lead

    Lead Off DetectionLead Off Differentiates a Bad Lead from an Arrythmia

    VTH

    VTH

    VCC

    VREF

    Body-Electrode

    Model

  • 72

    Lead Off DetectionTINA Simulation Circuit for Lead Off Detect

    VCC Vref

    VCC

    VCC

    VCC

    VCC

    VCC

    VR

    VR

    VCC

    VCC Vref

    VS

    VS

    VS2

    VS2

    VoutRG1 10k

    RG2 10k

    R2 1k

    R1 1k

    R7 52k

    C4 47n

    R4 52k

    C2 47n

    R8 63.4k R9 63.4k

    C5 3

    3p

    C6 3

    3p

    R10 63.4k R11 63.4k

    C7 3

    3pC8 3

    3p

    C9 3

    30p

    RG

    +

    -V-

    RefOut

    V+RG

    U3 INA333

    VF1

    VF2

    R15 1

    0M

    R12 1

    M

    R3 1

    0M

    +

    -

    +

    U1 TLV3701R13 1

    0M

    R14 1

    3.5

    M

    VF3

    -

    +

    VM1

    +

    -

    +

    U2 TLV3701

    -

    +

    VM2 R5 1

    M

    R6 1

    M

    +

    -

    +

    U4 OPA348

    +

    -

    +

    U5 OPA348 R16 10k

    R17 1M

    C1 10nR

    19 1

    M

    R20 1

    M

    R18 100kR21 52k

    C3 47n R22 10k

    NS

    NS1 2.5

    - +

    SW

    1 1

    +

    VG1

    -+

    SW

    2 1

    +

    VG2

    Voltage-Controlled

    Switches Simulate

    Disconnected Lead

  • 73

    Lead Off DetectionTINA Simulation Results for Lead Off Detect

    T

    Time (s)

    401.55u 559.69u 717.83u

    Vswitch

    0.00

    2.00

    VComparator

    0.00

    4.99

  • 741

    Pace Detection

  • 75

    ap = Amplitude (2-700mV)

    ao = Overshoot

    dp = Pulse Width (.1-100us)

    t0 = Overshoot Time Constant (4-100ms)

    Rise Time = 100us

    ap

    ao

    t0

    dp

    Pace DetectPace Maker Pulse Specifications

  • 76

    VCC

    VCC

    VCCVCC

    VCC

    VCC

    VCC Vref

    VCC

    VCC Vref

    Vref

    +

    -

    +

    OPA348

    10n

    R1 1

    00k

    R2 1k

    +

    -

    +

    OPA348

    R3 1

    M

    R4 100k

    C2 100p

    +

    -

    +

    TLV3701

    +

    -

    +

    TLV3701

    R5 2

    MR

    6 2

    MR

    7 2

    MR

    8 4

    00k

    Vout 1

    0k

    +

    ECGn

    +

    ECGp

    52k

    47n

    52k

    47n

    63.4k 3

    3p

    63.4k 33p

    C9 3

    30p

    RG

    +

    -V-

    RefOut

    V+RG

    U5 INA333

    R17 1

    M

    +

    -

    +

    U6 OPA348+

    -

    +

    U7 OPA348 R18 10k

    R20 100k

    10n

    100k

    R22 1

    M

    R23 1

    M

    +

    Vpace Pos

    -

    +

    Vpace1

    -

    +Vpace2

    VPDetect

    VECG_block

    +

    Vpace Neg

    10k

    Pace DetectPace Detect Circuitry in Parallel with ECG Signal Path

    AC Coupled Input Blocks ECG Signal and Retains the PACER

    Pulse

    Window Comparator Triggers if PACER Signal Detected

    Separate PACER Processing Circuitry

  • 77

    Time (s)

    153.93m 209.78m 265.62m

    Vout

    2.50

    2.51

    Vpace Pos

    0.00

    1.00m

    Pace DetectPACE Signal Extracted From PACE + ECG Waveform

  • 781

    INA Post Gain and Filtering

  • 79

    At

    electrode

    High Gain

    with low noise

    amplifiers

    ADC

    Noise

    At

    ADC

    Amp

    noise

    Noise free

    Dynamic range

    Am

    plitu

    de

    Signal Chain

    At

    electrode

    Low gain At

    ADC

    Noise free

    Dynamic range

    Am

    plitu

    de

    Signal Chain

    a) Using a low resolution ADC b) Using a high resolution ADC

    At

    electrode

    High Gain

    with low noise

    amplifiers

    ADC

    Noise

    At

    ADC

    Amp

    noise

    Noise free

    Dynamic range

    Am

    plitu

    de

    Signal Chain

    At

    electrode

    Low gain At

    ADC

    Noise free

    Dynamic range

    Am

    plitu

    de

    Signal Chain

    a) Using a low resolution ADC b) Using a high resolution ADC

    x200 x5

    SAR + filter Option Results in Same Input-Referred Noise as

    the DC Coupled Delta-Sigma, but at what COST?

    INA Post Gain and FilteringChoice of High Gain + SAR ADC OR Low Gain + 24 bit Delta

    Sigma ADC

  • 80

    VCC

    Vref

    VCC

    VCC

    Vref

    VCC

    Vre

    fVC

    C

    VoutRG1 10k

    RG2 10k

    R3 10k

    R5 1M

    R6 1kNS

    NS1 2.5

    R13 1

    M

    R14 1

    MNS

    NS2 2.5

    +

    ECGn

    +

    ECGp

    R2 1k

    R1 1k

    R7 1k

    C4 47n

    R4 1k

    C2 47n

    R8 63.4k R9 63.4k

    C5 3

    3p

    C6 3

    3p

    R10 63.4k R11 63.4kC

    7 3

    3pC8 3

    3p

    C9 3

    30p

    +

    -

    +

    U2 OPA333

    +

    -

    +

    U4 OPA333

    R16 1

    M

    +

    -

    +

    U5 OPA333

    R18 2M

    R19 10k

    VF1

    R17 1

    0M

    NS

    NS

    4 2

    .5

    R12 1

    M

    +Noise

    R15 2

    M

    R20 2

    M

    C1 1

    0p

    R21 2M

    R22 1M

    R23 1

    M

    NS

    NS5 2.5

    C10 1u

    +

    -

    +

    U1 OPA333

    RG

    +

    -V-

    RefOut

    V+RG

    U3 INA333

    INA Post Gain and FilteringINA + Post Gain Amp With Differential Noise Source

  • 81

    Time (s)

    0.00 187.93m 375.86m

    50/60Hz

    -1.00

    1.00

    Vout

    2.16

    4.33

    INA Post Gain and FilteringNoise Coupled Differentially Translates to Output

    50/60 Hz Couples Differentially;

    How Do We Get Rid of It?

  • 82

    INA Post Gain and FilteringUse Filter Pro to Design a 50/60 Hz Notch

  • 83

    VCC

    Vref

    VCC

    VCC

    Vref

    VCC

    VCC

    VCC

    Vref

    VC

    C

    Vref

    Vout

    RG1 10k

    RG2 10k

    R3 10k

    R5 1M

    R6 1k

    NS

    NS1 2.5

    R13 1

    M

    R14 1

    M

    +

    ECGn

    +

    ECGp

    R2 1k

    R1 1k

    R7 52k

    C4 47n

    R4 52k

    C2 47n

    R8 63.4k R9 63.4k

    C5 3

    3p

    C6 3

    3p

    R10 63.4k R11 63.4k

    C7 3

    3pC8 3

    3p

    C9 3

    30p

    R16 1

    M

    R18 1MR19 10k

    VF1

    NS

    NS

    4 2

    .5

    R12 1

    M

    +Noise

    R15 2

    M

    R20 2

    M

    C1 10p

    R21 2M

    C3 330n

    R27 8

    .06k

    R28 8.06k

    R24 64.9k

    R25 6

    4.9

    k

    R29 8

    .06k

    C12 330n

    NS

    NS3 2.5

    R22 1

    M

    R23 1

    M

    VF2

    +

    -

    +U6 OPA348

    +

    -

    +U2 OPA348

    C10 1n

    +

    -

    +U1 OPA348

    RG

    +

    -V-

    RefOut

    V+RG

    U5 INA333_C

    +

    -

    +

    U4 OPA348

    R26 8.06k

    R17 1

    M

    +

    -

    +

    U7 OPA378

    +

    -

    +

    U3 OPA333

    C11 1u

    R30 1

    M

    INA Post Gain and FilteringECG Circuit with Added 50/60Hz Notch + Post Gain

  • 84Time (s)

    94.83m 237.76m 380.69m

    Noise

    -1.00

    968.42m

    Vout_Filter

    2.37

    3.40

    Vout_PostGain

    2.50

    2.51

    Vout_INA

    2.50

    2.51

    INA Post Gain and FilteringPlots of ECG Output with Gain and 60Hz Notch

  • 85

    Time (s)

    400m 417m 433m 450m 467m 483m 500m 517m 533m 550m

    EC

    G (

    V)

    0.00

    123.63m

    247.25m

    370.88m

    494.51m

    Time (s)

    400m 417m 433m 450m 467m 483m 500m 517m 533m 550m

    EC

    G (

    V)

    0.00

    123.63m

    247.25m

    370.88m

    494.51m

    Fsample (Hz) = n*(1/50Hz + 1/60Hz)-1 = n*(27.27) Hz

    INA Post Gain and FilteringLine Cycle Sampling with SAR converter on T Wave at

    Common Frequency Multiples of 50/60Hz

  • 86

    `

    Patient

    Protection,

    Lead

    selection

    INA

    Elec 1

    Elec 9

    RL

    x5 x320.05 Hz 100 Hz

    ADCMUX

    Elec 2

    Elec 8 INA

    High order

    Anti aliasing

    filter

    16 bit,100KSps

    DC blocking

    HPF

    Additional

    gain DOUT

    `

    Patient

    Protection,

    Lead

    selection

    INA

    Elec 1

    Elec 9

    RL

    x5

    ADCMUX

    Elec 2

    Elec 8INA

    24 bit,100KSps

    DOUTSimple RC filter

    100 Hz

    ADS1258

    Using a low resolution ADC00

    Using a high resolution ADC

    INA Post Gain and FilteringComparison of Delta Sigma ADC vs. Lower

    Resolution SAR ADC

    Reduced HardwareFilter Requirements RelaxedLower PowerLower System CostElectrode Offset Info Retained

  • 87

    `

    Patient

    Protection,

    Lead

    selection

    INA

    Elec 1

    Elec 9

    RL

    x5

    ADCMUX

    Elec 2

    Elec 8 INA

    24 bit,

    100KSps

    DOUTSimple RC filter

    100 Hz

    ADS1258

    `

    Patient

    Protection,

    Lead

    selection

    INA

    Elec 1

    Elec 9

    RL

    x5

    ADCMUX

    Elec 2

    Elec 8 INA

    24 bit,

    100KSps

    DOUTSimple RC filter

    100 Hz

    ADS1258

    INA Post Gain and FilteringBlock Diagram of INA Gain, Simple RC Filter, and ADS1258

    A single ADC in the MUX approach does not

    necessarily mean lower power due to the higher

    speed needed to perform MUX switching

  • 881

    ADS1298 Introduction

  • 89

    The ADS129xThe All-In-One ECG Chip

  • 90

    CMOS input PGA

    High input impedance

    Low input current noise

    Rail to rail input

    24-bit

    Delta-Sigma

    ADC

    +

    -

    +

    -

    +

    -

    +

    -

    RLD

    CH1P

    CH1MPGA

    PGA

    BUF

    BUF

    ADS129xInput Amplifier Specifications for Single Channel AFE

    Low Input Voltage NoiseCurrent Noise = 0.1pAHz Over BandwidthNo Output Phase Reversal100dB AOL @ 50/60 Hz90dB CMR @ 50/60 HzIB = 150pA MAX vs. TemperatureZIN >100M, CIN = 100pF max

  • 91

    Noise is optimized with amplifier gain=4

    The 4uV p-p includes the crest factor of 6.6 to convert rms to pk-pk

    Noise is referred to the input

    CH1P

    CH1M

    AFE

    +

    ADC

    ADS129xNoise Model for ECG AFE

  • 92

    ADS129xProgrammable Data Rates for Low Power and High

    Resolution Modes

  • 93

    ADS129xMUX Selects Inputs to Front End PGA

    Normal Electrode

    Input Shorted

    RLD Input

    VDD

    TMP Sensor

    Input Test Signal

  • 94

    0.333(RA+LA+LL)

    0.5(RA+LA)

    0.5(LA+LL)

    0.5(RA+LL)

    Wilson Central

    Voltage

    Augmented Lead

    Voltages

    *The Same Amplifiers Used to Derive the WCT Voltage Can be

    Switched to Obtain the Augmented Leads

    ADS129xWilson Central Terminal

  • 95

    +/-VCM2 + VS

    +/-VCM2 + VS

    VO = VS(1+R2/R1) + VCM1 + (VCM2 VCM1) x (R2/R1)

    VCM1 = AVDD/2

    +

    -

    AVDD

    +

    -

    AVDD

    +

    -

    AVDD

    VO2

    R1 R2

    R1 R2

    VO1

    RLD Sum(Register set)

    Right leg drive

    Lead I configuration

    RS

    RS

    RS

    External R-C

    ADC2

    200K

    200K100K

    5M

    ADS129xInput Amplifier and RLD Selection

    *Compensation of RLD Amplifier is Based on the Gain Selected

    and the Number of Amplifiers in the Loop

  • 96

    All switches can be controlled

    by register settings

    CH1P

    CH1N

    CH3P

    CH3N

    CH2N

    CH2N

    CH4P

    CH4N

    50K

    50K

    50K

    50K

    50K

    50K

    50K

    50K

    220K

    220K

    220K

    220K

    220K

    220K

    220K

    220K

    RLDINV

    RLDOUT

    RLDREF

    RLD

    AMP

    Rext10MCext264pF

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -CH5P

    CH5N

    CH7P

    CH7N

    CH6P

    CH6N

    CH8P

    CH8N

    50K

    50K

    50K

    50K

    50K

    50K

    50K

    50K

    220K

    220K

    220K

    220K

    220K

    220K

    220K

    220K

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -

    +

    -

    20K

    20K

    +

    -

    RLDP1

    RLDP3

    RLDP5

    RLDP7

    RLDP2

    RLDP4

    RLDP6

    RLDP8

    RLDM8

    RLDM6

    RLDM4

    RLDM2

    RLDM1

    RLDM3

    RLDM5

    RLDM7

    20K

    20K

    20K

    20K

    20K

    20K

    RLDREF_INT

    ADS129x

    RLD_INV

    RLD_OUT

    RLD_REF

    RLD

    AMP

    REXT2M

    CEXT264pF

    +

    -

    /RLDREF_INT

    RLDREF_INT

    RLD

    Electrode

    220K

    220K

    CH1P

    CH8M

    RLIM

    R1

    R2

    AVDD - AVSS2

    AVDD - AVSS2

    WCTWCT_TO_RLD

    AVDD - AVSS2

    AVDD - AVSS2

    RLDREF_INTRLDREF_INT

    ADS129xRLD Selection8 Channel Case

    *Multiple PGA Outputs Can Be Switched to

    Derive Inverting RLD

  • 97

    ADS129xRLD with Multiple Devices

    Device 2

    RLDINV

    RLD OUT

    VA1-8

    RLD REF

    RLD IN

    +

    -

    Power Down

    Device 1

    RLDINV

    RLD OUT

    VA1-8

    RLD REF

    RLD IN

    +

    -

    Device n

    RLDINV

    RLD OUT

    VA1-8

    RLD REF

    RLD IN

    +

    -

    Power Down

    Device 2

    RLDINV

    RLD OUT

    VA1-8

    RLD REF

    RLD IN

    +

    -

    +

    -

    +

    -

    +

    -

    Power Down

    Device 1

    RLDINV

    RLD OUT

    VA1-8

    RLD REF

    RLD IN

    +

    -

    +

    -

    +

    -

    +

    -

    Device n

    RLDINV

    RLD OUT

    VA1-8

    RLD REF

    RLD IN

    +

    -

    +

    -

    +

    -

    +

    -

    Power Down

    To

    Input

    Mux

    To

    Input

    Mux

    To

    Input

    Mux

    Device 1

    RLDINV

    RLD OUT

    VA1-8

    RLD REF

    RLD IN

    +

    -

    Device 1

    RLDINV

    RLD OUT

    VA1-8

    RLD REF

    RLD IN

    +

    -

    +

    -

    +

    -

    +

    -

    Device 2

    RLDINV

    RLD OUT

    VA1-8

    RLD REF

    RLD IN

    +

    -

    Device 1

    RLDINV

    RLD OUT

    VA1-8

    RLD REF

    RLD IN

    +

    -

    Power Down

    Device 2

    RLDINV

    RLD OUT

    VA1-8

    RLD REF

    RLD IN

    +

    -

    +

    -

    +

    -

    +

    -

    Device 1

    RLDINV

    RLD OUT

    VA1-8

    RLD REF

    RLD IN

    +

    -

    +

    -

    +

    -

    +

    -

    Power Down

    To

    Input

    Mux

    To

    Input

    Mux

    To

    Input

    Mux

    *With Multiple Devices the RLD Output Becomes the

    Amplified Difference Between RLD REF and the

    Summation of Multiple Lead Outputs

  • 98

    >From CH1P

    >From CH1N

    >From CH3P

    >From CH3N

    From CH2PFrom CH7N

    From CH6P