316 kiran d. devade

26
Effect Of Orifice Diameter and Exit Valve Angles on Converging Vortex Tube PAPER CODE: 316 By: Mr. Kiran D. Devade, Indira COEM, Pune, Maharashtra Dr. Ashok T. Pise, Dy. Director, DTE (Maharashtra State) IV th International Conference on Advances in Energy Research Indian Institute of Technology, Bombay 10 th to 12 th December 2013

description

 

Transcript of 316 kiran d. devade

Page 1: 316 kiran d. devade

Effect Of Orifice Diameter and Exit Valve Angles on Converging Vortex Tube

PAPER CODE: 316

By:Mr. Kiran D. Devade, Indira COEM, Pune, Maharashtra

Dr. Ashok T. Pise, Dy. Director, DTE (Maharashtra State)

IV th International Conference on Advances in Energy Research

Indian Institute of Technology, Bombay10th to 12th December 2013

Page 2: 316 kiran d. devade

April 8, 2023ICAER 2013

Contents2

Introduction

Relevance, State of art, Proposed work

Development

Design, Types

Experimental Method

Test Rig , Expt. Procedure, Data Reduction

Results and Discussion

Effect of Pressure and, Conical Angles, COP,

Cooling Effect

Conclusion with Scope for future References

Page 3: 316 kiran d. devade

April 8, 2023ICAER 2013

Introduction3

Vortex tube is a very simple, cost effective, reliable, maintenance-free compact size and no moving parts

It separates compressed air into the two streams i.e. hot and cold stream

Page 4: 316 kiran d. devade

April 8, 2023ICAER 2013

Principle of Working4

Water Jacket

Water Jacket

ColdAirOut

HotAirOut

Compressed Air In

Cold Orifice

Vortex Chamber

Page 5: 316 kiran d. devade

April 8, 2023ICAER 2013

5

Theories Proposed

Adiabatic Compression and Expansion Effect of Friction and Turbulence Free and Forced Vortex theory Acoustic Streaming model Secondary Circulation Heat Transfer Theory

Black Magic ??

Page 6: 316 kiran d. devade

April 8, 2023ICAER 2013

6

Literature Review

Sr. No

YearResearcher

sResearch Results

1. 1931Georges Ranque

Ranque effectHot and Cold air

streams

2. 1945Rudolph Hilsch

Ranque-Hilsch Tube

Same

3. 1967Linder storm-

LangSeparation of

gasseparate gas mixtures,

4. 1979 Takahama Steam in VT Energy Separation

5. 1979 TakahamaTwo Phase Propane

Separation

6. 1988 R.T. BalmerLiquid Water

tubeEnergy separation

7. 2004Nikolay

Poshernevnatural gas

natural gas liquefaction

Page 7: 316 kiran d. devade

April 8, 2023ICAER 2013

7Sr. No. Investigator Year CMR L/D Pressur

eValve

Angles

Nozzle Numbe

rResults

1. Mohammad Sadegh et.al. 2011 0 to

1 21 2bar, 3 bar 500 2

The performance of curved vortex tube is

depends onthe value of turning

angle

2. K. Dincer,et.al. 2009 0 to

1 15

200 To

400 Kpa

300 to 1800

246

mostefficientplug

diameter of 5 mm , 300 valve angle,

3. Volkan Kırmacı 2009 0.5 15

150To

700Kpa

-

2345

6 c/s area 2x2

the temperaturegradient between the hot and cold outlets has decreased with

nozzle numbers

4. K. Dincer, et.al. 2010

0.1 to 0.9

15260 &300Kpa

2,3,4,5,6 with 3x3,4x4,5x5

C/s area

Variation of the exergy efficiency decreased with

decreasing Pi, x, vcold

State of Art

Page 8: 316 kiran d. devade

April 8, 2023ICAER 2013

8

Sr. No.

Investigator Year CMR L/D Pressure

Valve Angle

s

Nozzle Number Results

5.Burak

Markal,et.al.

20100To1

10203040

3,4,

5 bar

30456075

2

conical valves with a smaller angle in order

to improve the performance of the vortex tubes with

smallerL/D.

6.Prabakaran.jVaidyanatha

n.s2010 - 10

2To

4 bar-

Nozzle diameter 2,3,5Single Nozzle

better cooling effect the optimum value of

orifice diameter is 5mm and nozzle diameter is 3 mm

7.Prabakaran.jVaidyanatha

n.s2010 - 20 4 to 7

bar -

Nozzle diameter 2,3,5Single Nozzle

When the diameter of the orifice is 6 mm (0.5

D), it produces best cooling effect

8. Kun Changet.al. 2011

0 To1

12 0.4 Mpa -346

Increasing number of nozzle intakes can obtain the highest

possible temperature

9.

Maziar arjomandiYunpeng

xue

20070.17To1

- - - 1

he efficiency of the tube is maximised

whenthe area ratio is

between 0.9 and 0.98

Page 9: 316 kiran d. devade

April 8, 2023ICAER 2013

9Sr. No.

Investigator

Year CMR L/DPressu

re

Valve Angle

s

Nozzle

Number

Additional Work

10.

Maziar arjomand

iYunpeng

xue

2007 - -

234

5 bar

- 1

Vortex Generator is used of Varying angles, 2.479 to 23.069

11.

B Ahlborny, J Camirey and J U Kellerz

19960.05 to

0.952.5

33 to 67

Kpa- 4

Low pressure is used

with Vacuum Pump

Page 10: 316 kiran d. devade

April 8, 2023ICAER 2013

10

Proposed Work

To develop a vortex tube of L/D = 16 having converging type of cone.

Use of conical valves of 300,450,600,900

2 nozzle entries Orifice diameters of 5,6,7 mm are

used Brass tube is fabricated. Diverging cone angle of 60.

Page 11: 316 kiran d. devade

April 8, 2023ICAER 2013

11

Constructional Details

Page 12: 316 kiran d. devade

April 8, 2023ICAER 2013

12

Vortex Tube Geometry

No. Parameter Dimensions and number

1. Tube diameter entry 36mm

2. Tube diameter exit 14mm

3. Inlet nozzle diameter 4mm

4. Cold orifice diameter 5,6,7mm

5. Length of tube 225mm

6. Cone angle, φ 60

7. Conical valve angles ϴ 300,450,600,900

8. No. of entry nozzles 2

Page 13: 316 kiran d. devade

April 8, 2023ICAER 2013

13

Experimental Setup

Temp. Indicator

Vortex Tube

Compressor

FRL Unit

Rotameter

Test Rig

Page 14: 316 kiran d. devade

April 8, 2023ICAER 2013

14

Components

Valves of Varying Angles

Details of the Vortex tube

(a)30 degree conical Valve(b)45 degree conical Valve(c)60 degree conical Valve(d)90 degree conical Valve

a b c d

Page 15: 316 kiran d. devade

April 8, 2023ICAER 2013

15

Experimental Data

  45 Degree valve , 7 mm orifice

p Ta Tc Th Mc Ma CMF Ma Kg/s

2 28 23 30 140 170 0.82350.002809

3

3 28 16 30 190 200 0.95000.003812

7

4 28 13 30 260 280 0.92860.005217

3

5 28 5 29 280 300 0.93330.005618

7               

Page 16: 316 kiran d. devade

April 8, 2023ICAER 2013

16

Data Reduction

Cooling Effect/ Heating Effect :

Compressor Work : COP =

COP =f(μ,pi, ϴ)

cipc TTCm cQh

ihphh TTCmQh

1

211

.

logP

PVPw e

WorkComp

ectCoolingEff

.

Page 17: 316 kiran d. devade

April 8, 2023ICAER 2013

17

Results & Discussion (Effect of pressure)

With Increase in pressure the Temperature drop Increases

2 3 4 50

5

10

15

20

25

30

30

45

60

90

air supply pressure in (bar)

cold

en

d t

em

pera

ture

d

gre

es

Page 18: 316 kiran d. devade

April 8, 2023ICAER 2013

18

Effect of orifice diameter on COP

COP increases with cold orifice diameter

2 3 4 50.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

5

6

7

air supply pressure in bars

CO

P o

f con

verg

ing

tu

be

Page 19: 316 kiran d. devade

April 8, 2023ICAER 2013

19

Effect on static & actual temperature drop

2 3 4 50.00

10.0020.0030.0040.0050.0060.0070.0080.0090.00

static vs. actual temperature

Static 5

Actual 5

Static 6

Actual 6

Static 7

Actual 7

supply air pressure in bars

sta

tic a

nd

actu

al

tem

pera

ture

dro

p

Actual temperature drop is less than static temperature drop at all pressures

Page 20: 316 kiran d. devade

April 8, 2023ICAER 2013

20

Effect on Adiabatic Effectiveness

4 4.5 5 5.5 6 6.5 7 7.5 80

5

10

15

20

25

30

adiabatic effectiveness at CMF =0.9

30

45

60

90

cold end orifice diameter in mm

ad

iab

ati

c e

ffect-

iven

ess o

f vort

ex

tub

e

45 degree conical valve in converging mode of tube is more effective for d/D=0.5

Page 21: 316 kiran d. devade

April 8, 2023ICAER 2013

21

Theoretical and Actual COP

15 30 45 60 75 900.000.020.040.060.080.100.120.140.160.180.20 Theoret-

ical5

Actual 5

Theoret-ical 6

Actual 6

Theoret-ical 7

Actual 7

conical valve angles in degrees

CO

P o

f v

ort

ex t

ub

e

Theoretical COP is greater than Actual COP

Page 22: 316 kiran d. devade

April 8, 2023ICAER 2013

22

Effect of area ratio on COP

0.04 0.045 0.05 0.055 0.060.0000.0200.0400.0600.0800.1000.1200.1400.1600.180 COP at 3 bar pressure

30

45

60

90

area ratio Ao/ At

CO

P o

f c

on

verg

ing

tu

be

Vortex tube gives good performance at certain area ratio and when d/D=0.5

Page 23: 316 kiran d. devade

April 8, 2023ICAER 2013

23

Conclusion

converging type of vortex tube has proved to be promising as far as the optimization of cold mass fraction and lower cold end temperatures

It has satisfactorily produced lower temperature of about 50C

cold mass fractions of the order of 0.9 with COP as high as 0.202.

Page 24: 316 kiran d. devade

April 8, 2023ICAER 2013

24

The adiabatic effectiveness of the tube is on higher side and is 208%.

small deviation of 0.39 is observed in theoretical and actual COP of the tube.

d/D =0.5 is preferred for optimum performance of the tube, the result is in agreement of Nimbalkar (2009)

Page 25: 316 kiran d. devade

April 8, 2023ICAER 2013

25

References[1] G. Ranque, Experiments on expansion in a vortex with simultaneous exhaust of hot air and cold air, J. Phys. Radium (Paris) 4

(1933) 112–114.

[2] G. Ranque, Method and Apparatus for Obtaining from a Fluid under Pressure Two Outputs of Fluid at Different Temperatures, US Patent 1:952,281, 1934.

[3] Maxwell Demon, Maxwell demon comes to life, May 1947

[4] M. Hilsch, The use of the expansion of gases in a centrifugal field as cooling process, Rev. Sci. Instrum. 18 (2) (1947) 108–113

[5] P. K. Singh, R.G. Tathgir, D. Gangacharulyu, G. S. Grewal, an Experimental Performance Evaluation of Vortex Tube, IE (I) Journal—MC, Vol.84 (2004) 149-153

[6] C.M. GAO, Experimental Study on the Ranque–Hilsch Vortex Tube, PhD Thesis, Technische Universiteit Eindhoven, (2005)

[7] M. Arjomandi and Y. Xue, An investigation of the effect of the hot end plugs on the efficiency of the Ranque–Hilsch vortex tube, J. Eng. Sci. Technol. JESTEC Vol.2, No.3, (2007) 211–217

[8] K. D. Devade and A. T. Pise, Investigation of Refrigeration Effect Using Short Divergent Vortex Tube, International Journal of Earth sciences and engineering, Vol.5 No.1, (2012) 378-384.

[9] O. Aydın, B. Markal, M. Avci., New vortex generator geometry for a counter-flow Ranque-Hilsch vortex tube, Applied Thermal Engineering 30 (2010) 2505-2511

[10] P. Promvonge and S. Eiamsa-ard, Investigation on the Vortex Thermal Separation in a Vortex Tube Refrigerator, Science Asia 31 (2005) 215-223

[11] K. Dincer, S. Baskaya, B.Z. Uysal, I. Ucgul, Experimental investigation of the performance of a Ranque–Hilsch vortex tube with regard to a plug located at the hot outlet, international journal of refrigeration, 32 (2009) 87 – 94

[12] S. Nimbalkar and M. R. Muller, An experimental investigation of the optimum geometry for the cold end orifice of a vortex tube, Appl. Therm. Eng. 29 (2009) 509–514

[13] K. Dincer, A. Avci, S. Baskaya , A. Berber, Experimental investigation and exergy analysis of the Performance of a counterflow Ranque-Hilsch vortex tube with regard to nozzle cross-section areas, international journal of refrigeration 33 (2010) 954 -962

[14] O. Aydın, B. Markal, M. Avci., New vortex generator geometry for a counter-flow Ranque-Hilsch vortex tube, Applied Thermal Engineering 30 (2010) 2505-2511.

[15] Eiamsa-ard, Experimental investigation of energy separation in a counter-flow Ranque–Hilsch vortex tube with multiple inlet snail entries, International Communications in Heat and Mass Transfer 37 (2010) 637–643

[16] Y.T. Wu, Y. Ding, Y.B. Ji, C.F. Ma, M.C. Ge, Modification and experimental research on vortex tube, International Journal of Refri -geration 30 (2007) 1042-1049.

[17] Y. Xue and M. Arjomandi, The effect of vortex angle on the efficiency of the Ranque–Hilsch vortex tube, Exp. Therm. Fluid Sci. 33 (2008) 54–57.

Page 26: 316 kiran d. devade

April 8, 2023ICAER 2013

26