30 des 2014

download 30 des 2014

of 85

Transcript of 30 des 2014

  • 8/10/2019 30 des 2014

    1/85

  • 8/10/2019 30 des 2014

    2/85

    Vibration InstitutePiedmont ChapterSymposium 2011

    Presented by Tom McDermott

    SKF Sr. Application Engineer

    Friday May 13, 2011

    SKF is a registered trademark of SKF USA Inc.

    2010 SKF USA Inc.

    The contents of this publication are the copyright of the publisher and may not be reproduced (even extracts) unless prior written permission is granted. Every care has been taken toensure the accuracy of the information contained in this publication but no liability can be accepted for any loss or damage whether direct, indirect or consequential arising out of useof the information contained herein.

  • 8/10/2019 30 des 2014

    3/85

    Vibration Institute SKF Group Slide 2

    Discussion topics

    Bearing basics

    Bearing life expectancy

    Bearing failure statistics Pre-operational damage

    mode causes

    Operational damage

    mode causes Identifying loading patterns

    ISO Standard 15243

    Bearing damage analysis Securing evidence

    Conducting analysis

  • 8/10/2019 30 des 2014

    4/85

    Vibration Institute SKF Group Slide 3

    SKF bearing basics

    Purpose and functions of a bearing

    Bearing components and materials

    Types of bearing loads Rolling elements ball vs. roller

    Contact angle

    Precision class Radial and axial clearance

  • 8/10/2019 30 des 2014

    5/85

    Vibration Institute SKF Group Slide 4

    Purpose of a bearing and friction

    To provide low friction rotation ofmachine parts.

    To support and locate rotatingequipment.

    Resistance to motion which occurs when oneobject slides or rubs against another object.

    If not controlled, friction will result in:

    Heat generation Increased wear Increased noise Loss of power

  • 8/10/2019 30 des 2014

    6/85

    Vibration Institute SKF Group Slide 5

    Roles of a bearing

    Reduce friction

    Transmit loads

    Support the shaft Locate the shaft

  • 8/10/2019 30 des 2014

    7/85

    Vibration Institute SKF Group Slide 6

    Bearing components

    Outer ring

    Cage / retainer

    Inner ring

    Rolling elements(balls)

    Outer ringraceway

    Bore surface

    Inner ringraceway

    OD surface

  • 8/10/2019 30 des 2014

    8/85

    Vibration Institute SKF Group Slide 7

    Functions of the cage

    Minimize friction and heatgeneration.

    Prevent contact between adjacentrolling elements.

    Guide the rolling elements.

    Provide a surface for the lubricantto adhere to.

    Retain the rolling elements when

    bearings of a separable design aremounted or dismounted.

  • 8/10/2019 30 des 2014

    9/85

    Vibration Institute SKF Group Slide 8

    Types of bearing loads

    Radial load

    Axial load

    Combined

    load

  • 8/10/2019 30 des 2014

    10/85

    Vibration Institute SKF Group Slide 9

    Point and line contact

  • 8/10/2019 30 des 2014

    11/85

  • 8/10/2019 30 des 2014

    12/85

    Vibration Institute SKF Group Slide 11

    Types of ball bearings

    Self-aligningAngular contactDeep groove

  • 8/10/2019 30 des 2014

    13/85

  • 8/10/2019 30 des 2014

    14/85

  • 8/10/2019 30 des 2014

    15/85

    Vibration Institute SKF Group Slide 14

    Contact angle

    The lower the contact angle, the higher the radial load capacity

    The higher the contact angle, the higher the thrust load capacity

  • 8/10/2019 30 des 2014

    16/85

    Vibration Institute SKF Group Slide 15

    Bearings and contact angles

    As contact angleincreases, radial load

    capacity decreases; andaxial load (i.e. thrust)capacity increases.

  • 8/10/2019 30 des 2014

    17/85

    Vibration Institute SKF Group Slide 16

    Precision classes

  • 8/10/2019 30 des 2014

    18/85

    Vibration Institute SKF Group Slide 17

    Note: Radial clearances are notthe same as precision classes

    Radial clearance

    Axialclearance

    Bearing internal clearances

    C1 < C2 < CN < C3 < C4 < C5

  • 8/10/2019 30 des 2014

    19/85

    Vibration Institute SKF Group Slide 18

    How does temperature affect internal clearance?

    Reduced

    radialclearance

    Expansion

    Compression

  • 8/10/2019 30 des 2014

    20/85

    Vibration Institute SKF Group Slide 19

    Bearing life expectancy

    Based upon five assumptions :

    1. The bearing is defect free.

    2. The correct bearing type and size is selected for theapplication.

    3. Dimensions of the bearing mating parts are correct.

    4. The bearing will be mounted without damage.

    5. Good lubrication in the correct quantity will always be

    available to the bearing.

  • 8/10/2019 30 des 2014

    21/85

    Vibration Institute SKF Group Slide 20

    Circle of bearing life

  • 8/10/2019 30 des 2014

    22/85

    Vibration Institute SKF Group Slide 21

    Why bearings fail

    Four predominantcauses of premature

    bearing failure 90% of bearings outlive

    their machinery

    9.5% of bearings will be

    removed for preventativereasons

    0.5% of bearings fail intheir application (and this

    is generally preventable)

    16% Poor Installation

    36% Poor Lubrication

    14% Contamination

    34% Fatigue

  • 8/10/2019 30 des 2014

    23/85

    Vibration Institute SKF Group Slide 22

    Pre-operational damage mode causes

    Damage during transportation, handling and storage.

    Incorrect shaft and housing fits.

    Defective bearing seats on shafts and in housings.

    Faulty mounting practices.

    Static misalignment. Passage of electric current through the bearing.

  • 8/10/2019 30 des 2014

    24/85

    Vibration Institute SKF Group Slide 23

    Operational damage mode causes

    Static vibration

    Operational misalignment

    Ineffective sealing

    Ineffective or inadequate lubrication

    Passage of electric current through the bearing Excessive loading

  • 8/10/2019 30 des 2014

    25/85

    Vibration Institute SKF Group Slide 24

    Identifying loading patterns: inner ring rotation

    LoadZone

    LoadZone

    Load

  • 8/10/2019 30 des 2014

    26/85

    Vibration Institute SKF Group Slide 25

    Identifying loading patterns: outer ring rotation

    LoadZone

    LoadZone

    Load

  • 8/10/2019 30 des 2014

    27/85

    Vibration Institute SKF Group Slide 26

    Load zone when thrust loads are excessive

  • 8/10/2019 30 des 2014

    28/85

    Vibration Institute SKF Group Slide 27

    Thrust load + radial load = combined loads

  • 8/10/2019 30 des 2014

    29/85

    Vibration Institute SKF Group Slide 28

    Internal preload & out of round housing

  • 8/10/2019 30 des 2014

    30/85

    Vibration Institute SKF Group Slide 29

    Out of round housing visible in outer ring

  • 8/10/2019 30 des 2014

    31/85

    Vibration Institute SKF Group Slide 30

    Affects of misalignment in a bearing

  • 8/10/2019 30 des 2014

    32/85

  • 8/10/2019 30 des 2014

    33/85

  • 8/10/2019 30 des 2014

    34/85

    Vibration Institute SKF Group Slide 33

    Classifications: ISO system

    The ISO classification system is divided in six main areasand then further divided into sub-areas.

    Going through the table, 15 categories in total can beobserved in which the damage can be classified.

    These categories will be covered, one by one, indicatingthe features. A number of typical examples are shown.

    There are some other reasons for bearing damage, suchas design problems, etc. These are not classified in theISO standard.

  • 8/10/2019 30 des 2014

    35/85

    Vibration Institute SKF Group Slide 34

    Bearing damage classifications: ISO 15243

  • 8/10/2019 30 des 2014

    36/85

  • 8/10/2019 30 des 2014

    37/85

    Vibration Institute SKF Group Slide 36

    Fatigue: subsurface fatigue

    1. Fatigue1.1. Subsurface fatigue

    1.2. Surface initiated fatigue

  • 8/10/2019 30 des 2014

    38/85

    Vibration Institute SKF Group Slide 37

    Fatigue: surface initiated fatigue

    Surface distress

    Reduced lubricationregime

    Sliding motion

    Burnishing, glazing

    Asperity micro-cracks Asperity micro-spalls

    1. Fatigue1.1. Subsurface fatigue

    1.2. Surface initiated fatigue

  • 8/10/2019 30 des 2014

    39/85

    Vibration Institute SKF Group Slide 38

    Fatigue: surface initiated fatigue

    Hair strand

    (cross section)

    50 microns

    Dirt particle

    1 micron

    oil film =

    0.2 micron

    10 microns

    F i f i i i f i

  • 8/10/2019 30 des 2014

    40/85

    Vibration Institute SKF Group Slide 39

    Fatigue: surface initiated fatigue

    1. Fatigue1.1. Subsurface fatigue

    1.2. Surface initiated fatigue

    F i f i i i d f i

  • 8/10/2019 30 des 2014

    41/85

    Vibration Institute SKF Group Slide 40

    Fatigue: surface initiated fatigue

    F ti f i iti t d f ti

  • 8/10/2019 30 des 2014

    42/85

    Vibration Institute SKF Group Slide 41

    Fatigue: surface initiated fatigue

    H d E b ittl t

  • 8/10/2019 30 des 2014

    43/85

    Vibration Institute SKF Group Slide 42

    Hydrogen Embrittlement

  • 8/10/2019 30 des 2014

    44/85

    Wear: abrasive wear

  • 8/10/2019 30 des 2014

    45/85

    Vibration Institute SKF Group Slide 44

    Wear: abrasive wear

    2. Wear2.1. Abrasive wear

    2.2. Adhesive wear

    Wear: abrasive wear

  • 8/10/2019 30 des 2014

    46/85

    Vibration Institute SKF Group Slide 45

    Wear: abrasive wear

    Wear: adhesive wear

  • 8/10/2019 30 des 2014

    47/85

    Vibration Institute SKF Group Slide 46

    Wear: adhesive wear

    Low loads

    Accelerations

    Smearing / skidding / galling Material transfer / friction heat

    Tempering / re-hardening

    With stress concentrations andcracking or flaking

    2. Wear2.1. Abrasive wear

    2.2. Adhesive wear

    Wear: adhesive wear

  • 8/10/2019 30 des 2014

    48/85

    Vibration Institute SKF Group Slide 47

    Wear: adhesive wear

    2. Wear2.1. Abrasive wear

    2.2. Adhesive wear

    Wear: adhesive wear

  • 8/10/2019 30 des 2014

    49/85

    Vibration Institute SKF Group Slide 48

    Wear: adhesive wear

    Corrosion: moisture corrosion

  • 8/10/2019 30 des 2014

    50/85

    Vibration Institute SKF Group Slide 49

    Corrosion: moisture corrosion

    3. Corrosion3.2.1. Frettingcorrosion

    3.1. Moisture corrosion

    3.2. Frictional corrosion

    3.2.2. False brinelling

    Oxidation / rust

    Chemical reaction

    Corrosion pits / flaking

    Etching(water/oil mixture)

    Corrosion: moisture corrosion

  • 8/10/2019 30 des 2014

    51/85

    Vibration Institute SKF Group Slide 50

    Corrosion: moisture corrosion

    3. Corrosion3.2.1. Frettingcorrosion

    3.1. Moisture corrosion

    3.2. Frictional corrosion

    3.2.2. False brinelling

    Corrosion: moisture corrosion

  • 8/10/2019 30 des 2014

    52/85

    Vibration Institute SKF Group Slide 51

    Corrosion: moisture corrosion

    3. Corrosion3.2.1. Frettingcorrosion

    3.1. Moisture corrosion

    3.2. Frictional corrosion

    3.2.2. False brinelling

    Corrosion: moisture corrosion

  • 8/10/2019 30 des 2014

    53/85

    Vibration Institute SKF Group Slide 52

    Corrosion: moisture corrosion

    Corrosion: frictional corrosion: fretting

  • 8/10/2019 30 des 2014

    54/85

    Vibration Institute SKF Group Slide 53

    g

    3. Corrosion3.2.1. Frettingcorrosion

    3.1. Moisture corrosion

    3.2. Frictional corrosion

    3.2.2. False brinelling

    Micro-movementbetween matingsurfaces

    Oxidation of asperities Powdery rust / loss of

    material

    Occurs in fit interfacestransmitting loads

    Corrosion: frictional corrosion: fretting

  • 8/10/2019 30 des 2014

    55/85

    Vibration Institute SKF Group Slide 54

    g

    3. Corrosion3.2.1. Frettingcorrosion

    3.1. Moisture corrosion

    3.2. Frictional corrosion

    3.2.2. False brinelling

  • 8/10/2019 30 des 2014

    56/85

    Corrosion: frictional corrosion: false brinelling

  • 8/10/2019 30 des 2014

    57/85

    Vibration Institute SKF Group Slide 56

    3. Corrosion3.2.1. Frettingcorrosion

    3.1. Moisture corrosion

    3.2. Frictional corrosion

    3.2.2. False brinelling

    Rolling element / raceway Micro movements / elastic

    deformations

    Vibrations Corrosion / wear / shiny /

    red depressions

    Stationary: rolling element pitch

    Rotating: parallel flutes

    Corrosion: frictional corrosion: false brinelling

  • 8/10/2019 30 des 2014

    58/85

    Vibration Institute SKF Group Slide 57

    3. Corrosion3.2.1. Frettingcorrosion

    3.1. Moisture corrosion

    3.2. Frictional corrosion

    3.2.2. False brinelling

    Corrosion: frictional corrosion: false brinelling

  • 8/10/2019 30 des 2014

    59/85

    Vibration Institute SKF Group Slide 58

    Electrical erosion: excessive voltage

  • 8/10/2019 30 des 2014

    60/85

    Vibration Institute SKF Group Slide 59

    High current / sparking

    Localized heating in very short Interval / melting / welding

    Craters up to 100 m

    4. Electricalerosion

    4.1. Excessive voltage

    4.2. Current leakage

    Electrical erosion: excessive voltage

  • 8/10/2019 30 des 2014

    61/85

    Vibration Institute SKF Group Slide 60

    4. Electricalerosion

    4.1. Excessive voltage

    4.2. Current leakage

  • 8/10/2019 30 des 2014

    62/85

    Electrical erosion: current leakage

  • 8/10/2019 30 des 2014

    63/85

    Vibration Institute SKF Group Slide 62

    Low current intensity

    Shallow craters closely positioned

    Development of flutes on raceways & rollers, parallel torolling axis

    Dark gray discoloration

    4. Electricalerosion

    4.1. Excessive voltage

    4.2. Current leakage

    Electrical erosion: current leakage

  • 8/10/2019 30 des 2014

    64/85

    Vibration Institute SKF Group Slide 63

    4. Electricalerosion

    4.1. Excessive voltage

    4.2. Current leakage

    Electrical erosion: current leakage

  • 8/10/2019 30 des 2014

    65/85

    Vibration Institute SKF Group Slide 64

  • 8/10/2019 30 des 2014

    66/85

    Plastic deformation: overload

  • 8/10/2019 30 des 2014

    67/85

    Vibration Institute SKF Group Slide 66

    5. Plasticdeformation

    5.1. Overload

    5.2. Indentation from debris

    5.3. Indentation by handling

  • 8/10/2019 30 des 2014

    68/85

  • 8/10/2019 30 des 2014

    69/85

    Plastic deformation: indentation from debris

  • 8/10/2019 30 des 2014

    70/85

    Vibration Institute SKF Group Slide 69

    5. Plasticdeformation

    5.1. Overload

    5.2. Indentation from debris

    5.3. Indentation by handling

    Plastic deformation: indentation from debris

  • 8/10/2019 30 des 2014

    71/85

    Vibration Institute SKF Group Slide 70

    Plastic deformation: indentation from handling

  • 8/10/2019 30 des 2014

    72/85

    Vibration Institute SKF Group Slide 71

    5. Plasticdeformation

    5.1. Overload

    5.2. Indentation from debris

    5.3. Indentation by handling

    Indentation from handling: localized overloading

  • 8/10/2019 30 des 2014

    73/85

    Vibration Institute SKF Group Slide 72

    Fracture: forced fracture

  • 8/10/2019 30 des 2014

    74/85

    Vibration Institute SKF Group Slide 73

    Stress concentration >

    tensile strength Impact / overstressing

    6. Fracture

    6.1. Forced fracture

    6.2. Fatigue fracture

    6.3. Thermal cracking

    Fracture: forced fracture

  • 8/10/2019 30 des 2014

    75/85

    Vibration Institute SKF Group Slide 74

    6. Fracture

    6.1. Forced fracture

    6.2. Fatigue fracture

    6.3. Thermal cracking

    Fracture: forced fracture

  • 8/10/2019 30 des 2014

    76/85

    Vibration Institute SKF Group Slide 75

    Fracture: fatigue fracture

  • 8/10/2019 30 des 2014

    77/85

    Vibration Institute SKF Group Slide 76

    Rings and cages - Crack initiation / propagation

    Exceeding fatigue strength under bending

    Finally forced fracture

    6. Fracture

    6.1. Forced fracture

    6.2. Fatigue fracture

    6.3. Thermal cracking

    Fracture: fatigue fracture

  • 8/10/2019 30 des 2014

    78/85

    Vibration Institute SKF Group Slide 77

    Fracture: thermal cracking

  • 8/10/2019 30 des 2014

    79/85

    Vibration Institute SKF Group Slide 78

    High sliding and / orinsufficient lubrication

    High friction heat

    Cracks at right angleto sliding direction

    6. Fracture

    6.1. Forced fracture

    6.2. Fatigue fracture

    6.3. Thermal cracking

  • 8/10/2019 30 des 2014

    80/85

    Classifications: securing evidence

  • 8/10/2019 30 des 2014

    81/85

    Vibration Institute SKF Group Slide 80

    Collect operating data, monitoring data

    Collect lubricant samples

    Check bearing environment

    Assess bearing in mounted condition

    Mark mounting position

    Remove, mark and bag bearing and parts

    Check bearing seats

    Lubricant condition (color, presence of water, viscosity,consistency, distribution in the bearing, etc.)

    Classifications: conducting the analysis

  • 8/10/2019 30 des 2014

    82/85

    Vibration Institute SKF Group Slide 81

    Examine bearing and parts

    Record visual observations

    Record pictures of bearing and pertinent parts

    Use the failure modes to eliminate improbable causes anddetermine the original cause of the failure

    Use external resources such as SKF Bearing Inspector at

    @ptitudeXchange.com or SKF Bearing Installation andMaintenance Guide #140-710

    Contact external resources for assistance, if needed

    Initiate corrective action, if desired. Consider SKF analysis services ($)

    Available training courses

  • 8/10/2019 30 des 2014

    83/85

    Vibration Institute SKF Group Slide 82

    WE201: Bearing Maintenance and Technology

    WE202: Bearing in Rotating Machinery Applications

    WE203: Lubrication in RollingElement Bearings

    WE204: Root Cause Bearing

    Damage Analysis

  • 8/10/2019 30 des 2014

    84/85

    Vibration Institute SKF Group Slide 83

    Thank you!

  • 8/10/2019 30 des 2014

    85/85