3. System of Particles

download 3. System of Particles

of 19

Transcript of 3. System of Particles

  • 7/29/2019 3. System of Particles

    1/19

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 31

    EXERCISE # 1

    1.1

    ycm

    =

    526)(2

    252)2(0=

    11

    10

    4 11

    10=

    11

    34

    1.2 COM can lie anywhere within the radius r.

    1.4.

    COM of brick 1 and 5 2

    L1 o 5 bZV dk nzO;eku dsUnz

    2

    L

    COM of brick 2 and 4 2

    L+

    5

    L2 o 4 bZV dk nzO;eku dsUnz

    2

    L+

    5

    L

    COM of brick 3 2L

    +5

    L23 bZV dk nzO;eku dsUnz

    2L

    +5

    L2

    Xcm

    =m5

    10

    L2

    2

    Lm

    5

    L

    2

    Lm2

    2

    Lm2

    =50

    L33

    2.1 Using21

    2211

    mm

    xmxm

    = Xcm

    dk mi;ksx djrs gSa

    By putting values Xcm

    = 10m from base.

    eku j[kus ij Xcm = vk/kkj ls 10m

    nzO;eku dsUnz dh

    izkjfEHkd fLFkfr10 m

    B

    4kg

    15m/s

    vcm

    2kg

    A

    SYSTEM OF PARTICLES

  • 7/29/2019 3. System of Particles

    2/19

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 32

    Initial velocity of COM 21

    2211

    mm

    vmvm

    = 10 m/s upward

    nzO;eku dsUnz (COM) dk izkjfEHkd osx 21

    2211

    mm

    vmvm

    = 10 m/s ij dh vksj

    Also, acceleration of COM is g thus using

    nzO;eku dsUnz dk Roj.k g gS] fuEu dk mi;ksx djrs gq,v2 = u2 + 2as for COM

    0 = 102 + 2 (10)x hmax

    hmax

    = 5m from the initial position of COM

    hmax

    = 5m nzO;eku dsUnz dh izkjfEHkd fLFkfr lsHence total height from base = 10 + 5m = 15m.

    vr% vk/kkj ls dqy pkbZ = 10 + 5m = 15m.

    2.2 a = mnm

    )mnm(

    g

    =)1n(

    )1n(

    g

    a1

    = a2

    = a

    acm

    =)mnm(

    manma 21

    =a

    )1n(

    )1n(

    acm

    = g)1n(

    )1n(2

    2

    .

    2.3 Let the displacement of shell along horizontal direction be x. Then the displacement of ball along horizontal

    is2

    R3 x.

    Since centre of mass of two body system does not shift along horizontal direction.

    mx = m

    x

    2

    R3or x =

    4

    R3[ Ans.

    4

    R3]

    2.5 Initially the centre of mass is at

    4

    Ldistance from the vertical rod.

    4

    L

    mm

    )0(m)(mx,As 2

    1

    cm

    centre of mass does not move in x-direction as Fx = 0.After they lie on the floor, the pin joint should be at L/4 distance from the origin shown inorder to keep the

    centre of mass at rest.

    Finally x-displacement of the pin is4

    Land y-displacement of the pin is obviously L.

    Hence net displacement =

    4

    L17

    16

    LL

    22

  • 7/29/2019 3. System of Particles

    3/19

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 33

    3.2 The resultant force can be accelerating or decelerating, hence the momentum can increase or decrease. Hence

    (A) is wrong.

    Since Fnet

    = M acm

    acm

    0 ;hence v

    cmmust change

    Hence (B)In case of a circular motion of centre of mass about a point the distance of centre of mass will remain constant.

    Hence (C)

    4.1 The spring pulls both the blocks with same force. Hence force on both blocks is equal and opposite.

    since no net external force acts on system and its initial momentum is zero, therefore net momentum of

    system is always zero. Hence momentum of blocks are equal and opposite.

    fLizax nksuksa CykWdksa dks leku cy ls [khaprh gSA blfy;s nksuksa CykWdks ij cy cjkcj rFkk foijhr gSApwfd fudk; ij dksbZ usV ck; cy dk;Z ugh djrk gS vkSj bldk izkjfEHkd laosx 'kwU; gS] blfy;s fudk; dk usV laosx

    ges'kk 'kwU; gksxkA blfy;s CykWdksa dk laosx cjkcj rFkk foijhr gSA

    4.3 Pi= mv

    1+ mv

    2

    Pf= (m + M) v

    Pi= P

    f v =

    )Mm(

    Mvmv 21

    By energy conservation mtkZ laj{k.k ls

    2

    1mv

    12 +

    2

    1Mv

    22 =

    2

    1(M + m) v2 +

    2

    1kx2

    mv12 + Mv

    22 = (M + m)

    2

    2

    221 kx

    )mM(

    )Mvmv(

    solving gy djus ij x = (v1

    v2)

    k)mM(mM .

    5.1 Force on table due to collision of balls :

    xsan }kjk est ij yxk;s tkus okyk cy

    Fdynamic = dt

    dp= 2 20 20 103 5 0.5 = 2 N

    Net force on one leg =4

    1(2 + 0.2 10) = 1 N

    ,d Vkax ij cy =4

    1(2 + 0.2 10) = 1 N

    6.2 As )say(P|P||P||P| 021

    From conservation of linear momentum

    PPP 21

    cosPP2PPP 2122

    21

    or cosP2PPP 222

    2

    1cos

    = 120 ]

  • 7/29/2019 3. System of Particles

    4/19

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 34

    6.5 8 sin = v cos

    sinv2

    cos8

    2 tan = cot tan = 2

    1

    90V

    2g3.2=8 m/s

    v =2

    8= 24 m/s

    k =

    2

    28241

    2

    1= 16 J

    Projectile never travels vertically downward.

    6.9 As shown in figure

    + 90 = 150 = 60

    6.11 For the striker :

    02 = (2)2 2(0.2) (10) s

    s = 1 m

    From A to B :

    SAB

    =

    22

    22

    1

    22

    1

    =

    4

    1=

    2

    1m

    Similarly : SBC

    =2

    1m

    The striker stops at the point C having coordinates

    2

    1,

    22

    1.

    7.2 Neglecting gravity,

    xq:Ro ux.; ekurs gq;s

    v = un

    t

    0

    m

    m;

    u = ejection velocity w.r.t. balloon. m0

    = initial mass mt= mass at any time t.

    u = xSl dk osx xqCkkjs ds lkis{k. m0

    = izkjfEHkd nzO;eku mt= fdlh le; t ij nzO;eku

    = 2n

    2/m

    m

    0

    0= 2n2.

  • 7/29/2019 3. System of Particles

    5/19

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 35

    EXERCISE # 2PART- I1. x & y coordinates of all the particles are positive. Hence x & y coordinates of centre of mass of the system has

    to be positive.

    2. This disc can be assumed to be made of a complete uniform disc and a square plate with same negativemass density.

    bl pdrh dks] ,d leku ?kuRo okyh iwjh pdrh rFkk leku _.kkRed nzO;eku ?kuRo okyh oxkZdkj IysV ds la;kstuls cuh gqbZ eku ldrs gSA

    Ycm

    =21

    2211

    mm

    ymym

    =

    )(r

    )2/r()()0()r(22

    22

    =)r(2

    r22

    2

    =

    2

    14

    r

    )2

    rr(2

    2

    r

    22

    3

    3. KEA/CM

    =2

    1.1.(v

    A/CM)2 = 2 Joules

    VA/CM

    = 2 m/s.Let ; COM move towards +ve x-direction.

    Then, CM/Av

    = i2

    vB/CM

    = i ( Use ; CMv

    =21

    2211

    mm

    vmvm

    )

    KESystem

    = 2CMvi2.1.2

    1 + 2CMvi2.

    2

    1

    = CM2

    CMCM

    2

    CM v.i.2v1.2.2

    1

    v.i

    2.2v42

    1

    = )v.i241()v.i222( CMCM

    = 9 J Ans.

    4. As both the balls are released simultaneously, at any instant before the lower balls reaches the ground both

    have the same velocity ; v = gt i.e. v vs. t is a straight line graph.

    nksuksa xsan ,d lkFk NksM+h tkrh gS] uhps okyh xsan ds tehu ls igqpus ls igys nksuksa xsan leku osx es gksxh ;v = gt vr% v vs. t dk xzkQ ,d lh/kh js[kk gksxh

    VCM

    =m2

    )t(mv)t(mv = v(t) ; v(t) being the instantaneous velocity. (v(t) rkRdkfyd osx

    Just after the lower ball strikes ground and comes to rest :

    igyh xsan dk tehu ls Vdjkus ds ckn og fojke esa vk tkrh gSA

    VCM

    =m2

    )t(vm=

    2

    )t(v

    i.e. the velocity suddenly drops to half its value. vr%] osx vpkud vk/kk gks tk;sxkHence graphs (A) & (B) are chosen. vr% AB xzkQ lgh gSaAfter collision :

    VDdj ds ckn aCM

    =mm

    )0(m)g(m

    =

    2

    g

    i.e. the slope (of vt curve) should decrease to half.

    vr% vt xzkQdh

  • 7/29/2019 3. System of Particles

    6/19

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 36

    6. From figure, only point 'P' will move in a circle

    9. Velocity of the ball on striking Vdjkus ij xasn dk osx = gh2

    After that ball goes to height less than (h) due to inelastic collission = )dh(g2 .

    blds i'pkr~ xsan vizR;kLFk VDdj ds dkj.k (h) ls de pkbZ = )dh(g2 rd mNyrh gSA

    )dh(g2 = e gh2

    h d = e2h dh = 2e1

    1 .

    10. Let u be the velocity of the ball

    w.r.t. wedge when it reaches the f loor.

    Then, the x-component of velocity of the ball

    w.r.t. ground wil l be

    2

    uv towards right.

    By momentum conservation :

    0 = m(v) + m

    2

    uv u = 2 2 v

    Therefore, the y-component of velocity of the ball after the elastic collision with the floor will be u cos45

    =2

    u= 2v (upward)

    Maximum height =g

    v2

    g2

    )v2( 22

    11. If we treat the train as a ring of mass 'M' then its COM will be at a distanceR2

    from the centre of the circle.

    Velocity of centre of mass is :

    ;fn Vsu dks 'M' nzO;eku dk oy; ekus rks mldk nzO;eku dsUnz

    R2 nwjh ij gksxkA nzO;eku dsUnz dk osxVCM = RCM .

    =R2

    . =

    R

    V.

    R2( =

    R

    V)

    VCM = V2

    MVCM = MV2

    As the linear momentum of any system = MVCM

    The linear momentum of the train =

    MV2Ans.

    fdlh Hkh fudk; dk js[kh; laosx = MVCM

    vr% Vsu dk js[kh; laosx =

    MV2

  • 7/29/2019 3. System of Particles

    7/19

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 37

    12. M1

    is very large as compared to M2. Hence for collision between M

    1and M

    2, M

    1can be considered

    equivalent to a wall and M2

    as a small block. Thus the velocity of M2

    will be 2vo

    after collision with M1

    .

    Similarly after collision between M2

    and M3, the velocity of M

    3will be 2(2v

    o). In sequence, the velocity of M

    4

    shall be 2(2(2vo)) = 8 v

    oafter collision with M

    3.

    M2dh rqyuk esa M

    1cgqr cM+k gSA vr% M

    1o M

    2ds e/; VDdj ds fy, M

    1dks ,d nhokj dh rjg ekuk tk ldrk gS

    rFkk M2dks ,d NksVs CykWd dh rjg ekuk tk ldrk gSA vr% M

    1ds lkFk VDdj ds ckn M

    2dk osx 2v

    ogksxkA blh rjg

    M2o M

    3dh VDdj ds ckn M

    3dk osx 2(2v

    o) gksxkA blh rjg ekxr :i ls M

    3ds lkFk VDdj ds ckn M

    4dk osx

    2(2(2vo)) = 8 v

    ogksxkA

    14. use momentum conservation equation laosx laj{k.k lsm.u. = 5mv

    V =5

    u

    Impulse imparted by tension force to block of mass 3m.

    3m nzO;eku ds CykWd dks ruko cy }kjk izkIr vkosx

    = 3mx v =5

    mu3.

    17. I. Since velocity of both R and S is positive they will move in same direction.

    II. At mid point velocities of R and S are same.

    III. Change velocity of R is small compair to change in velocity of S. But change in momentum is same for

    both in magnitude. Hence mass of R should be greater than S.

    Hence all three are correct.

    22.

    When the string becomes tight, both particles begin to move with velocity components v in the direction AB.

    Using conservation of momentum in the direction AB

    tc Mksjh ruh gqbZ gksxh] nksuksa d.kksa dk AB fn'kk esa osx dk ?kVd v gksxkA AB fn'kk esa laosx laj{k.k yxkus ijmu cos 30 = mv + mv

    or;k4

    3uv

    Hence the velocity of ball A just after the jerk is

    4

    3uv .

    >Vdk (jerk) yxus ds Bhd ckn A xsan dk osx4

    3uv gSA

  • 7/29/2019 3. System of Particles

    8/19

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 38

    Mathod II. fof/k II

    extF

    = 0, using conservation of linear momentum along the string.

    extF

    = 0, Mksjh dh fn'kk esa js[kh; laosx laj{k.k yxkus ij

    m u cos 30 = mv + mv

    2v = u.

    2

    3 v =

    4

    3u

    23.

    During 1st collision perpendicular component of V, V becomes e times, while IInd component IIV remains

    unchanged and similarly for second collision. The end result is that both IIV and V becomes e times their

    initial value and hence V"= eV (the ( ) sign indicates the reversal of direction).

    24. Let v be the initial velocity. Tangential velocity

    remains same during collision and equal to

    v cos60 = v/2

    Let v be the normal component of velocity after impact.

    In OAB : tan60 =

    v

    2/v

    v =

    32

    v

    Then : e =

    30cosv

    v=

    )2/v3(

    )32/v(=

    3

    1

  • 7/29/2019 3. System of Particles

    9/19

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 39

    PART - II

    1. Take an elementary ring of radius y and width dy

    Then y-coordinate of centre of mass of half disc is

    y =

    a

    0

    a

    0cm

    dm

    dmy

    =

    a

    0

    a

    0

    dyy

    dyy

    y2

    =

    a

    0

    a

    0

    dyy)ky(

    dyy)ky(

    y2

    =a

    2

    3

    [Ans: 3a/2]3. When the cube reaches the bottom most point on the block, then by momentum conservation in horizontal

    direction ; mv = MV

    V =M

    mV............(1)

    Now by energy conservation ;

    mgR =2

    1mv 2 +

    2

    1MV2

    Put V from (1)

    v =

    M

    m1

    gR2

    .

    4. Force F on plate = force exerted by dust particles

    = force on dust particles by the plate

    = rate of change of momentum of dust particles= mass of dust particles striking the plate per unit time change in velocity of

    dust particles.

    =A (v+ u) (v + u)= A (v + u)2

    Ans. A(u + v)2

    5. Since e =5

    1

    Final normal component of velocity =5

    37cosv 0.

    As the angle of rebound is equal to the angle before impact.

    Therefore, both normal & tangential components of velocities must change by the same factor.

    Tangential velocity after impact becomes5

    37sinv 0.

    Let the time of impact be t.

    N =

    t

    5

    37cosv37cosvm

    00

    =t5

    37cosmv6 0

    where N is the normal force imparted on the ball by the wall.

  • 7/29/2019 3. System of Particles

    10/19

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 40

    Frictional force = N =t

    37cosmv

    5

    6 0

    Also frictional force =

    t

    5

    37sinv37sinvm

    00

    t

    5

    37sinv37sinvm

    00

    =t

    37cosmv

    5

    6 0

    =3

    2tan370 =

    2

    1

    4

    3.

    3

    2 Ans.

    pwafd e =5

    1

    osx dk vfUre yEcor~ ?kVd= 537cosv0

    .

    tSlk fd ijkorZu dks.k vkiru dks.k ds cjkcj gS blfy, osx ds yEcor~ rFkk Li'kZjs[kh; ?kVd leku xq.kd ls ifjofrZr gksaxsA

    la?kV~V ds ckn Li'kZ js[kh; osx gksxk5

    37sinv 0.

    ekuk la?kV~V dk le;t gSA

    N =

    t

    5

    37cosv37cosvm

    00

    =t5

    37cosmv6 0

    tgk N nhokj }kjk xsan ij yxk;k x;k vfHkyEcor~ cy gSA

    ?k"kZ.k cy = N =t

    37cosmv

    5

    6 0

    ?k"kZ.k cy =t

    5

    37sinv37sinvm

    00

    t

    5

    37sinv37sinvm

    00

    =t

    37cosmv

    5

    6 0

    =3

    2tan370 =

    2

    1

    4

    3.

    3

    2 Ans.

    6.

    (figure - 1)

    Let u and v be the speed of wedge A and block B at just after the block B gets off the wedge A. Applying

    conservation of momentum in horizontal direction, we get.

    mu = mv ............(1)

    Applying conservation of energy between initial and final state as shown in figure (1), we get

  • 7/29/2019 3. System of Particles

    11/19

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 41

    mgh =2

    1mu2 +

    2

    1mv2 .............(2)

    solving (1) and (2) we get

    v = gh .............(3)

    At the instant block B reaches maximum height h on the wedge C (figure 2), the speed of block B and wedgeC are v.Applying conservation of momentum in horizontal direction, we get

    mv = (m + m) v .............(4)

    Applying conservation of energy between initial and final state

    2

    1mv2 =

    2

    1(m + m) v2 + mgh ............(5)

    Solving equations (3), (4) and (5) we get

    h=4

    hAns.

    ostAls CykWd B ds fxjus ds rqjUr ckn ekuk u rFkk v e'k% ostArFkk CykWd B dh pkysa gSaA {kSfrt fn'kk esa laosx laj{k.k yxkusij] ge izkIr djrs gS &mu = mv ............(1)

    fp=k (1) esa fn[kkbZ xbZ izkjfEHkd rFkk vfUre voLFkk ds chp tkZ laj{k.k yxkus ij

    mgh =2

    1mu2 +

    2

    1mv2 .............(2)

    (1) rFkk (2) dks gy djus ij ge izkIr djrs gSa &

    v = gh .............(3)

    ost C ij CykWd B }kjk vf/kdre pkbZ h (fp=k&2) igqpus ds {k.kij CykWd B rFkk ost C dh pky vgSA {kSfrt fn'kk esa laosx laj{k.k

    yxkus ij] ge izkIr djrs gSaAmv = (m + m) v .............(4)

  • 7/29/2019 3. System of Particles

    12/19

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 42

    EXERCISE # 4PART- I

    3.

    300

    ux

    uy

    u=100m/s

    (i) 100 m/s velocity of the ball is relative to ground.

    100 m/s xsan dk Hkwfe ds lkis{k osx gS[Unless and until it is mentioned in the question,the velocity is always relative to ground.]

    [tc rd iz'u esa crk;k uk tk;s] osx lnSo Hkwfe ds lkis{k ekfu;s]Horizontal component of its velocity, u

    x= u cos300

    osx dk {ksfrt ?kVd ux= u cos300

    or;k ux= (100)

    2

    3m/s = 50 3 m/s

    and vertical component of its veloctiy o osx dk m/oZ ?kVd u = u sin 300

    uy = 100 2

    1m/s = 50 m/s

    Vertical displacement of the ball when it strikes the carriage isxsan ds xkMh ls Vdjkus rd m/oZ foLFkkiu 120 m or

    Sy= u

    yt +

    2

    1a

    yt2

    120 = (50 t) +2

    1(-10) t2

    t2 10 t 24 = 0

    t = 12 s or ;k 2sIgnoring the negative time, we have _.kkRed le; dks vizHkkoh ekuus ij

    t0

    = 12s Ans 12

    (ii) When it strikes the carriage, its horizontal component of velocity is still 50 3 m/s. It sticks to the carriage.

    Let V2be the velocity of (carriage + ball) system after collision. Then applying conservation of linear momentum

    in horizontal direction

    xkMh lss Vdjkus ij Hkh bldk {kSfrt osx ?kVd 50 3 m/s gh jgsxkA ;g xkMh ls fpid tkrh gSA ekuk VDdj ds i'pkr~(xkMh+ xsan ) fudk; dk osx V

    2gSA {ksfrt fn'kk eas jsf[kd laosx lajf{kr djus ij

    (mass of ball) (horizontal component of its velocity before collision) = (mass of ball + carriage) (V2)

    (xsan dk nzO;eku) (VDdj ls iwoZ osx dk {kSfrt ?kVd ) = (xsan + xkMh ) dk nzO;eku (V2)

    (1 Kg)(50 3 m/s) = (10 Kg) (V2)

  • 7/29/2019 3. System of Particles

    13/19

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 43

    V2

    = 5 3 m/s

    The second ball is fired when the first ball strikes the carriage i.e.after 12 seconds.In these 12 seconds the car

    will move forward a distance of 12V1

    or 60 3 m. The second ball also takes 12 second to travel a vertical

    displacement of 120m. This ball will strike the carriage only when the carriage also covers the same distance

    of 60 3 m in these 12 seconds. This is possible only when resistive forces are zero because velocity of car (V1)

    = Velocity of carriage after first coll ision (V2) = 5 3 m/s.

    nwljh xsan rc nkxh tkrh gS tc igyh xsan xkMh ls Vdjkrh gS]vFkkZr~ 12 lSd.M i'pkr~A bu 12 lSd.M esa dkj 12V1;k

    60 3 m. nwj vkxs py tk;sxhA nwljh xsan Hkh 120m.ds m)Z foLFkkiu ds fy, 12lSd.M ckn xkMh ls Vdjk;sxhA ;g nwljh

    xsan xkMh ls Vdjk;sxh ;fn dkj Hkh bu 12lsd.M esa60 3 m dh nwjh r; djsA ;g rHkh laHko gS tc ?k"kZ.k cy 'kwU; gks] D;ksfd

    dkj dk osx (V1) = xkMh dk izFke VDdj ds i'pkr~ osx (V

    2) = 5 3 m/s.

    Hence at the time of second collision :

    vr% nwljh VDdj ds le;Horizontal component of velocity of ball = 50 3 m/s and horizontal veloctiy of carriage + f irst ball = 5 3 m/s.

    Let V be the desired velocity of carriage after second collision. Then conservation of linear momentum in hori-

    zontal direction gives

    xsan ds osx dk {kSfrt ?kVd = 50 3 m/s o xkMh + igyh xsan dk {ksfrt osx = 5 3 m/s. ekuk f}rh; VDdj i'pkr~ xkMh

    dk vfHk"V osx V gSA {ksfrt fn'kk esa jsf[kd laosx lja{k.k fu;e ls

    11 V = (1) (50 3 ) + (10) (5 3 ) = 100 3

    V =11

    3100m/s or V 15.75 m/s Ans 14(ii)

    In this particular problem values are so adjusted that even it we take the velocity of ball with respect to car, we

    get the same results of both the parts, although the method will be wrong.Refer Q.No.1 of Year 1997 (new paper)

    in which it was clearly mentioned that the velocity of stone is with respect to cart.

    bl iz'u esa eku ,sls pqus x, gS fd ;fn xsan dk osx dkj ds lkis{k Hkh ys rks Hkh nksuks Hkkxksa dk mRrj leku gh izkIr gksxk ;|firjhdk xyr gksxkA o"kZ 1997 iz'u la[;k 1 (U;w isij) dks ns[ks ftlesa Li"Vr% crk;k x;k gS fd iRFkj dk osx xkMh ds lkis{k

    gSA

    4. )vmv(m)vmvm( 22112211

    = | Change in momentum of the two particles |

    = | nksuks d.kksa ds laosx esa ifjorZu |= | External force on the system | t ime interval

    = | fudk; ij ck cy | le; vUrjky= (m

    1+ m

    2) g(2 t

    0)

    = 2(m1

    + m2) gt

    0

  • 7/29/2019 3. System of Particles

    14/19

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 44

    5. vCOM

    =21

    2211

    mm

    vmvm

    ///////////////////////////////////////////////

    v = 02v = 14 m1

    m = 10 m1 m = 4 m2

    + ve

    =410

    1041410

    = 10 m/s.

    6. Angular speed of particle about centre of the circle,

    ok dsUnz ds lkis{k d.k dh dks.kh; pky

    =R

    v2, = t =

    R

    v2t

    pv

    = ( v2sin i + v2 cos j ) or;k pv

    =

    jtR

    vcosvit

    R

    vsinv

    2

    2

    2

    2

    and rFkkmv

    = v1j

    linear momentum of particle w.r.t. man as a fanction of time is

    O;fDr ds lkis{k d.k dk jSf[kd laosx le; Qyu :i esapmL

    = (m pL

    mL

    )

    = m

    jvtR

    vcosvit

    R

    vsinv 1

    2

    2

    2

    2

    7. (i) X1

    = 0t A (1 cost)

    Xcm

    =22

    2211

    mm

    xmxm

    =

    0t X

    2=

    0t +

    2

    1

    m

    mA (1cos t) Ans.

    (ii) a1

    =2

    12

    dt

    xd= 2 A cos t

    The separation X2 X

    1between the two blocks will be equal to

    0when a

    1= 0 or cos t = 0

    x2

    x1

    =2

    1

    m

    mA (1cos t) + A (1 cos t)

    0

    =

    1

    m

    m

    2

    1A (cos t = 0)

    Thus the relation between 0and A is,

    0

    =

    1

    m

    m

    2

    1AA Ans.

    (i) X1

    = 0t A (1 cost)

    Xcm

    =22

    2211

    mm

    xmxm

    = 0t X

    2=

    0t +

    2

    1

    m

    mA (1cos t) Ans.

    (ii) a1

    = 21

    2

    dt

    xd= 2 A cos t

    nks CykWd ds e/; nwjh X2

    X1

    , 0ds cjkcj gS tc a

    1= 0 ;k cos t = 0

    x2

    x1

    =2

    1

    m

    mA (1cos t) + A (1 cos t)

    0

    =

    1

    m

    m

    2

    1A (cos t = 0)

    blfy, 0o A esa laca/k ,

    0=

    1

    m

    m

    2

    1AA Ans.

  • 7/29/2019 3. System of Particles

    15/19

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 45

    8. According to Newtons Law U;wVu fu;ekuqlkj

    e =21

    12

    uu

    vv

    For elastic collision cofficient of restitution izR;kLFk VDdj ds fy, izR;koLFkku xq.kkad e = 1 so vr%

    12 vv = 21 uu Statement - 1 is correct dFku 1 lR; gSALinear momentum is conserved in both elastic & non elastic collision but its not the explanation of

    statement -1 so it is not the correct explanation of the statement A.

    jsf[kd laosx nksuks gh izR;kLFk o vizR;kLFk VDdj esa ljaf{kr jgrk gS fdUrq ;g dFku 1 dh lgh O;k[;k ugh gSA

    9. ipP1

    ipP2

    as there is no external force so momentum will remain conserved

    ck cy 'kwU; gS vr% laosx lajf{kr jgsxkA

    2121

    PP'PP

    0PP 21

    Now from option vc fodYi ls

    (A)21 PP

    = kcj)bb(i)aa( 12121

    (B) 21 PP

    = k)cc( 21

    (C) 21 PP

    = j)bb(i)aa( 2121

    (D) 21 PP

    = jb2i)aa( 121

    and it is given that a1

    b1

    c1

    , a2, b

    2, c

    2, 0

    in case of A and D it is not possible to get 21 PP

    = 0Hence Ans. (A) and (D)

    rFkk fn;k x;k gS a1

    b1

    c1

    , a2, b

    2, c

    2, 0

    A rFkk D izj.k esa 21 PP

    = 0 izkIr gksuk lEHko ugha gSA

    vr% Ans. (A) o (D) lgh gkssaxsA

    10. At point B there is perfectly inelast ic col lision so component of v elocity to incline plane becomes zeroand component parallel to second surface is retained

    fcUnq B ij iw.kZr;k vizR;kLFk VDdj gS blfy;s ur ry ds yEcor~ osx dk ?kVd 'kwU; gks tkrk gSA ,oa nwljh lrg ds lekUrj?kVd vifjofrZr jgrk gSA

    velocity immediately after it strikes second inclineblds nwljs ur ry ij Vdjkus ds Bhd ckn osx

    V = 30cosgh2 = 3102 2

    3=

    4

    9102

    V = 45 m/s

    11. At point C fcUnq C ij

    gh2VV 2B2C

    VC

    2 = 45 + 2 10 3

    VC

    = 105 m/s

  • 7/29/2019 3. System of Particles

    16/19

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 46

    12. The block coming down from incline AB makes an angle 30 with incline BC. If the block collides with

    incline BC elastically, the angle of block after collision with the incline shall be 30.

    Hence just after collision with incline BC the velocity of block shall be horizontal. So immediately af ter the

    block strikes second inclined, its vertical component of velocity will be zero.

    ur ry AB ls uhps vk jgk xqVdk ur ry BC ds lkFk 30 dk dks.k cukrk gSA ;fn xqVdk urry BC ls izR;kLFk :i lsVdjkrk gS rks urry ls Vdjkus ds ckn xqVds dk dks.k 30 gksxkvr% ur ry BC ls VDdj ds Bhd ckn xqVds dk osx {kSfrt gksxkA xqVds ds nwljs urry ls Vdjkus ds Bhd ckn blds osxdk /okZ/kj ?kVd 'kwU; gksxkA

    13.

    ycm

    =54321

    5544332211

    mmmmm

    ymymymymym

    ycm

    =m6mmmm

    )a(m)a(m)0(m)a(m)0(m6

    =10

    a.

    14. Since masses of particles are equal, collisons are elastic, so particles will exchange velocities after each

    collision. The first collision will be at a point P and second at point Q again and before third collision the

    particles will reach at A.

    pwafd d.kksa dk nzO;eku leku gS VDdj izR;kLFk gS vr% d.k izR;sd VDdj ds i'pkr~ osx ifjofrZr djsaxsA izFke VDdj fcUnqP ij gksxh rFkk f}rh; VDdj iqu% Q ij gksxhS rFkk rrh; VDdj ds igys d.k A ij igqpsxsaA

    15.

    from momentum conservation :

    9m = (2m) V1 (m)V

    2

    9 = 2V1

    V2

    ..... (1)

    e = 19

    VV 21

    ......(2)

    from eqn(1) and eqn(2) V1

    = 6 m/sec.

    for second collision between second block and third block :

    (2m) 6 + m(0) = (2m + m) VC

    VC

    = 4 m/sec.

  • 7/29/2019 3. System of Particles

    17/19

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 47

    laosx laj{k.k ls:9m = (2m) V

    1 (m)V

    2

    9 = 2V1

    V2

    ..... (1)

    e = 19

    VV 21

    ......(2)

    lehdj.k (1) o (2) ls V1

    = 6 m/sec.

    nwljs fi.M o rhljs fi.M ds e/; nwljh VDdj ds fy, :(2m) 6 + m(0) = (2m + m) V

    C

    VC

    = 4 m/sec. Ans. 4

    16*.

    Since collision is elastic, so e = 1

    Velocity of approach = velocity of separation

    So, u = v + 2 .............(i)

    By momentum conservation :

    1 u = 5v 1 2

    u = 5v 2

    v + 2 = 5v 2

    So, v = 1 m/s

    and u = 3 m/s

    Momentum of system = 1 3 = 3 kgm/s

    Momentum of 5kg after collision = 5 1 = 5 kgm/s

    So, kinetic energy of centre of mass =2

    1(m1 + m2)

    2

    21

    1

    mm

    um

    =2

    1(1 + 5)

    2

    6

    31

    = 0.75 J

    Total kinetic energy =2

    1 1 32

    = 4.5 J.

  • 7/29/2019 3. System of Particles

    18/19

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 48

    D;ksfd VDdj izR;kLFk gS vr% e = 1

    lkehI; osx = vyxko osx

    vr% u = v + 2 .............(i)

    laosx lja{k.k ls

    1 u = 5v 1 2

    u = 5v 2

    v + 2 = 5v 2vr% v = 1 m/s

    vkSj u = 3 m/s

    fudk; dk laosx = 1 3 = 3 kgm/s

    5kg dk VDdj ds ckn laosx = 5 1 = 5 kgm/s

    vr% nzO;eku dsUnz dh xfrt tkZ =2

    1(m1 + m2)

    2

    21

    1

    mm

    um

    =2

    1(1 + 5)

    2

    631

    = 0.75 J

    dqy xfrt tkZ =2

    1 1 32

    = 4.5 J.

    17. 5 =1

    2gt2 t = 1 sec

    so final velocity of bullet is 100 m/s

    & of ball is 20m/s

    Applying momentum conservation 0.01 V = 0.01 100 + 0.2 20

    V = 100 + 400 = 500 m/s

    PART - II

    1. By the conservation of linear momentum

    jsf[kd laosx laj{k.k ls(m + m)v' = m. 2 v mv

    2mv' = mv

    v' =

    2

    v

  • 7/29/2019 3. System of Particles

    19/19

    Rise Academy, 607/608-A, Talwandi , Kota (Raj.) -324005. 49

    3. vmax

    = a = aT

    2

    =m

    ka

    k

    M2

    a2

    Hence vr% 2

    1

    2

    1

    max

    max

    k

    k

    a

    a

    v

    v

    2

    1

    1max

    v =2max

    v (given fn;k x;k gS)

    1

    2

    k

    k.

    4. Initial thrust of the blast izkjfEHkd mR{ksi cy = ma= 3.5 104 10= 3.5 105 N

    5. Before breaking, the centre of mass of system is moving under gravity. Thus, acceleration of the centre of massis gravitational acceleration. During breaking, internal forces come into play which are not responsible for theacceleration of the centre of mass.This indicates that, the acceleration of centre of mass remains the same (equal to gravitational acceleration).Thus, the centre of mass of system continues its original path.

    VwVus ls igys fudk; dk nzO;eku dsUnz xq:Ro ds vUrxZr xfr dj jgk gSA vr% nzO;eku dsUnz dk Roj.k xq:Roh; Roj.k gh gksxkAVwVus ds nksjku vkUrfjd cy mRiUu gksrs gS] tks fd nzO;eku dsUnz ds Roj.k ds fy, ftEesnkj ugh gSA;g n'kkZrk gS fd nzO;eku dsUnz dk Roj.k leku (xq:Roh; Roj.k ds rqY;) jgsxkAvr% fudk; dk nzO;eku dsUnz izkjfEHkd iFk ij gh xfr djsxkA

    6. According to conservation of energytkZ laj{k.k vuqlkj

    22 M

    2

    1kL

    2

    1 kL2 =

    M

    M2

    MkL2 = p2 (p = m) p = L Mk

    7. In x-direction x- fn'kk esamu

    1+ 0 = 0 + m

    x

    KL2 = p2 (p = m)

    x=

    In y-direction y- fn'kk esa

    0 + 0 = m

    3 m

    y

    y = 3

    Velocity of second mass after collision la?k ds ckn nwljs nzO;eku dk osx

    =22

    2

    3

    4

    3

    =3

    2

    14. If initial momentum of particles is zero, then they loss all their energy in inelastic collision but here initialmomentum is not zero.Principle of conservation of momentum holds good for all collision.

    ;fn d.k ds izkjfEHkd laosx 'kwU; gS] rks vizR;kLFk VDdj esa ;s viuh laiw.kZ tkZ O;; dj nssxsa] fdUrq bl izdj.k easizkjfEHkd laosx 'kwU; ugh gSAlHkh izdkj dh VDdjksa ds fy, laosx laj{k.k fl)kar oS/k gSA