3-s2.0-B9780122653209500696-main.pdf

download 3-s2.0-B9780122653209500696-main.pdf

of 48

Transcript of 3-s2.0-B9780122653209500696-main.pdf

  • 8/9/2019 3-s2.0-B9780122653209500696-main.pdf

    1/48

    C h a p t e r

    P R O C E S S I N G O F E P IT A X IA L H E T E R O S T R U C T U R E

    D E V I C E S

    Patrick Fay

    Depar tm en t o f E l ec t r ica l Eng ineer ing Un iversi ty o f No t re Dame No t re Dame

    Indiana USA

    Ilesanmi desida

    Depar tm en t o f E l ec t r ica l and C ompu ter Eng ineer ing Un iversi ty o f Il li no is a t

    Urbana -Cham paign Urbana I l linois USA

    on t en t s

    2 .1 . Introdu ctio n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    2.2. ProcessingTechniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    2.3. DeviceP rocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

    2 .4 . In teg ratio n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

    2 .5 . C onclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

    2 . 1 . I N T R O D U C T I O N

    D r a m a t i c a d v a n c e s i n w i r e l e s s a n d h i g h - s p e e d c o m m u n i c a t i o n n e t w o r k s h a v e b e e n d r i v e n

    d i r ec t l y by h i gh - s peed dev i ce t e chno l ogy t ha t i s ba s ed on ep i t ax i a l he t e r os t r uc t u r e

    advances . Thes e dev i ce s i nc l ude he t e r o j unc t i on b i po l a r t r ans i s t o r s ( H B Ts ) , h i gh - e l ec t r on

    m o bi l i t y t r ans i s t o r s ( H E M Ts ) , he t e r os t r uc t u r e f i e l d - e f f ec t t r ans i s t o r s ( H FE Ts ) , pho t o -

    de t ec t o r s , and s em i cond uc t o r l a s e r d i odes . P r og r e s s i n t he a r ea o f u l t r a - h i gh s pe ed c i r cu i t s

    h a s b e e n r e m a r k a b l e ; d i g it a l c ir c u it s w i t h c l o c k r at e s o f u p t o 8 0 G b / s h a v e b e e n

    dem ons t r a t ed f o r u l t r a - h i gh b i t - r a t e da t a ne t w or ks , ana l og - t o - d i g i t a l ( A / D ) conve r t e r s w i t h

    s a m p l e r a t e s o f s e v e r al g i g a s a m p l e s p e r s e c o n d h a v e b e e n f a b ri c a te d , a n d l o w - n o i s e a n d

    h i gh - pow er am pl i f i e r s ope r a t i ona l a t m i l l i m e t e r - w ave f r equenc i e s have a l s o been

    d e m o n s t r a t e d . U l t r a - h i g h - s p e e d o p t o e l e c tr o n i c s y s t e m s b a s e d o n m e t a l - s e m i c o n d u c t o r -

    m e t a l p h o t o d e t e c t o rs ( M S M - P D s ) [ 1] a n d p - i- n p h o t o d i o d e s [ 2, 3] h a v e b e e n d e v e l o p e d

    t h a t d e p e n d o n t h e p e r f o r m a n c e a c h i e v a b le w i t h h e t e r o s tr u c t u r e d e v i c e s. T h e a c h i e v e m e n t

    o f t he s e r e s u lt s , a s w e l l a s t hos e t o com e , i s heav i l y depe nden t upo n t he av a i l ab i l it y o f

    econo m i ca l , h i gh - y i e l d p r oces s i ng t e ch n i ques f o r f ab r i ca t i on o f ep i t ax i a l he t e r os t r uc t u r e

    dev i ce s . A r ev i ew o f p r oces s e s f o r I I I - V he t e r os t r uc t u r e dev i ce f ab r i ca t i on i s unde r t ak en ,

    s t a r t ing w i t h a d i s cus s i on o f e ach o f t he m a j o r e l em e n t s o f dev i ce f ab r i ca t ion , i nc l ud i ng

    ISBN 0-12-762870-3/$35.00

    Handbook of Thin Film Devices edited by Mau rice H. Francom be

    Volume 1: Hetero-Structures or H igh Performance Devices

    Copyright 9 2000 by Academic Press

    All fights of reproduction in any form reserved.

    55

  • 8/9/2019 3-s2.0-B9780122653209500696-main.pdf

    2/48

    FAY AND ADESIDA

    lithography, we t and dry etching, metallization for electrical contacts, and ion im plantation

    for device isolation. The direct application of each of these techniques is then discussed

    with respect to the fabrication of HBTs, H FET s, and lasers, followed by a discussion o f the

    integration o f these devices into larger subsystems including m onolithic microwav e

    integrated circuits (MMICs) and optoelectronic integrated circuits (OEICs).

    2 .2 . P R O C E S S I N G T E C H N I Q U E S

    2 2 1 L i thography

    A critical aspect of any integrated-circuit fabrication technology, regardless of material

    system, is the need for adequate lithographic techniq ues to define circuit features. O ptical,

    electron-beam, x-ray, and focused ion-beam lithographic techniques have all been

    demonstrated, with many novel permutations and modifications of each basic technique

    presented in the literature. A lthough all of these method s have their own relative merits an d

    difficulties, the two most common techniques for processing III-V microelectronic devices

    are optical and electron-beam lithographies. Some o f the features o f these techniques that

    have led to their dominance include: i) the ability to define patterns with high resolution

    over large areas; ii) the ability to m aintain tigh t layer-to-layer overlay tolerances; iii) the

    advantage of well-developed resists and exposure tool technology; iv) little or no device

    damage during lithographic processing; and v) the ability to support their use

    economically. A br ief overview of the fundam entals o f each of these two lithographic

    techniques follows.

    2 2 1 1 Opt ica lLithography

    Optical lithography is the mainstay of conventional silicon integrated circuit processing,

    and it has steadily advanced o ver the past 20 years. The oft-quoted M oore's Law , in which

    semiconductor packing density is increased by 50% every 18 months, has proven to be a

    remarkably reliable predictor of lithographic technology. Despite many predictions of its

    ultimate demise due to fundamental physical limits, optical lithography has continued to

    advance in capability. The primary figures of merit that quantify the performance of an

    optical lithography system consists o f two interrelated parameters, resolution and depth o f

    focus. Due to the fundamental limitations imposed on conventional lithography systems by

    diffraction, resolution can be expressed by the Rayleigh criterion

    0.612

    r = (2.1)

    N A

    whe re r is the resolution, 2 is the wavelength o f the incident light, and NA is the num erical

    aperture of the exposure tool. In this expression, it has been assumed that the smallest

    feature that can be resolved is given by the spacing between the maximu m and f irst minima

    of the Airy function that results from imaging a point source on the substrate in the

    presence of diffraction. In practice, the factor of 0.61 in Eq. 2.1 is often considered a

    process-dependent parameter, and it is typically in the range from 0.5-0.7 as determined

    experimentally [4] . Depth of focus (DOF), w hich is mo st conveniently def ined as the

    displacem ent from the focal plane that is required to blur a focused spot to the size of

    the resolution limit r, is given by

    2

    D O F = (2.2)

    2 N A 2

    Both of these factors impose separate limits on the resolution achievable with o ptical

    lithography, a nd provide explanation for the Si IC industry's trend of decreasing 2 and

    56

  • 8/9/2019 3-s2.0-B9780122653209500696-main.pdf

    3/48

    PROCESSING OF EPITAXIAL HETEROSTRU CTURE DEVICES

    inc reas ing NA. Advances in op t i ca l l i thography , inc lud ing adopt ion of deep u l t rav io le t

    (DUV) l i thography sources based on m ercury l am ps or ArF exc im er l a se r sources a t

    248nm and 193nm , re spec t ive ly , a re expec ted to t rans fe r in to I I I -V fabr ica t ion

    technology . Desp i te the d ram at ic d i f ference in the s ca le o f p roduc t ion be tw een cur ren t

    I I I -V and S i t echnolog ies , the exce l l en t re so lu t ion a f fo rded by s ta te -of - the -a r t op t i ca l

    l i thography , w i th p ro jec ted re so lu t ion o f 0 . 13 ~ tm or be t te r , m ay w e l l p rove to be

    econom ica l ly v iab le fo r advanced I I I -V fabr ica tion fac i l it i e s in the fu tu re . The re a re m any

    is sues s t i l l to be re so lved fo r S i dev ice fabr ica t ion us ing DUV l i thography , inc lud ing i t s

    s ens i t iv i ty to a i rborne chem ica l con tam inan t s and de lays in p roces s f low [5] . However , i t is

    expec ted tha t these obs tac le s wi l l be surm ounted , and the re su l t s app l ied wi th re la t ive ly

    sm al le r deve lopm ent e f fo r t s to com pound sem iconduc tor dev ice fabr ica t ion .

    P hotores i s t s fo r op t i ca l l i thography fo r m id-UV (g- th rough i - l ine ) have com m only

    cons i s ted o f novolac -based re s ins wi th p ropr ie ta ry inh ib i to rs and photoac t ive agen t s add ed

    to p rov ide the requ i red s ens i t iv i ty and con t ra s t in re sponse to op t i ca l exposure . As such ,

    bo th p os i t ive - and nega t ive - tone re s i s ts a re wide ly ava i l ab le , wi th va ry ing re so lu t ions and

    sens i t ivi t ies . In general , pos i t ive res is ts possess superior resolut ion, while negat ive res is ts

    m ay suf fe r f rom fea tu re swe l l ing and d i s to r t ion dur ing deve lopm ent . In a l l ca ses ,

    pho tores i s t p roces s ing typ ica l ly requ i re s t igh t con t ro l no t on ly o f exposure pa ram ete rs such

    as dose bu t a l so o f the t em pera tu re and dura t ion o f p re - and pos t -exposure bake p roces ses

    in o rde r to reduce the appea rance o f s t and ing-wave pa t t e rns in the re s i s t and dr ive the

    photoca ta lys i s reac t ions wi th in the re s i s t . S eve ra l DUV res i s t s based on hydroxys tyrene

    have been in t roduced . T he f i r st o f these p roduced on a com m erc ia l s ca le was IBM s AP EX

    pos i t ive re si s t, wi th m ore recen t in t roduc t ion o f pos i t ive re si s t s (Hoechs t A Z D X-46 , Ol in

    A R C H a n d I B M K R S a n d E S C A P ) , a n d n e g a t i v e r e s i s t s ( I B M C G R a n d S h i p l e y S N R ) .

    Wi th the adven t o f DUV l i thography , desp i t e the fac t tha t the under ly ing chem is t ry o f

    DUV res is ts is fundamental ly different from that of i - l ine res is ts (for a review, see [6]) ,

    f rom the pe rspec t ive o f the p roces s e ng inee r these re s i s ts behave qu i te s im i lar ly , a lbe i t wi th

    s ignificant ly t ighter proces s tolerances . Th ese t ighter tolerances , as well as DU V res is t s

    s ens i t iv i ty to ex te rna l fac to rs such a s a i rborne con tam inan t s , a re due no t o n ly to the change

    in chem is t ry bu t a l so to the fac t tha t the m in im um fea ture s i zes a re so m uch sm a l le r wi th

    DUV l i thography than wi th i - l ine .

    2.2.1.2. Elec tron eam L i thography

    Elec t ron beam l i thography i s a t echnology tha t com plem ents op t i ca l l i thography tha t i s

    used in the fabr ica t ion o f h igh-pe r form ance c om pou nd sem iconduc to r dev ices . To da te , it

    has no t been econom ica l to use d i rec t -wr i t e e lec t ron beam l i thography fo r com m erc ia l S i

    UL S I p rodu c t ion due to i ts inhe ren t ly low th roughput ; the ro le o f d i rec t-wr i t e e lec t ron

    beam l i thography in th i s a rena i s in m ask m aking . S ign i f i can t e f fo r t s a re cur ren t ly be ing

    m ade to deve lop the S CALP EL techn ique [7 ] fo r pa ra l l e l e l ec t ron beam exposures a t h igh

    reso lu t ion (< 0 . 1 ~ tm ) fo r S i m anufac tur ing .

    Di rec t -wr i t e e lec t ron beam l i thograph y i s cur ren t ly v iab le fo r I I I -V fabr ica tion because

    of the p rem ium p laced on dev ice pe r form ance . T he advan tage o f e lec t ron-beam

    l i thography i s i t s supe r io r re so lu t ion com pared to op t i ca l l ighography . Wi th op t im ized

    exposure m e thods and the use o f h igh re so lu t ion res i s ts such a s po ly m e thy l m e thac ry la te

    (P M MA ), re so lu t ion o f le s s than 10 nm i s pos s ib le . Th i s d ram at ic im prov em en t in

    reso lu t ion com pared to op t i ca l l i thograph y i s a d i rect consequence o f the fundam enta l

    d i f ference in ope ra t iona l p r inc ip le s o f e lec t ron-beam l i thography and op t ica l l ithography;

    ra the r than expo s ing the re s i s t wi th l igh t o f a pa r t icu la r wave leng th , the s am ple i s exposed

    to e lec t rons in a des i red pa t t e rn . Because the de Brog l ie wave leng th o f e lec t rons in the

    ene rgy range gene ra l ly used fo r l i thography i s o rde rs o f m agni tude sm a l le r than typ ica l

    op t i ca l wave leng ths , d i f f rac t ion e f fec t s a re neg l ig ib le and exce l l en t re so lu t ion can be

    achieved.

    57

  • 8/9/2019 3-s2.0-B9780122653209500696-main.pdf

    4/48

    FAY AND ADESIDA

    There a re , however , two s ign i f i can t inconveniences a s soc ia ted wi th e lec t ron-beam

    l i thography . The f i r s t i s tha t the th roughput o f even com m erc ia l e l ec t ron-beam exposure

    too l s in wafe rs /h our i s m uc h lower than tha t o f m o dern o p t i ca l s teppe rs . The s econd i s

    tha t , desp i t e the in t r insica l ly h igh re so lu t ion o f the e lec t ron-beam based l i thograph ic

    proces s , s eve ra l phys ica l e f fec t s l im i t the ac tua l ach ievab le re so lu t ion under norm a l

    m ic roe lec t ron ic fabr ica tion condi t ions . The so-ca l l ed p rox im i ty e f fect i s one o f these

    l im i t ing fac to rs . Ar i s ing f rom e lec t ron s ca t te r ing , the m a in obse rvab le consequence o f th is

    e f fect i s a degrada t ion in re so lu t ion and a coopera t ive exposure be tw een ad jacen t fea tu res

    tha t can l im i t how c lose ly packed the l i thograph ic fea tu res can be . E lec t rons s ca t te r bo th in

    the re s i s t a s they t rave l towards the subs t ra te and backwards a f t e r s ca t t e r ing f rom the

    subs t ra te . As these two com ponents a re m arked ly d i f fe ren t , a double -Gauss ian m ode l fo r

    the beam prof i l e i s typ ica l ly em ployed fo r m ode l ing the p rox im i ty e f fec t [8 ] . S eve ra l

    approaches to ove rcom ing the de le te r ious e f fect s o f the p rox im i ty e f fec t inc lude : i ) ca re fu l

    ad jus tm ent o f the e lec t ron exposure dose ; i i) use o f ve ry h igh beam vol tage 50- 100 keV

    to t rans fer the fo rward and backsca t t e red e lec t ron prof i le s to m ore nea r ly norm a l ang les o f

    inc idence ); i ii ) use o f p roces ses wi th re s i s t s o f ve ry h igh con t ra s t ; iv ) a l t e ra tion o f the s i ze

    and shape o f a pa t t e rn to be exposed in o rde r to com pensa te fo r the p rox im i ty e f fec t shape

    b ias ing) ; and v) com p ensa t ion fo r p rox im i ty e ffec ts th rough m odula t ion o f the dose a s a

    func t ion o f pos i t ion wi th in the pa t t ern . B oth o f the l a s t two a l t e rna tives a re com p ensa t ion

    ra the r than m i t iga t ion s t ra teg ie s and gene ra l ly requ i re sophis t i ca ted sof tware m ode l ing of

    the s ca t t e r ing p roces ses to num er ica l ly com pute the geom et r i c pa t t e rn o r dose p rof i l e tha t

    i s requ i red to ach ieve the des i red pa t t e rn on the wafe r . These com puta t ions a re typ ica l ly

    ve ry in tens ive and requ i re l a rge am ou nts o f p roces s ing t im e fo r a l l bu t the s im ples t o f

    pa t t e rns . Othe r phys ica l obs tac le s tha t can po ten t i a l ly l im i t the re so lu t ion o f an e lec t ron-

    beam l i thography sys tem inc lude chrom at ic d i spe rs ion , beam space -cha rge e f fec t s and

    othe rs , bu t these e f fec t s a re a l l com m on to h igh- re so lu t ion e lec t ron-beam m ic roscopy as

    we l l a s to l i thography . S am ple and re s i s t cha rge accum ula t ion a l so degrades l i thograph ic

    pa t t e rn f ide l i ty by in t roduc ing un in ten t iona l e lec t ros ta ti c de f lec t ion o f the inc iden t b eam .

    The interes ted reade r is referred to Brew er [9] for t reatm ent of these issues .

    In gene ra l , e l ec t ron-beam res i s t is fundam enta l ly d i f fe ren t f rom photores i s t; ins tead o f

    the pho toac t ive agen t s and inh ib i to rs , m os t nonam pl i f i ed e lec t ron-beam res i s t s re ly on

    e lec t ron-beam induced po lym er ic cha in s c i s s ion or cha in c ros s - l ink ing to c rea te the

    exposure reac t ion . O ne of the m os t com m o n and m os t m a ture e lec t ron beam l i thography

    res is t s in use i s P MM A. In norm a l usage , the re s is t i s pos i t ive tone so tha t exposed reg ions

    undergo po lym er cha in s c i s s ion , re su l t ing in sm a l le r m olecu la r we igh t m olecu les tha t can

    be m ore eas i ly washed away in the deve lope r so lven t . A typ ica l deve lope r so lven t fo r

    P M M A is a m ix ture o f isopropyl a lcohol IP A) and m e thy l i sobu ty l ke tone MIB K) , wi th

    vo lum et r i c ra t ios o f be tween 5 :1 and 1 :1 be ing co m m on. F igure 2 .1 shows the ob ta ined

    sens i t iv i ty /con t ra s t cha rac ter i s ti c fo r 50 K and 950 K m olecu la r we igh t P M M A deve loped

    in 3 :1 IP A:M IBK . S ens i t iv i ty i s de f ined as the m in im um dose ex t rapo la ted f rom the l inea r

    reg ion o f the g raph) requ i red to co m ple te ly rem ove the ex posed re s i s t a ft e r deve lopm en t

    for po s i t ive res is t ) . C ontras t , ~,, is defined by

    1

    - I ~ Z J / )l'lo g ''2 D l ( 2 . 3 )

    where D2 and D1 are as shown in the f igure; D2 is the sens i t ivi ty. F igure 2.1 i l lus tra tes a

    con t ra s t o f 5 .9 fo r 950 K P M MA , w hich i s typ ica l o f h igh-con t ra s t p roces ses . Al tho ugh

    P M M A has exce l l en t in t rins ic re so lu t ion o f < 10nm [10], i t su f fers f rom ra the r poor d ry

    e tch re s i s t ance and re la t ive ly l a rge exposure dose requ i rem ents , re su l t ing in long

    l i thography wr i t e t im es . Al though fundam enta l e lec t ron-dose s t a t i s t i c s d ic ta te tha t h ighe r

    re so lu t ion re s i s t s requ i re l a rge r doses fo r com ple te deve lopm ent , the re a re o the r re s i s t s

    wi th be t t e r s ens i t iv i ty than P M MA . A n exam ple i s ZEP -520 , w hich i s a pos i t ive e lect ron-

    b e a m r e si s t f ro m N i p p o n Z e o n C o . t h a t h a s r e s o lu t i o n l im i t s a p p r o ac h i n g t h a t o f P M M A

    58

    :

  • 8/9/2019 3-s2.0-B9780122653209500696-main.pdf

    5/48

    PROCESSING OF EPITAXIAL HETEROSTRUCTURE DEVICES

    0.9

    o 0 8

    ~az 0.7 D 1

    ... 0.6

    .~.

    o 0 5

    r D 2

    ~ 0.4

    N

    0.3

    o o .2 . 5 o : i

    Z 0.1 ~ 950K PMMA

    1 1 1 i w . I . . . . . . .

    10 100 1000

    Dose (~C/cm 2)

    Fig. 2. 1. Sensitivity/contrastcurve for 50K and 9 50K PMM A and 3:1 IPA:MIBK developer. The

    contrast is give n by the slope of the linear portion of the curv e, and the sensitivity is defined as D2.

    w i th 10x sma l l e r se ns i t i v i t y a nd a pp rox ima te ly 2 .5 t ime s be t t e r d ry e t c h r e s i s t a nc e [11 ,

    12] . In addi t ion to resis ts based on cha in sc ission for exposure , nega t ive- tone resis ts tha t

    r e ly on re s i s t c ro ss - l i nk ing a re a l so a va i l a b l e . The c he mic a l ly -a mpl i f i e d Sh ip l e y SA L

    fa mi ly o f r e si s t s ( e .g . , SA L 601 ) i s a mon g the se . I t s re so lu t ion o f a pp rox im a te ly 50 nm i s

    in fe r io r t o t ha t o f PM M A [13 ], bu t t h i s novo la c r e s in -ba se d re s i s t o f fer s goo d d ry e t c h

    resis tance and smal l D2, resul t ing in short wri te t imes.

    Mul t ip l e - l a ye r r e s i s t s t ruc tu re s a re a l so u se d e i t he r to fu r the r e nha nc e l i ne w id th c on t ro l

    or to provide spec ia l -purpose device fea tures. In the f i rs t ca tegory , b i layer resis ts have been

    show n to p rov ide e xc e l l e n t l i ne w id th c on t ro l on nonp la na r subs t r a t e s ; i n t h i s c a se , t he

    bot tom layer i s essent ia l ly a p lanar iz ing layer , whi le the th in top layer se rves to def ine the

    l i t hog ra ph ic f e a tu re . D e ve lopme n t c a n the n be pe r fo rme d in tw o s t e ps ; t he f i r s t s t e p

    de ve lops t he e xp ose d fe a tu re s i n t he t op l a yer , a nd a se l e c tive de ve lope r o r o xyge n p l a sma

    e tc h i s u se d to impre ss t he se f e a tu re s i n to t he bo t tom l a ye r . A s imi l a r a pp roa c h ha s be e n

    be e n de mons t ra t e d fo r improv ing l i t hog ra ph ic r e so lu t ion . A s po lyme r i c r e s i s t s ha ve

    c ons ide ra b ly low e r a ve ra ge a tomic numbe r t ha n I I I -V subs t ra t e ma te r i a l s , e l e c t ron

    sca t te r ing is less severe in resis t than in the subst ra te . Consequent ly , proximity e ffec ts a re

    re duc e d by u s ing a t h in t op r e s i s t l a ye r t o de f ine the ge ome t ry w h i l e a t h i c k unde r l a ye r

    se rve s a s a n in t e rme d ia t e subs t r a t e be tw e e n the se mic o nduc to r a nd the t op r e s is t .

    A spe c i a l -pu rpose de v ic e f e a tu re t ha t ha s be e n show n to be ve ry a dva n ta ge ous fo r

    e p i t a x ia l he t e ro s t ruc tu re de v ic e pe r fo rm a nc e a nd c a n be e f f ic i e n tly r e a l iz e d u s ing mu l t ip l e -

    l a ye r r e s i s t s t ruc tu re s i s t he c ommon mush room- o r T- sha pe d me ta l ga t e fo r H EMTs.

    F igu re 2 .2 (a ) show s the r e s i s t p ro f i l e ob ta ine d f rom a n e xposu re o f a mu l t i l a ye r r e s i s t

    s t ru c t ur e c o n s is t i ng o f , f ro m t h e b o t t o m , 9 5 0 K P M M A , c o p o l y m e r ( P ( M M A - M A A ) ) , a n d

    50 K P M M A re s i s ts a nd de ve lope d in 3 :1 IP A :M IB K . The re su l t i ng ga t e s truc tu re a f te r

    me ta l l i z a t ion a nd l i f t -o f f is show n in F igu re 2 .2 (b ) . A sho r t ga t e l e ng th i s a c h ie ve d a t t he

    ga te footpr in t , whi le low ga te resis tance (due to the la rge c ross-sec t iona l a rea) i s

    s imu l t a ne ous ly a c h ie ve d. B y e x te ns ion o f t hi s ge ne ra l i de a , f e a tu re s suc h a s ga t e l e ng th ,

    r e c e ss t r e nc h w id th a nd pos i t i on , a nd T-ga t e sha pe a nd w id th ha ve be e n de mo ns t ra t e d to be

    inde pe nde n t ly c on t ro l la b l e w i th a s ing le e xposu re s t e p by p rope r a d ju s tme n t o f e l e c tron -

    be a m e xposu re a nd se l e c t ive de ve lopme n t [14 ] .

    2 2 2 E t c h i n g

    In t he f a b r i c a tion o f e p i ta x i a l he t e ro s t ruc tu re de v ic e s , pe rha ps no s ing le t ype o f p roc e ss ing

    ha s a l a rge r impa c t on f ina l de v ic e pe r fo rma nc e tha n e t c h ing . E tc h ing f inds ma ny use s i n

    59

  • 8/9/2019 3-s2.0-B9780122653209500696-main.pdf

    6/48

    FAY AND ADESIDA

    Fig. 2.2. a) Resist profile for trilayer T-shaped gate. b) Ga te cross section aider metallization for T-

    shaped gate.

    the fabrication of devices, as it is frequently employed: i) to isolate devices from each

    other; ii) to gate recess and adjust channel current and threshold voltage in HFETs; iii) to

    expose the various layers in a heterostructure device for contacting; and iv) to reduce

    parasitic capacitances for improved device performance. Several issues have direct impact

    on the viabi l i ty of any etch process for use in contemporary heterostructure device

    fabrication. These include the accuracy and controllability of etch depths, uniformity of the

    etch both across identical features on the wafer as well as across features of wide ly varying

    dimensions, repeatab ility from wafe r to wafer a nd lot to lot, selectivity of the etch rate with

    respect to the various materials contained in the heterostructure layer stack, etch sidewall

    profile, and the degree of anisotropy of the etch including the effects of crystal orientation,

    fideli ty of the pat tern t ransfer between the masking material and the etched sem iconductor

    pattern, and any etching-induced damage and its relation to final device performance.

    Among those issues, the unique requirements of a particular device will dictate the relative

    importance of each, and in many cases wil l suggest a natural type of process required to

    mee t them. O f the etching processes available, mos t fall into two separate and in many

    ways complementary categories , wet etching in aqueous chemical solut ions and dry

    etching in plasmas. These two cases will be treated separately, with their comparative

    merits and limitations delineated in what follows.

    60

  • 8/9/2019 3-s2.0-B9780122653209500696-main.pdf

    7/48

    PR O C ESSIN G O F EPITA X IA L H ETER O STR U C TU R E D EV IC ES

    2 2 2 1 Wet Etching

    A l though w e t e t c h ing i s no t e a s i l y a pp l i e d to l a rge - sc a l e ma nufa c tu r ing , i t s l a c k o f

    subsu r fa c e de fe c t fo rma t ion a nd re l a t i ve e a se o f imp le me n ta t ion fo r l a bo ra to ry a nd sma l l -

    sc a l e ma nu fa c tu r ing m a ke s i t a popu la r e t c h ing t e c hn ique . The ba s i c op e ra t ion o f ne a r ly al l

    o f t he w ide ly u se d w e t e t c ha n t s fo r I I I -V se mic on duc to r m a te r i a ls r e l i e s on the p r inc ip l e o f

    ox ida t ion fo l low e d by re duc t ion a nd re mova l o f su r fa c e ma te r i a l . Fo r t h i s r e a son , ma ny

    e tc ha n t s c ons i s t o f tw o o r more c he m ic a l c ompone n t s , w i th t yp i c a l ly one c om pone n t

    se rv ing a s a n ox id i z e r a nd the o the r a s a r e duc ing o r c om ple x ing a ge n t fo r r e mova l o f the

    ox ide spe c i e s . A s th i s i s a n inhe re n t ly e l e c t roc he mic a l e f fec t , w i th c ha rge t r a ns fe r be tw e e n

    spe c i e s i n so lu t ion a nd a toms on the se mic onduc to r su r fa c e oc c u r r ing in bo th ox ida t ion

    a nd re duc t ion s t a ge s , va ri a n t s o f w e t e t c h ing suc h a s a nod ic a nd c a thod ic e t c h ing , a s w e l l

    a s pho toc he mic a l e t c h ing c a n be a pp l i e d a nd c on t ro l l e d th rough the d i r e c t ma n ipu la t ion o f

    charge carr ie r f lux .

    In a dd i t i on to t he t yp ic a l ly tw o-s t e p se m ic onduc to r d i s so lu t ion r e a c t ion , t he phys i c a l

    p roc e ss gove rn ing e t c h ing a l so c ons i s ts o f tw o pha se s . F o r r e mova l o f ma te r i a l , a c t ive

    e t c ha n t spe c i e s mus t be de l ive re d to t he se mic onduc to r su r fa c e , t he subse que n t tw o-s t a ge

    e t c h ing re a c t ion mus t oc c u r , a nd the r e a c t ion p roduc t s mus t be r e move d f rom the su r fa c e

    to ma ke w a y fo r fu r the r r e a c t ion / re mo va l c yc l e s to t a ke p l a c e. In ge ne ra l , t he e t c h r a te c a n

    be l im i t e d by e i t he r the de l ive ry (o r r e mova l ) o f re a c t a n t spe c i e s o r t he se que n t i a l ox ida t ion

    a nd re duc t ion r e a c t ions . W hic h o f t he se tw o p roc e sse s l im i t s the r a t e o f e t c h ing fo r a

    pa r t i c u l a r e t c ha n t ha s a s ign i f ic a n t impa c t on the ove ra l l pe r fo rma nc e a nd su i t a b il i t y o f the

    e t c h fo r a g ive n p roc ess . E t c h ing l im i t e d by the f i r st o f the se m e c ha n i sm s i s sa id to be

    d i f fu s ion - ra t e l im i t e d , w h i l e e t c h ing l im i t e d by the se c ond me c ha n i sm i s sa id t o be

    reac t ion-ra te l imi ted . In genera l , e tches tha t a re d i f fusion-ra te l imi ted ac t as pol ish ing

    e tc he s fo r l a rge e t ch a re a s , bu t su f fe r f rom s ign i f i c an t e t c h a n i so t ropy n e a r ma ske d fe a tu res

    and are of ten d i ff icul t to contro l due to the sensi t iv i ty of the e tch ra te to type and ra te o f

    agi ta t ion during e tching. As i t i s of ten d i ff icul t to ensure tha t a l l points on a sample a re

    sub je c t e d to t he sa me a g i t a t i on c ond i t i ons f rom w a fe r t o w a fe r a nd lo t t o l o t, e t c h ing ba se d

    on d i f fu s ion - l imi t e d p roc e sse s c a n su f fe r f rom s ign i f i c a n tly nonun i fo rmi ty . E tc he s t ha t a re

    l imi ted by surface reac t ion k ine t ics , on the o ther hand, a re genera l ly insensi t ive to agi ta t ion

    bu t ha ve a n A r rhe n ius de pe nde nc e o f e t c h ra t e on t e mpe ra tu re , a nd so r e qu i re c a re fu l

    mon i to r ing a nd c on t ro l o f so lu t ion t e mpe ra tu re fo r a c c u ra t e e t c h r a te c on t ro l. F o r bo th

    diffusion- and reac t ion-ra te l imi ted e tches, in contrast to the s i tua t ion for s i l icon, e tching of

    I I I -V se mic onduc t ing ma te r i a l s i s o f t e n s t rong ly c ry s t a l l og ra ph ic a nd thus i nhe re n t ly

    a n i so t rop ic . T h i s e f fec t a r ise s f ro m the c omp o tmd n a tu re o f t he se se mic onduc to r s ; t he

    c he m is t ry a ssoc i a t e d w i th t he r e mova l o f a g roup I I I a tom i s s ign i fi c a n t ly d i f f e re n t f rom

    the r e mova l o f a g roup V a tom. A s a c onse q ue nc e , i t i s typ i c a l fo r w e t e t c h s ide w a l l

    prof i les to evolve towa rds (11 1) p lanes [ 15 , 16] , as these surfaces a re e i ther pure ly g roup

    I I I o r g roup V , de pe nd ing on su r fa c e po la r i t y . N o t a l l e t c he s r e su l t i n e xpose d (111 )

    su r fa c e s , how e ve r ; e t c he s ha ve be e n ide n t i f i e d tha t e t c h p re fe re n t i a l l y t o h ighe r - inde x

    planes such as (332) [17] .

    B e c a use the e t c h ing o f I I I -V s r c ons i s t s e sse n t i a l ly o f a l t e rna t ely

    ox id i z ing a nd re duc ing the su r fa c e , a ny c he mic a l spe c i e s c a pa b le o f i nduc ing e i the r o f

    the se e f fe c t s i s a po te n t i a l r e a c t a n t . A s a r e su l t , a g re a t ma ny c he mic a l sy s t e ms ha ve be e n

    inve s t iga te d fo r t he e t c h ing o f I I I -V s , w i th r e a c t a n t s r a ng ing f rom the s t rong ino rga n ic

    a c id s , suc h a s su l fu r i c , hyd roc h lo r i c a nd phosphor i c , t h rough w e a ke r o rga n ic a c id s ,

    i nc lud ing c i t r i c , suc c in i c a nd a c e t i c a c id s , t o ba se s i nc lud ing a mmonium hydrox ide a nd

    po ta ss ium hydrox ide . M a ny o f t he a c id ic so lu t ions i nc lude hyd roge n pe rox ide a s the

    ox id i z ing a ge n t , w i th t he a c id se rv ing a s t he r e duc ing a nd c omple x ing a ge n t fo r su r fa c e

    a tom de so rp t ion . R e p re se n ta t ive e xa m ple s o f w e t e t c ha n t s pub l i she d in t he l i t e ra tu re fo r

    se mic onduc to r s ba se d in t he G a A s- a nd InP-ba se d ma te r i a l sy s t e ms a re l i s t e d in Ta b le 2 .1 .

    This i s not a comprehensive l i s t ; i t i s in tended to se rve only as a s ta r t ing point and to

    61

  • 8/9/2019 3-s2.0-B9780122653209500696-main.pdf

    8/48

    Table 2.1. Wet Chemica l Etchants for III-V Com poun d Semiconductors

    Material Etchan t Etch rate Selectivity

    Comments Reference ,

    G a A s

    H 2 S O 4 : H 2 0 2 : H 2 0 : : l: 1 0 : 2 0 0 0 3 0 n m / m i n @ 23 ~

    N H 4 O H : H 2 02 : H 2 0 : : 3 : 1 : 5 0

    3 : 1 : 1 5 0

    6 0 0 n m / m i n @ 2 0 ~

    8 0 n m / m i n @ 2 0 ~

    C A : H 2 0 2 : : 4 :1 5 3 4 n m / m i n

    InP HC 1 12 gm / mi n @ 25 ~

    HC I : H20: : 3 :1 600 nm/ m i n @ 20 ~

    HC I : H3PO4: C H3O H: : 1 : 1 : 1 100n m/ m i n @ 20 ~

    1-3 B r : C H3OH > 12 gm/ m i n @ 25 ~

    G a N ( n -t y pe ) 0 . 04 M K O H a n d H g a rc l a m p > 3 0 0 n m / m i n @ 5 0 m W / c m 2

    (wavelength = 365 nm) l ight intensity

    A1N AZ 400 K - - ,30nm/ m i n @ 36 ~

    (KOH-based developer)

    InGa As H3PO4 : H202 : H20: : 1 : 1 : 8 470 nm / mi n

    : : 3 8

    132 nm / mi n @ 20 ~

    InA1As H3PO 4: Hz Oz : H20 : : 1 : 1 : 38 210 nm / mi n @ 20 ~

    InGa P m HC I : 1 H20 for m = 0 .6 3 nm/ m i n

    for m = 1 .0 27 nm/ m i n

    @ 23 ~

    GaAs AlxGal_xAs C A1 (pH = 6 .5 ) : H 202: : 50 : 1

    125 nm/ m i n

    C A : H 2 0 2 : : 4 : 1 3 6 0 n m / m i n @ 2 0 ~

    4 2 0 n m / m i n @ 2 0 ~

    C A : H 2 0 2 : : 3 :1 6 3 n m / m i n @ 2 2 ~

    AlxGal_xAs GaAs

    K I : H z S O 4 : :I : I ( p H = 0 . 9 ) f o r x = 0 . 3 1 6 5 n m /m i n

    @ 3 ~

    InA1As / InGa As HC I : H20: : 3 :1 648 nm/ m i n

    I n G a A s /I n A 1 A s S A ( p H - - 5 ) : H 2 0 2 : : 1 5 : 2 5 5 n m / m i n

    C A: H2 02 : : 1 : 1 120n m/ m i n @ 20 ~

    InGa A s / InP C A: H2 02 : : 10 :1 120 nm / mi n @ 28 ~

    H 2 S O 4 : H 2 0 : H 2 0 : : l : l : 1 0 1 8 6 0 n m / m i n @ 3 8 ~

    InA1As / InP C A: H 202: : 10 :1 60 nm/ m i n @ 20 ~

    H 3 P O 4 : H 2 0 2 : H 2 0 : : l : l :3 8 2 1 0 n m / m i n @ 2 0 ~

    I n P / I n G a A s H B r : C H 3 C O O H : : 1 :1 8 8 0 n m / m i n @ 5 ~

    Selective over

    GaN, InN,

    A1203 ,Ga As

    Very selective to

    GaAs, A1GaAs

    for x = 0.15

    for x = 0 .3

    for x = 0.3

    for x = 0.15

    for x = 0.32

    330

    2000

    69

    25

    400

    Very selective

    160

    Very selective

    Very selective

    80

    120

    105

    50

    Mesa e tching and

    gate recess

    Mesa e tching

    Mesa e tching and

    gate recess

    Mesa e tching

    [19]

    [20]

    [21]

    Mesa e tching

    Via hole [22]

    Photoenh anced [ 18]

    wet e tching

    Reaction-rate [23]

    limited etching, etch

    rate crystall ine

    qual i ty dependent

    Nonse lec t ive ga te recess [24]

    [25]

    Nonselec t ive ga te recess [25]

    Strong ly HC1 [ 19]

    concent ra t ion

    dependent ; HBT

    fabrication

    HFE T fabrica tion [26]

    Selective gate recess

    for HE MT

    100 DB R laser fabrica t ion

    Selective etchant

    HEMT fabrica t ion

    HEMT fabrica t ion

    HEMT fabrica t ion

    [28]

    [27]

    [291

    [30]

    [3 ]

    [321

    [32]

    [32]

    a Data from authors ' l abora tory

    CA1 = 1 g sol id c i tr i c ac id in 10 0ml water; NHaO H for pH cont rol

    CA - 100 g sol id c i tr i c ac id in 100 ml of DI w ater

    SA = 200 g crysta l succ inic ac id in 1 l i t e r DI water; NH4O H for pH cont rol

    KI = 28 g of KI, 16.25 g o f Ia and 25 ml DI water; solut ion s tabi l i zed for 3 days

    6 2

  • 8/9/2019 3-s2.0-B9780122653209500696-main.pdf

    9/48

    PR O C ESSIN G O F EPITA X IA L H ETER O STR U C TU R E D EV IC ES

    i l lu s t r at e t he va r i e ty o f e t c ha n t s a va i l ab l e a nd some impor t a n t e t c ha n t f e a tu re s . A l so

    inc lude d on the l i s t a re som e e t c ha n t s fo r A 1N a nd G a N . In t he c a se o f G a N , e t c h ing w a s

    a c h ie ve d u s ing the pho toe l e c t roc he mic a l PEC ) w e t e t c h ing me thod , i n w h ic h u l t r a v io le t

    U V ) ra d i a t ion i s d i r e c te d a t t he sa mp le i n a n e l e c t roc he mic a l c e l l [ 18 ] . The P EC me tho d

    ha s de m ons t ra t e d ve r sa t i l i t y in t he e t c h ing o f n - type G a N . V a r ious su r fac e morph o log ie s ,

    a s w e l l a s et c h a n i so t ropy , c a n be ob ta ine d de pe nd ing on the i n t e ns i ty o f the i nc ide n t U V

    ra d ia t ion a nd the c on c e n t ra t ion o f t he e t cha n t . F igu re 2 .3 show s a h igh ly a n i so t rop ic p ro f i le

    in G a N ob ta ine d by e t c h ing in K O H so lu t ion [18 ] .

    O ne pa r t i c u l a r ly u se fu l f e a tu re i n t he f a b r ic a t ion o f H FE Ts a nd H B T s i s t he a va i l ab i l i ty

    o f bo th nonse l e c t ive a nd se l e c tive w e t e t c ha n ts . In pa r t ic u l a r , e t c h ing to e xpo se the t h in

    e p i t a x ia l ba se o f a n H B T o r fo r gat e r e c e ss i n a n H FET re qu i re s ve ry p re c i se e t c h de p th

    c on t ro l . Th i s i s o f t e n be s t done th rough the u se o f a n e t c ha n t t ha t e t c he s ve ry w e l l t he

    ma te r i a l to be r e move d bu t doe s no t e t c h o r e tc he s muc h mo re s low ly ) t he ma te r i a l to be

    l e f t i n p l a c e . A n e xa mple o f a se l e c t ive e t c ha n t fo r A 1G a A s a nd G a A s i s t he c i t r i c

    a c id /hy d rog e n pe rox ide sy s t e m. D e pe n d ing on the r e l a t ive a moun t s o f hyd rog e n pe rox ide

    and c i t r ic ac id in the solu t ion and the A1 mo le f rac t ion , the e tch ra tes of GaA s and A 1GaAs

    ma y be a d ju s t e d , a nd e i the r se l e c t ive o r non -se l e c t ive e t c h ing c a n be a c h ie ve d . F igu re

    2 .4 a ) show s the e t c h r a t e fo r G a A s a nd fo r se ve ra l mo le f r a c tions o f A 1G a A s a s a func t ion

    o f e t c ha n t c ompos i t i on , w h i l e F ig . 2 .4 b ) show s the se l e c t iv i ty ob ta ine d . Se l e c t iv i ty as h igh

    as 260 for GaA s o ver A10.45Ga0.55As is obta ined for a ra tio o f 4 :1 c i t r ic ac id to H2 02, and

    se l e c t iv i ty o f 1450 w a s ob ta ine d fo r G a A s ove r A lA s [33 ] . U se o f se l e c t ive e t c ha n t s suc h

    as th is in conjunc t ion wi th e tch stop layers in he te rost ruc tures can lead to very accura te

    contro l of e tch depths. Figure 2 .5 show s e tch depth vs e tch dura t ion for a 4 :1 c i t r ic

    a c id :H 20 2 e t c h on a he t e ro s t ruc tu re c ons i s t ing o f 300 nm o f G a A s , a 3 -nm A lA s e t c h s top

    la yer , a nd a n a dd i t i ona l 300 nm o f G a A s . O nc e the t op l a ye r o f G a A s i s r e move d , t he e t c h

    de p th r e ma ins e sse n t i a ll y i nde pe nde n t o f e t c h time fo r ove r 10 min . T h i s a pp roa c h a l low s

    ve ry a c c u ra t e a nd re pe a t a b l e e t c h de p ths t o be a c h ie ve d w i th ve ry r e l a xe d to l e ra nc e s on

    e tch t ime.

    2 2 2 2 Dry Etching

    In a dd i t i on to r e mova l o f ma te r ia l u s ing w e t e t c h ing , a va ri e ty o f d ry -e t c h ing t e c hn ique s

    e x i s t t ha t ha ve s ign i fi c a n t a dva n ta ge s ove r w e t e t c h ing fo r f a b r i c a t ion o f h igh -pe r fo rma nc e

    c ompound se mic onduc to r de v ic e s . In ge ne ra l , fo r d ry e t c h p roc e ss ing , t he e t c ha n t s a re

    in t roduc e d in to a va c uum c ha m be r a s ga se ous spe c i es , a nd a re t yp i c a l ly ion i z e d o r

    p rom ote d to e xc i t e d e ne rgy s t a t e s by the a pp l ic a t ion o f r a d io f r e que nc y R F) o r mic row a ve

    ra d ia t ion to fo rm p la sma s . The a dva n ta ge s o f d ry e t ch ing c om pa re d to w e t e t ch p roc e sse s

    inc lude: i ) d i re c t c on t ro l ove r t he de g re e a nd type o f a n i so t ropy o f t he e t c ha n t , r a ng ing

    from near i so t ropic e tch prof i les to ver t ica l s idewal ls ; i i ) the abi l i ty to in i t ia te e tching in

    ve ry sma l l a nd ve ry l a rge f e a tu re s s imu l t a ne ous ly s inc e the t yp ic a l w e t -e t c h p rob le ms o f

    su r fa c e w e t t a b i l i t y a nd bubb le fo rma t ion a re e l imina t e d ; i i i ) improve d un i fo rmi ty a c ross

    the w a fe r ; iv ) a re duc t ion in t he vo lume o f w a s t e byp roduc t s ; a n d v ) e a sy a da p ta t ion to

    p roc e ss a u toma t ion . D i sa dva n ta ge s i nc lude loa d ing e f fe c t s w he re by pa t t e rn f e a tu re s o f

    va r ious s i z e s e t c h a t d i f f e re n t r a t e s a nd the h igh c os t o f d ry e t c h ing e qu ipme n t .

    Se ve ra l ma jo r e qu ipme n t c on f igu ra t ions ha ve w ide a pp l i c a t ion in d ry e t c h ing . Th e mos t

    c ommon d ry e t c h p roc e sse s i nc lude p l a sma e t c h ing , c onve n t iona l r e a c t ive i on e t c h ing

    R IE) , el e c t ron c yc lo t ron re sona nc e EC R ) R IE , a nd induc t ive ly c oup le d p l a sma IC P)

    R IE . In a dd i t i on to t he se ma jo r c a t e go r i e s , t he re a re ma ny poss ib l e c ombina t ions a nd

    mod i f i c a t ions t o t he ba s i c r e a c to r s t ruc tu re fo r spe c i a l i z e d a pp l i c a t ions . F igu re 2 .6 a ) - e )

    show s sc he ma t i c a l ly t he e xpe r ime n ta l c on f igu ra t ions r e qu i re d to imp le me n t p l a sma e t c h ,

    c onve n t iona l R IE , EC R -R IE, IC P-R IE , a nd c he mic a l ly a ss i s t e d ion be a m e t c h ing

    C A IB E) . The m a in d i f f e re n t ia t i ng f a c to rs be tw e e n e a c h o f t he se e t c h ing c on f igu ra tions

    a re the d e ns i ty o f t he p l a sma c re a t e d a nd the e ne rge t i c a nd d i re c t iona l d i s t r i bu t ions o f the

    63

  • 8/9/2019 3-s2.0-B9780122653209500696-main.pdf

    10/48

    Fig. 2.3. Highly anisotropic GaN etch profile obtained by photoelectrochemical etching in KOH.

    Fig. 2.4. a) Etch rate for GaAs and A1GaAs vs citric acid compositi on and A1 mole fraction, b)

    selectivity of GaAs vs A1GaAs as a function of etch solution composition.

    64

  • 8/9/2019 3-s2.0-B9780122653209500696-main.pdf

    11/48

    0.9

    0.8

    0.1

    0.7

    ~ 0 . 6

    v

    0.5

    0

    0.4

    0

    - 0.3

    0.2-

    1 ! 9

    0

    0

    m

    PROCESSING OF EPITAXIAL HETEROSTRUCTU RE DEVICES

    . . . . I . . . . I . . . . I . . . . I . . . . I I . . . . I . . . .

    100 200 300 400 500 600 700 800

    E t c h T i m e ( s )

    F i g . 2. 5 . E t c h d e p t h v s t i m e f o r 4 1 c i t r ic a c i d : H 2 0 2 s o l u t i o n e t c h i n g a 3 0 0 n m G a A s / 3 n m

    A 1 A s / 3 0 0 n m G a A s h e t e r o s t r u c t u r e .

    ionized etchant radicals . As shown in Fig. 2.6(a) , in plasma etching the samples are placed

    on the ground electrode and as a consequence the plasma sel f-bias that i s generated

    accelerates ions in the plasma away from the sample. As a result , the etching in this case is

    a lmost ent i re ly chemical in nature , and is facil i ta ted only b y the exci ted nature of the

    etchant species in the plasma. This leads to isotropic or crys ta llographic e tching d epending

    on which comb inat ion o f e tchant and sem iconduc tor is being co ns idered. In a l l of the

    varie t ies of RIE, the samples are placed on the e lect rode driven with RF energy. This

    configurat ion resul ts in ions being accelerated towards the sample , and thus int roduces a

    physical or sput ter ing comp onen t of e tching in addi t ion to the e tching due to the chemical

    act ion of the exci ted radicals in the plasma.

    The ECR-RIE and ICP-RIE tools are high dens i ty plasma sys tems that ut i l ize enhanced

    metho ds of ionizat ion to generate h igh ion dens i t ies (> 1011 cm -3) in com parison w ith

    convent ional RIE w here the ion dens i ty is an order of magni tude lower. For the ECR -RIE

    and ICP-RIE methods , the RF power for control l ing the ion f lux and for f ixing the ion

    energy are independent . This deco upl ing a l lows for the del ivery o f large ion f luxes a t low

    energies (or biases) onto samples . The higher vacuum sus ta ined in the ECR-RIE and ICP-

    RIE chambers provides di rect ional i ty to the ions even at low energies and thus a ids

    anisotropy in e tching.

    Other pract ical ion-ass is ted e tching m ethods are based on the ion mil l ing technique and

    these are react ive ion beam etching (RIBE), chemical ly ass is ted ion beam etching

    (CAIBE) (a lso cal led ion beam ass is ted e tching (IBAE)), and radical beam ion beam

    etching (RBIBE). These methods , as in the RIE techniques , couple the physical e tching of

    energet ic ions with chemical e tching o f neutra ls and exci ted neutra ls . The RIB E me thod

    involves generat ing react ive chemical species such as C1+ and C12+ in an ion source and

    direct ing the beam onto a sample . F or CAIB E, a beam of an inert ion such as Ar + is

    directed onto a samp le located in an am bient react ive neutra l gas such as C12. The R BIB E

    meth od is s imilar to CAIB E bu t the ambient neutra l gas here is predissociated to provide a

    beam of highly react ive radicals .

    The chemis t ri e s for the dry e t ch ing of I I I -V comp ound semiconduc tors can be d iv ided

    into categories based on the primary e tchant gases [34] . Typical chemis t r ies for RIE-type

    etching of III -V s are bas ed on: i) C12; ii) CH4; ii i) Br2; and iv) 12. Specific gase s utilized

    under these categories wi th some com men ts are l is ted in Table 2.2. M any o f these gases

    are usual ly mixed with Ar, He, N, or O for di lut ion, control of e tch ra tes , and in some

    cases, for eas ier igni tion o f the plasma. Typical e tch ra tes in som e o f these chem is t r ies are

    l is ted in Table 2.3 for the convent ional RIE technique. These ra tes can be used only as

    65

  • 8/9/2019 3-s2.0-B9780122653209500696-main.pdf

    12/48

    Fig. 2.6. Dry etcher configurations. a) plasm a etching, b) RIE, c) ECR-RIE , d) ICP-RIE, e) CAIBE.

    66

  • 8/9/2019 3-s2.0-B9780122653209500696-main.pdf

    13/48

    P R O C E S S IN G O F E P I T A X IA L H E T E R O S T R U C T U R E D E V I C E S

    Table 2.2. Typical Gas Chemistries for RIE of III- V Semiconductors

    Chemist ry Comments

    a) C12-Based

    C12, BC13, SIC14, PC13 CC12F2

    b) CH4-Based

    CH4, C 2H6, C3H8

    c) Br2-Based

    Br2, HBr, IBr, CF3Br

    d) I2-Based

    I2, HI, IC1, IBr

    Addi t ions of He, N, Ar may be necessary

    Difficult etchants for In-based compounds

    Addi t ions of H2, He, A r for d i lu t ion and stabi l ity

    Polymer deposi t ion in chamber and on mask

    Difficult to use resist masks

    Group V depletion can lead to rough surfaces

    Corrosive to gas lines

    Chamber maintenance more f requent

    Iodide compoun d deposi t io in

    Chamber maintenance more f requent

    Table 2 .3 . Typical Etch Rates for Selected I I I -V Compou nds Using

    React ive Ion Etching

    Etch rate

    Mater ial Chemist ry Bias vol tage nm/m in) Reference

    GaA s C12 300 V 250 [35]

    C12/Ar 100 V 2000 [36]

    BC13/Ar 750 [37]

    SiC14/A r 100 V 500 [36]

    CC12F2/Ar 750 [38]

    CH4/H2 600 V 40 [39]

    InP SiCI4 /Ar 150 [42]

    HB r 130 V 10 [41 ]

    CH4/H2 480 V 75 [40]

    GaSb C12/Ar 100 V 550 [36]

    CC12F2/O2 390 V 180 [42]

    SiC14/Ar 100 V 80 [36]

    CH6/H2 430 V 25 [42]

    GaN SIC14/At 400 V 51 [43]

    BC13/Ar 48 [44]

    HB r 400 V 50 [45]

    67

  • 8/9/2019 3-s2.0-B9780122653209500696-main.pdf

    14/48

    FAY AND ADESIDA

    guides because m a te r ia l qua l i ty and e tch ing appa ra tus can d i f fe r s ign i f i can t ly f rom

    labora to ry to l abora to ry . The invo la t i l i ty o f g roup V f luor ides p rec ludes pu re ly f luor ina ted

    gases a s p r im ary e tchan t s fo r I I I -V m a te r ia ls . Th i s does , however , pe rm i t the fo rm a t ion o f

    d ie lect r ic m asks on I I I -V s us ing F -con ta in ing gases such a s CF 4, NF 3 an d S F 6 .

    The e tch ra te s o f GaAs in the chem is t r i e s l i s t ed in Tab le 2 . 2 a re p rac t i ca l in t e rm s of

    app l ica t ions , a l though the m os t co m m only em ployed proces ses a re based on BC13 or

    S iCI4 . These gases have the ab i l i ty to ge t t e r wa te r vapor and to read i ly a t t ack the n a t ive

    ox ides o f I I I -V s , w hich a l lows e tch ing to p roceed im m edia te ly wi thou t any dead or

    incuba t ion pe r iod . The e tch ing produc t s fo r GaAs and A1GaAs in C12-based gases a re

    GaClx , A1Clx , and A sClx. The vo la t i l i ty o f these p roduc t s i s a ided by ion bom bardm ent .

    The e tch ing o f GaAs and an y com p os i t ion o f AlxGa l_xAs proceeds a t equa l e tch ra te s in

    C12, BC13 and S IC14 p la sm as under idea l condi t ions w hen no w a te r vapor i s p resen t . T he

    presence o f wa te r vapor p ro m otes the con t inuous fo rm a t ion o f ox ides (e .g . , A1Ox) , which

    can s ign i f i can t ly lower the e tch ra te s o f AlxGa l_xAs in a com par i son wi th GaA s . Wh ere i t

    i s des i red to con t ro l l ab ly e tch A1GaAs a t lower e tch ra te s than GaAs , CC12F 2 or o the r

    ch lor ine -based gases m ixed wi th a f luor ina ted gas can be u t i l i zed . Exam ples o f such gas

    m ix tures a re S iC14/S iF 4 and BC13/S F 6. These m ix tures can be used in any ra tio to ach ieve

    des ired select ivi t ies . The f luorine in the plasma promotes the formation of involat i le A1F3

    on the A1GaAs sur face , which ac t s to s low down or s top the e tch ing . Due to ozone

    dep le t ion conce rns CC12F 2 i s no longe r co m m only used fo r e tch ing .

    Because the chlorides of In are re la t ively involat i le i t is diff icul t to e tch In-containing

    I I I -V com pounds in ch lor ine d i s cha rges . However , i t i s pos s ib le to enhance the vo la t i l i ty

    of ind ium ch lor ides by hea t ing the sam ple above 150~ to p rom ote desorp t ion o f

    invo la t i l e p roduc t s . The m e thane chem is t ry CH4/H2 was in t roduced to surm ount the

    l im i ta t ions o f ch lor ine chem is t ry in the e tch ing of In -con ta in ing com poun ds [46] . The

    m ethy l rad ica l CH3 gene ra ted f rom CH4 rem oves the g roup I I I spec ie s (M) a s

    m e ta l lo rgan ic com pounds , (CH3)xMy, whi le H2 rem oves g roup V e lem ents a s hydr ides .

    Etch ra tes for a l l III-V materia ls in this gas mixture ( i .e . , CH4/H2) are low. To increase

    e tch ra te s , h ighe r a lkenes such a s C2H6 and C3H 8 a re u t i l ized ins tead o f CH4. The add i t ion

    of At to C H4/H 2 a l so inc reases e tch ra te s due to enhanced ion ac t iv i t ie s . Al thoug h

    ext rem ely sm ooth sur faces can be ob ta ined in m e thane -based p la sm as , the m a jor p rob lem

    assoc ia ted wi th these m ix tures i s the depos i t ion o f a po lym er f i lm wi th in the reac tor

    cham ber , on m as k sur faces , and a l so on the sur face o f the s am ple . L ow CH4 :H2 ra t ios can

    be u t i l i zed to m in im ize po lym er depos i t ion ; however , the exces s H2 can cause s eve re

    dep le t ion o f the g roup V e lem ent , re su l ting in nons to ich iom et r i c and ro ugh e tched

    sur faces . Anothe r m e thod used to m in im ize po lym er depos i t ion i s the add i t ion o f sm a l l

    a m o u n t s o f 2 to the CH4/H2 m ix ture . Addi t iona l ly , the po lym er fo rm ed can be rem oved

    af te r e tch ing in m os t cases us ing O2 p la sm a . The con t ro l ach ievab le in us ing CH4/H2 i s

    dem o ns t ra ted by the h igh ly an i so t rop ic InP e tched prof il e s in F ig . 2 . 7 , which w as ob ta ined

    us ing a cyc l i c CH4/H2 e tch /O2 c lean proces s [47]. The s l igh t ly rough e tched sur face i s

    due to the h igh ly In - r i ch s to ich iom et ry re su l t ing f rom the dep le t ion o f P due to the

    form a t ion of vo la t i l e hydr ides wi th hydrogen in the p la sm a .

    T h e a d v e n t o f h i g h p l a s m a d e n s i t y s y s t em s ( E C R - R I E a n d I C P - R I E ) h a s m a d e p o s s i b le

    the h igh ra te e tch ing of In -con ta in ing m a te r ia ls in ch lor ina ted gases a t room tem pera ture .

    These re su l t s have been a t t r ibu ted to the h igh spu t te r - induced deso rp t ion o f low vo la t i l i ty

    InClx e tch products before the surface is encapsulated [48]. I t is a lso poss ible that the

    sur face o f the e tched s am ple i s loca l ly e leva ted to h ighe r t em p era tu res , which a l so

    prom otes desorp t ion .

    Brz -based and I2 -based d i s cha rges have a l so been app l ied to the e tch ing of va r ious In -

    con ta in ing com pounds , and to o the r I I I -V m a te r ia l s [49] . Hydrogen brom ide has been

    used to e tch InGaAs and has dem ons t ra ted h igh e tch ing s e lec t iv i ty ove r InA1As [50] . A

    m ore de l ibe ra te gas m ix ture des igned to ach ieve h ighe r e tch s e lec t iv i t i e s fo r InGaAs ove r

    InA1As is S iC14 /S iF 4/HB r [41 ] . Nov e l gas m ix tures such a s IBr / Ar and IC1/A r have been

    68

  • 8/9/2019 3-s2.0-B9780122653209500696-main.pdf

    15/48

    PROCESSING OF EPITAXIAL HETEROSTRUCTUR E DEVICES

    Fig. 2.7 . An 80-nm period InP grating formed by alternateCH4 H2and

    2

    RIE.

    applied to the etching of diverse samples, such as GaAs, A1GaAs, GaS b, InP, InGaAs , and

    InSb in ECR -RIE reactors [49]. The advan tage of these halogens is that the boiling points

    of volatile iodine and brom ine co mpo unds of group III elements e.g., GaIx, InIx, GaBr~,

    and InBr~) have values similar to those o f volatile gro up V elements e.g., PI~ and PBrx). In

    contrast to the chlorides, this means that preferential losses of group V elements are

    minim ized and the formation of nonstoichiom etric etched surfaces is prevented. In

    practice, however, care mus t be taken because Br2- and I2-based gases are corrosive to gas

    lines.

    Wide bandgap GaN and re lated compoun ds have high bond energies and are therefore

    inert and chemically stable, preventing conventional wet etching in common chemicals.

    External energies are essential to initiating and sustaining etching for these materials. The

    various forms of etching ranging from CAIBE to ICP-RIE have been utilized in etching

    GaN, A1GaN, InGaN, and InA1N. Figure 2.8 a) shows the etch rate of GaN as a function o f

    plasm a self-bias voltage using RIE in SIC14 plasma [43]. Etch rates were found to be

    invariant with respect to chamber pressure as shown in the figure but highly dependent on

    the self-bias voltage. Ho wever, the etch rates at voltages as high as 400 V are less than

    55 nm /mi n. The highest etch rates for GaN and related materials have been demo nstrated

    using Cl2-based discharges in ICP-RIE reactors. Etch rate curves for the ICP-RIE of GaN

    and AlxGal_~N in a C12/Ar gas mixture are shown in Fig. 2.8 b). The decrease in etch rate

    for increasing A1N concentration is due to the increasing bon ding energy. Aniso tropic etch

    profiles useful for GaN laser facets have also been demonstrated. However, more

    development work at low ion energies suitable for the fabrication of GaN FETs and HBTs

    is still needed.

    An important issue with any dry etching technique is that of damage to the

    semiconductor material. Due to the ion bombardment that occurs in all varieties of RIE

    and other ion-assisted etching methods, the semiconductor is damaged by collisions with

    energetic ions. The damag e can be manifested in the form of nonstoichiom etric regions,

    defect aggregates, and po int defects [34]. The electrical effects of these etching-indu ced

    defects include compensation of dopants, a decrease in carrier mobility, and an increase in

    flicker noise. An additional effect that is peculiar to com pou nd s emicond uctors is that, due

    to the unequal masses of the sem iconduc tor constituents, the local stoichiometry of the

    69

  • 8/9/2019 3-s2.0-B9780122653209500696-main.pdf

    16/48

    FAY AND ADESIDA

    6 0

    5O

    o

    so

    o

    lO

    1 0 0 2 0 0 3 0 0 4 0 0

    P l a s m a B i a s V o l t a g e - V )

    a)

    6 0 0

    500 -

    E 4 0 0 -

    . , m

    E

    E

    3 0 0 -

    t~

    iv

    t -

    o

    2 0 0 -

    k

    100 -

    GaN

    ---O-- AIo.~oGao.9oN

    AIo.soGao.5oN

    AIo.72Gao.2aN

    AIN

    o ~ l - . . . . . . . .

    i I I I

    0 50 100 150 200 250 300

    S u b s t r a t e B i a s V o l t a g e ( V )

    fo)

    Fig. 2.8. a) Etch rate of GaN as a function of plasma self-bias voltage for SIC14 RIE. b) Etch rate of

    GaN and A1GaN in C12 ArICP-RIE.

    sem i cond uc t o r can be a l t e r ed , lead i ng t o r eg i ons t ha t a r e ove r l y r ich i n g roup I I I a t oms , f o r

    exam pl e , and t hus a l t e r i ng t he p rope r t i e s o f t he ma t e r i a l subs t an t i a l ly . T h i s e f f ec t i s o f ten

    obse rv ed a t t he su r f ace o f R IE -p rocess ed m a t e r i a l , and e l ec t r ica l l y man i f e s t s i t s e l f a s

    a l t e r ed S ch o t t ky ba r r i e r he i gh t s [ 51 ] . An exam pl e o f the e l ec t r i ca l cha rac t e r i s t ic s o f a P -

    dep l e t ed InP e t ched su r f ace is shown i n F ig . 2 .9 a ) , b ) . Af t e r CH4/ H 2 R IE , t he sampl e

    w a s c o a t e d w i t h A u f o l l o w i n g v a r i o u s s u r f a c e t r e a t m e n t s i n H C 1 t o r e m o v e v a r y i n g

    a m o u n t s o f m a t e r i a l f ro m t h e s u r f a ce . T h e a s - e t c h e d s a m p l e i s s e e n to b e o h m i c b e c a u s e

    t he Au i s i n con t ac t w i t h t he In - r i ch su r f ace . T h e su r f ace co n t ac t was s t i ll ohmi c a f t e r 5 nm

    o f m a t e r i a l w a s r e m o v e d . S c h o t t k y c h a r a c t er i st i cs w e r e o b s e r v e d a f te r w e t e t c h i n g b e y o n d

    12 nm i n dep t h , w i t h a r ecove ry o f cha rac t e r i s t ic s equ i va l en t t o the une t ch ed con t ro l

    s a m p l e r e s t o r e d o n l y a f t e r 3 0 n m h a d b e e n r e m o v e d . T h i s P d e p l e t i o n a l s o h a s

    70

  • 8/9/2019 3-s2.0-B9780122653209500696-main.pdf

    17/48

    PROCESSING OF EPITAXIAL HETEROSTRUCTURE DEVICES

    5 n m ,

    0 . 0 2

    o.o5

    r

    ~ 0 0 1 2 n m ~

    0 -0 .1

    0 o . 1 0 . 2 - 6 - 4 - 2 0

    B i a s v o l t s ) B i a s v o l t s )

    a ) b )

    Fig. 2.9. a) Forward and b) reverse current-voltage characteristics of InP/Au contacts afte r

    CH4 H2

    RIE for several post-RIE surface wet-etch treatments.

    consequences for optical propert ies of the etched material and the dam aged surface mu st

    be removed before regrowth or device processing can proceed.

    Assessm ent of material damage due to etching can be performed in man y ways. These

    include mobil i ty measurements using the Van der Pauw technique, resis t iv i ty measure-

    ments using the TLM technique, carrier concentrat ion profi l ing using CV measurement,

    surface dam age and s toichiometry using tradi tional surface analysis such as Auger electron

    spectroscopy and x-ray photoelectron spectroscopy, as well as electrical ly through

    Schottky barrier height measurments . Approximate damage depth profi les may be

    obtained through photoluminescence measurements of mult iple chirped quantum-well

    heterostructures [52]. The creat ion of ion-induc ed dam age can s ignificantly impact the

    performance of devices , and thus the desire to l imit these effects imposes constraints on

    al lowable plasma self-bias and amo unt of overetch used. The reduction of plasma self-bias

    at h igh plasma densi t ies that is possible with ECR- and ICP-RIE permits both high etch

    rates due to high plasma densi ty) and comparat ively li t tle damage due to low ion

    bombardm ent energy) .

    2 2 3 M e t a l l iz a t io n

    Formation of high-quali ty contacts , both ohmic and Schottky, is essential for the

    real izat ion of compound semiconductor microelectronic devices . Contacts with ohmic

    current-voltage characteris t ics are required for the real izat ion of virtual ly al l sem iconduc-

    tor devices, including heterojunction bipolar t ransis tors HBTs), h igh electron mobil i ty

    transis tors HEM Ts) and heterostructure field-effect transis tors HFET s), and laser diodes.

    Additionally, contacts with rectifying Scho ttky) characteristics are required for the

    fabricat ion of HFETs and HEMTs, as well as metal-semiconductor-metal photodetectors

    and Schottky diode-based mixers . These contacts are fabricated by dep osi t ing the contact

    metal material onto the semiconductor using ei ther sputtering or evaporat ion processes .

    The issue as to which of these deposi t ion techniques is preferable depend s o n several

    factors . From a microelectronic fabricat ion engineering perspect ive, the main difference

    between sputtering- and eva porat ion-based metal l ization processes centers not around the

    metal l izat ion i tself but arou nd the processing required to pat tern the m etal in to the desired

    geometry. Sputter deposi t ion of metal over the ent ire wafer surface fol lowed by

    photol i thography and etching is the predominant method of metal pat terning for Si

    device processing. However, th is is not the case for devices on III-V epitaxial

    71

  • 8/9/2019 3-s2.0-B9780122653209500696-main.pdf

    18/48

    FAY AND ADESIDA

    he te ros t ruc tu re s . A n a l t e ma t ive a pp roa c h , i n w h ic h the pho to l i t hog ra phy i s pe r fo rme d f i r s t

    fo l low e d by me ta l de pos i t i on u s ing e va po ra t ion a nd the n l i ft o f f, i s more c om mo nly u se d in

    e p i t a x i a l I I I -V de v ic e p roc e ss ing . C ompa re d to spu t t e r de pos i t i on , e va po ra t ion su f fe r s

    f rom poor s t e p -e dge c ove ra ge be c a use the f i lm doe s no t c on fo rm to su r fa c e topo logy bu t

    instead is inc ident f rom a single d i rec t ion and thus is subjec t to shadowing by ta l l surface

    fea tures on the wafer . An ad di t iona l i ssue tha t a r ises in the depo si t ion o f mul t ip le -

    c ons t i t ue n t me ta l f i lms suc h a s a l l oys is t he p re se rva t ion o f a l l oy s to i c h iome t ry in t he

    de pos i t i on p roc e ss . S inc e spu t t e r de pos i t i on r e l ie s on bom ba rdm e n t o f a sou rc e ma te r i al

    t a rge t w i th i ne r t ga se ous spe c i e s ( suc h a s A r ) , t he s to i c h iome t ry o f t he t a rge t a nd the

    de pos i t e d m e ta l a re be t t e r p re se rve d . In e va po ra t ion f rom a l loys, how e ve r , t he c ons t i t ue n t

    w i th t he h ighe r va po r p re ssu re e va po ra t e s f rom the me l t more r e a d i ly , r e su l t i ng in

    va r i a t i ons i n a l l oy c ompos i t i on th roughou t t he e va po ra t ion p roc e ss a s t he sou rc e

    c ompos i t i on c ha nge s . Th i s c a n r e su l t i n d i f f i c u l t i n a c h ie v ing re pe a t a b i l i t y i n p roc e ss ing .

    One solu t ion to th is d i f f icul ty wi th ev apora t io n of a l loys is to evapora te the ent i re source

    c ha rge du r ing the e va po ra t ion . A l though the c omp os i t i on o f the e va po ra t e d f i lm w i l l no t be

    un i fo rm th rough ou t t he t h i c kne ss o f t he f i lm , t he a ve ra ge c omp os i t i on o f t he e n t ir e f i lm

    w i l l ma tc h tha t o f t he sou rc e be c a use the e n t ir e c ha rge ha s be e n de pos i t e d . Th i s g loba l

    s to i c h iom e t ry i s su f f ic i e n t fo r ma ny a pp l ic a t ions.

    The fo rma t ion o f r e c t ify ing S c ho t tky c on ta c t s i s t he na tu ral r e su l t o f de pos i t i ng me ta l

    on a c l e a n se m ic onduc to r su r fac e . D ue to t he d i ff e re nc e be tw e e n the me ta l w ork func t ion ,

    ~bm, a nd the se m ic onduc to r w ork func t ion , q5 , t he e ne rgy ba nds in the se m ic onduc to r m us t

    be nd , a nd a ba r r i e r t o c ha rge t r a ns fe r be tw e e n the me ta l a nd the se mic onduc to r i s

    e s t a b li she d . W i th in some v e ry s imp le a pp rox ima t ions , t he he igh t o f t he ba r r i e r to e l e c t rons

    t r a ve l ing f rom the se mic onduc to r t o t he me ta l i s ~ m - - ~ s while those e lec t rons t rave l ing

    f rom the me ta l i n to t he se mic onduc to r mus t ove rc ome a ba r r i e r o f ~bb = ~ m - Z The

    obv ious a sym me t ry be tw e e n the se ba r r i e r s g ive s r i se t o t he r e c ti fy ing p rope r t ie s o f t he se

    c on ta c t s . C on ta c t s so fo rme d a re u se d a s ga t e s i n H FETs a nd H EMTs a nd the i r r e c t i fy ing

    p rope r t i e s a re u se d e xp l i c it l y i n the fo rm a t ion o f S c ho t tky d iode s fo r sw i t c he s a n d mixe r s .

    The p r ima ry pa ra me te r s o f i n t e re s t i n t he fo rma t ion o f Sc ho t tky c on ta c t s i s t he Sc ho t tky

    barr ie r he ight q5b, the idea l i ty fac tor n , and the reverse leakage current o f the junc t io ns.

    F rom the se s imp le e xp re ss ions , one w ou ld e xpe c t t ha t t he ba r r i e r he igh t c ou ld be e a s i ly

    a d jus t e d by jud ic ious se l e c t ion o f c on ta c t me ta ll i z a t ion th ro ugh se l e c tion o f a n a pp rop r i a t e

    me ta l w ork func t ion . D ue to t he p re se nc e o f s ta t e s on the se mic onduc to r su r fa c e tha t se rve

    to p in t he Fe rmi l e ve l a t a p re -de t e rmine d e ne rgy l e ve l , t h i s be ha v io r i s no t obse rve d fo r

    ma ny im por t a n t I I I - V se mic onduc to r s . T a b le 2 .4 i l lu s t r at e s t yp ic a l Sc ho t tky ba r r i e r

    he igh t s ob ta ine d fo r a num be r o f d if f e ren t me ta l s on the (100 ) su r fa c es o f G a A s [53] a nd

    InA1As [54 -57] , a nd the (0001) surface o f GaN [58] . Fro m th is table , i t i s c lear tha t

    Table 2. 4. Selected Schottky Barrier Heights for Comm on

    Metals on (100) GaAs, (100 ) InA1As, and (0001) GaN

    Metal GaAs [53] InA1As GaN [58]

    AI 0.76 0.670 [56] Ohmic

    Au 0.92 0.699 [55] 0.88

    Cr 0.81 0.6 [56] 0.52

    Ni 0.82 0.99

    Pt 0.99 0.74 6 [54] 1.08

    Ti 0.83 0.59 [56] 0.6

    Pd 0.93 0.698 [54] 0.92

    W 0.80 Slightly rectifying

    72

  • 8/9/2019 3-s2.0-B9780122653209500696-main.pdf

    19/48

    PROCESSING OF EPITAXIAL HETEROSTRUCT URE DEVICES

    al though barr ier height is correla ted to metal work funct ion on GaN and to some extent

    InA1As, the barr ier height is nearly invariant as a funct ion of metal dep osi ted on GaA s due

    to the very large surface s ta te dens i ty on (100) GaAs.

    Opt imized ohmic contacts are essent ia l to the performan ce o f microelectronic devices .

    Paras i tics created by nonideal oh mic contacts can con tr ibute to degrad at ion of dc and high

    frequency p erformance, as wel l as heat ing o f devices . Despi te the s imple d escript ion of the

    electr ical character is t ics of ohmic contact behavior , the deta i ls underlying ohmic contact

    format ion are s t rongly depende nt on the m icroscopic s t ructure o f the contact layer. For the

    format ion of high-qual i ty oh mic con tacts, two bas ic s t ra tegies are widely appl ied. The f i rs t

    of these strategies, the alloyed or sintered contact, relies on liquid- or solid-pha se reactions

    between the contact metal l izat ion and the semiconductor surface to form a highly doped

    surface semiconductor layer and/or interfacia l layer of intermetal l ic narrow bandgap

    materia l. The second ma jor approach cons is ts of varia t ions on the theme of epi taxial ly

    grow ing a special ohmic contact layer of highly doped, narrow ban dgap materia l especial ly

    to faci l i ta te a nonal loyed ohmic contact . For both a l loyed and nonal loyed ohmic contacts ,

    the required l inearity of the current-vol tage character is tic is obtained by eng ineering the

    surface Schot tky contact barr ier to be as smal l as poss ible . This is brought about by both

    increas ing the surface doping with i ts a t tendant reduct ion in barr ier thickness and thus

    increased tunnel ing probabi l ity, and reducing the bandgap of the surface semicon duct ing

    material, thus reducing ~bb itself.

    Al loyed ohmic contacts have been real ized us ing a number of contact metal l izat ions .

    Mo st of these cons is t of a metal (often Au) an d a dopan t such as Ge for contact to n-type

    materia l and Be or Zn for contact to p-typ e materia l . Nickel is of ten a lso incorporated into

    the contact structure as well, as it has been demonstrated to facilitate diffusion of Ge into

    GaAs [59]. Contacts based on AuGe, AuZn, or AuBe are typical ly real ized by evaporat ion

    from eutect ic o f a full evaporat ion charge onto the wafer in order to en sure that the global

    s toichiometry of the metal l ization matches that of the source. Fol lowing pat tern fo rmat ion

    by l i f toff , the ohmic contact i s formed by thermal anneal ing in a furnace or rapid thermal

    processor (RTP) in e i ther an inert ambient (Ar or He are typical) or forming gas (15% H2,

    85% N2). In this approach, the surface doping level a t ta ined by the Ge, Be, or Zn doping

    should exceed 2 x 1019 cm -3 in order to develop a tunnel ing-do minated Schot tky contact

    with suff ic iently l inear current-vol tage character is tics . O ne l imita t ion of the AuG e and

    AuGe/Ni metal l izat ions that has been widely observed is that they form a so-cal led

    spikin g contact. This can resul t in subs tant ia l nonu niform ity both in depth of doping

    and interfacial layer penetra t ion as wel l as the spat ia l compo si t ion of the contact , leading to

    nonuniform current dens i ty across the contact area . In addi t ion to the scal ing l imits that

    this imposes o n contact areas due to inh omog enei ty, these contacts are not thermal ly s table

    and suffer from degradat ion with subsequent thermal process ing or high-temperature

    device operation [60].

    One approach to avoid the diff icul t ies associated with these nonhomogenei t ies for

    ohmic contacts to GaAs includes replacing the AuGe-based contact metal l izat ion with a

    s tack of metals cons is t ing of Pd, Ge, and Au. As with the AuG e-based contacts , af ter

    evaporat ion of the contact material the contact is s intered a t 35 0-4 50 ~ to effect the Ge

    diffus ion. This metal l izat ion has proven to be more thermal ly s table and to produce a

    smooth surface morphology, and has t rans la ted into improved device re l iabi l i ty for high-

    temperature operat ion [61 ] . An al ternat ive a pproach cons is ts of us ing near-no ble t rans i t ion

    metal contacts (e .g. , Ti , P t ) that are normal ly associated with Schot tky contact format ion,

    but ensuring that the surface doping concentra t ion o f the sem iconducto r is suff ic ient ly high

    that a tunneling contact is established. In addition, in some processes the contact is further

    ass is ted by R TP in order to form a thin interfacia l layer (< 40 nm ) o f narrow b andgap

    intermetallic pha ses [62]. Specific co ntact resistanc es in the r ange of 10 -6 to

    3 x 10 -8 f~ cm 2 are obtainable for h ighly doped materia l us ing this m ethod. High-

    temperature device operation requires stil l more inert, stable contacts; for this purpose,

    73

  • 8/9/2019 3-s2.0-B9780122653209500696-main.pdf

    20/48

    FAY AND ADESIDA

    r e f r a c t o r y c o n t a c t s b a s e d o n W S i , G e W S i , W N , W S i N , W T i N , W P t A g f o r G a A s a n d I n P

    ha ve be e n inve s t iga t e d . The se c on ta c t s ha ve be e n show n to be ine r t up to t e mpe ra tu re s o f

    700 ~ w i th spe c if i c c on ta c t r e s i s t a nc e s o f 10 -6 -1 0 -7 ~ c m 2 on h igh ly dope d ma te r i a l .

    The se c ond a pp roa c h to ohmic c on ta c t fo rma t ion tha t doe s no t r e ly on a l l oy ing o r

    s in t e r ing to a c h ie ve oh mic c on ta c t i s the e xp l i c i t inc lu s ion o f na r row ba ndga p , h igh ly

    dop ed su rface layers in the epi taxia l he te rost ruc tur e for the expl ic i t purp ose of fac i li ta t ing

    ohm ic co ntac t form at ion. On InP, use o f n + la t t ice-m atched In0.53Ga0.47As has bee n show n

    to r e su l t i n h igh -qua l i t y c on ta c ts , w i th t yp i c a l c on ta c t r e s i s t anc e s o f 0 .07 -0 .1 f~ m m in

    typ ic a l H EM T he te ros t ruc tu re s [63] . The u se o f a dva nc e d he t e roe p i t a xy o f re l a t e d l aye r s o f

    l a t t i c e -misma tc he d InG a A s a nd InA s on G a A s [64 -66 ] a l l ow s the u se o f r e f ra c to ry M o-

    ba se d c on ta c t s t ha t ha ve improve d the rma l s t a b i l i t y w h i l e s t i l l ma in t a in ing h igh qua l i t y

    c on ta c t . A n a dd i t i ona l a pp roa c h to ohmic fo rma t ion tha t doe s no t r e qu i re a nne a l ing o r

    s in t e r ing i s t he u se o f s imp le Sc ho t tky c on ta c t s on de ge ne ra t e ly dope d se mic onduc to r

    ma te r i a l . The e x t re me ly th in ba r r i e r l a ye r t ha t r e su l t s f rom the spa t i a l l y r a p id be nd ing o f

    the e ne rgy ba nds p roduc e s c on ta c t s i n w h ic h the c u r re n t i s p r ima r i ly c onduc te d th rough

    tunne l ing (o r f i e ld -e miss ion ) t h roug h the ba r r i e r , r a the r t ha n the rmion ic e miss ion ove r t he

    ba r r i e r , t hus g re a t ly r e duc ing re c t i f i c a t ion . Th i s a pp roa c h i s w ide ly u se d to c on ta c t t he

    he a v i ly dope d ba se , e mi t t e r , a nd subc o l l e c to r l a ye r s i n H B T fa b r i c a t ion [ e .g . , 67 ] .

    Fo rm a t ion o f ohmic c on ta c t s on G a N a nd re l a te d c om pounds i s s ti l l a sub je c t o f i n te nse

    s tudy . O hm ic c on ta c t s fo r bo th n - type a nd p - type G a N a re o f t he a l l oye d type . The ba s i c

    me ta l l i z a t ion sc he me fo r n - type ohmic c on ta c t s i n t he se ma te r i a l s i nvo lve s T i a nd A 1 .

    S inc e the a nne a l ing te mpe ra tu re c a n ra nge f rom 600-9 50 ~ ox ida t ion o f A 1 c a n

    c o n s ti tu t e a p ro b l e m . T h e r e f o r e o h m i c m e t a ll i za t io n s o f T i / A 1 / N i / A u a n d T i / A 1 / T i / A u

    ha ve be e n a dop te d to a l l ev i a t e th i s p rob le m [68] . The be s t n - type ohm ic c on ta c t r e s i s t iv i t y

    repo rted to da te i s 8 .9 x 10 -8 f~ cm 2. I t has prov en m ore d i ff icul t to achieve p- ty pe ohm ic

    due to t he w e l l -know n p - typ e dop ing p rob le m s in G a N . Typ ic a l ho l e c onc e n t ra t i ons o f

    a pp rox im a te ly 5 x 1017 c m -3 a nd mob i l i t i e s o f < 10 c m e /V s a re s ti ll too low to a c h ie ve

    e xc e l l e n t c on ta c t s . N o tw i th s t a nd ing th i s , ma ny c on ta c t me ta l l i z a t ions ha ve be e n

    i n v e st i ga t e d o n p - t y p e G a N . T h e s e in c l u d e N i / A u , P d / A u , P t / N i / A u , N i / P t / A u , a n d

    Ta /T i . The be s t c on ta c t r e s i s t iv i t y ob ta ine d so f a r i s 3 x 10 -5 f~ c m 2 fo r t he Ta /T i

    me ta l l i z a t ion [69 ] . The de t a i l e d mic ros t ruc tu ra l me c ha n i sms fo r ohmic c on ta c t s i n t he se

    mater ia ls a re ye t to be comple te ly c la r i f ied .

    2 2 4 Io n Imp la nt a t io n

    A l thoug h ion imp la n ta t ion i s t he domina n t me thod o f dop ing in a dva nc e d S i de v ic e

    p roc e ss ing a nd ha s be e n u se d e x t e ns ive ly i n G a A s MESFET fa b r i c a t ion , dop ing v i a i on

    implanta t ion in epi taxia l he te rost ruc ture devices i s ra re ly used. For epi taxia l he te ro-

    s t ruc tu re s , i t i s muc h more c ommon to pe r fo rm the r e qu i re d dop ing du r ing the

    he te ros t ruc tu re g row th , a nd thus e l imina t e a p roc e ss ing s t e p . A p rob le m w i th i on

    imp la n ta t ion fo r dop ing in I I I -V se mic onduc to r s i s t ha t e l e c t r i c a l a c t iva t ion i s no t

    a u toma t i c e ve n w he n imp la n te d spe c i e s a re p romote d in to a pp rop r i a t e subs t i t u t i ona l s i t e s

    by a nne a l ing [70 ] . The so l id - s t a t e r e g row th p roc e ss e nge nde re d by a nne a l ing a f t e r

    imp la n ta t ion i s more c ompl i c a t e d due to t he b ina r y / t e m a ry na tu re o f I I I -V s ; c ry s t a l

    de fe c t s suc h a s tw inn ing a nd s t a c k ing fa u l t s oc c u r fo r h igh imp la n ta t ion dose s more

    re a d i ly i n I I I -V s t ha n in s i l ic on . The lo ss o r de p le t ion o f g roup V e l e me n t s a t mode ra t e

    t e mpe ra tu re s a l so me a ns tha t I I I -V su r fa c e s mus t be p ro t e c t e d du r ing a nne a l ing . In

    a dd i t ion , i on imp la n ta t ion o f c e r t a in spe c i e s m a y p rom ote in s t a b i l i ty a t he t e ro s t ruc tu re

    in t e r fa c e s a t h igh t e m pe ra tu re s . T h i s i n s t a b i l it y i s t he ba s i s fo r t he impur i ty - induc e d l a ye r

    d i so rde r ing phe nome non tha t i s u se d in t he f a b r i c a t ion o f some op t i c a l de v ic e s .

    The m ore c o mm on usa ge fo r i on imp la n ta t ion in e p it a x i a l he t e ro s t ruc tu re de v ic e s i s fo r

    i so l at i on . A dva n ta g e s o f a n ion imp la n ta t ion -ba se d i so l a ti on sc he me c o mpa re d to me sa

    i so l a t ion i s improve d p l a na r i ty , l a c k o f e xpose d su r fa c e s a nd thus a po te n ti a l de c re a se i n

    74

  • 8/9/2019 3-s2.0-B9780122653209500696-main.pdf

    21/48

    PR O C ESSIN G O F EPITA X IA L H ETER O STR U C TU R E D EV IC ES

    surface s ta tes , and in some cases improved iso la t ion and s idega t ing immunity . There a re ,

    how e ve r , s ome l imi t a t ions a nd po te n t i a l c onc e rns w i th r e s pe c t t o i on - imp la n ta t ion -ba s e d

    isola t ion . On e such e ffec t is the thermal s tab i l i ty of the iso la t ion . Since im planta t io n-ba sed

    i s o la tion s c he m e s a re o f t e n ba s e d a t l e a st i n pa r t on da ma ge - in duc e d c a r r i e r de p le t ion , a ny

    e le va te d t e mpe ra tu re s tha t t e nd to a nne a l ou t t he imp la n t da ma ge c a n de g ra de the qua l i t y

    o f t he i s o l at ion . A n o the r l im i t a t ion i s one o f ma te r i a l l im i ts ; imp la n t -ba s e d i s o l a tion ha s

    be e n de mo ns t ra t e d to be e f fe c t ive in G a A s , A 1G a A s , InP , a nd InA 1A s p rov ide d tha t t he

    c ond i t ions a re p rope r ly op t imiz e d , bu t due to the i r s ma l l ba ndga ps i t i s ge ne ra l ly no t

    s uc c e s s fu l fo r InA s a nd i s poo r fo r InG a A s l a t t i c e -ma tc he d to InP .

    Imp la n t -ba s e d i s o l a t ion s c he me s fo r I I I -V s e mic onduc to r s f a l l i n to tw o b roa d

    c a te go r i e s , da ma ge -ba s e d a nd c ompe ns a t ion -ba s e d . In a da ma ge -ba s e d i s o l a t ion p roc e s s ,

    the imp la n ta t ion i s i n t e nde d to ge ne ra t e de e p l e ve l s a nd t r a pp ing s t a t e s due to induc e d

    la t ti c e da ma ge . Typ ic a l imp la n te d s pe c ies fo r t h i s t ype o f im p la n t a re p ro tons , de u te r ium,

    oxyge n , a nd bo ron . Fo r G a A s -ba s e d i s o l a tion imp la n t s , t he dos e s a re typ ic a l ly in the r a nge

    o f 1014-1015 c m -2 fo r p ro ton im p la n ta t ion , w i th oxyge n a nd bo ron re q u i t ing on the o rde r

    o f t en t ime s s m a l l e r dos e to a c h ie ve the s a me l e ve l o f da ma g e due to the h ighe r i on ma s s e s

    o f t he s e s pe c ies . In ge ne ra l , t h i s t ype o f da m a ge -ba s e d i s o l a tion s t r a te gy i s t he rma l ly s t a b le

    on ly to the t e mpe ra tu re a t w h ic h the imp la n t d a ma ge be g ins to a nne a l ou t . Th i s i s t yp ic a l ly

    45 0 - 47 0 ~ fo r B imp la n t s [71 , 72 ] t o 600 ~ fo r mu l t ip l e imp la n t s i n to G a A s [73 -75 ]

    and In0.asA10.52As [76] , and as low as 2 00 ~ for In0 .53Ga0.a7As [77]. An addi t iona l

    c ons ide ra t ion w i th d a ma g e -ba s e d i s o l at ion imp la n t s i s t he r e d i st r ibu t ion o f t he imp la n t

    s pe c ie s w i th s ubs e que n t t he rma l p roc e s s ing o r h igh t e mpe ra tu re de v ic e ope ra t ion . T ime -

    de pe nde n t ga in in imp la n t - i s o l a t e d H B T s , fo r e xa mple , ha s be e n a t t r i bu te d to t ime -va ry ing

    pa s s iva t ion o f c a rbon a c c e p to r s i n the ba s e due to the mob i l e hyd rog e n ions . Imp la n t

    iso la t ion with He has been shown to subs tant ia l ly a l levia te th is d i ff icul ty [78] .

    The inc re a s e in ma te r i a l r e s i s t i v i ty fo r da ma ge -ba s e d i s o l a t ion i s no t a mono ton ic a l ly

    increas ing func t ion o f dose , and so an opt imal dose fo r i so la t ion exis ts . Iso la t ion shee t

    res is tances of 10 ~~ f~/[--] have b een dem ons tra ted for opt im ized B implan ts in to

    G a A s / InG a A s pH EMT he te ros t ruc tu re s [72 ] . A t dos e s a bove the op t imum, c onduc t ion

    c a n be e nha nc e d fo r s e ve ra l r e a s ons . The de fe c t de ns i ty c a n be c ome ve ry l a rge a t h igh

    doses , leading to conduct ion due to carr ie rs hopping from one defec t s ta te to the next . In

    a dd i t ion , i n s ome ma te r i a l s t he de fe c t e ne rgy l e ve l s a re no t de e p in the ba ndga p bu t l i e

    re la t ive ly c lose to the ban d edges , a nd so a t e leva ted doses a subs tant ia l nu mb er of these

    defec t leve ls can become e lec t r ica l ly ac t ive and ac tua l ly increase the carr ie r concentra t ion

    a bove the p re - imp la n te d va lue . Th i s i s pa r t i c u la r ly p rob le ma