3 Oerlikon Christopher Con Tan Tine

download 3 Oerlikon Christopher Con Tan Tine

of 22

Transcript of 3 Oerlikon Christopher Con Tan Tine

  • 7/31/2019 3 Oerlikon Christopher Con Tan Tine

    1/22

    Thin-Film Silicon Cell Technology:Current and Near Future

    Dr. Johannes Meier, Head of R&D Thin FilmDr. Chris Constantine, Director-New Technologies

  • 7/31/2019 3 Oerlikon Christopher Con Tan Tine

    2/22

    Page 2 01/10/2008 Oerlikon Solar - Constantine, 24 Sept 08

    Agenda

    IntroductionCrystalline silicon thin-film silicon

    Material issues

    Amorphous siliconMicrocrystalline silicon

    Solar cell devices

    p-i-n solar cellsMicromorph tandem cells

  • 7/31/2019 3 Oerlikon Christopher Con Tan Tine

    3/22

    Page 3 01/10/2008 Oerlikon Solar - Constantine, 24 Sept 08

    Si Wafer PV Thin-Film Si PV

    Bulk absorber material:

    High quality silicon safe wafer

    developed by microelectronicsemiconductor industry over50 yrs (not by PV!)

    PV cell technology: Front andback side passivation of wafer for

    internal electrical field and light-trapping & contacting of wafer

    ZnO

    glass

    c-Si:H

    a-Si:H

    ZnO

    Substrate is a part of the device

    Absorber material needs to be

    deposited:- Electronic properties- Interfaces & structure- Light-trapping- Uniformity of layers

    - Monolithic interconnection- TCO (T, Haze, Rsq)

    - High rate & good quality overlarge areas (m2)

  • 7/31/2019 3 Oerlikon Christopher Con Tan Tine

    4/22

    Page 4 01/10/2008 Oerlikon Solar - Constantine, 24 Sept 08

    Comparison of Atomic Structure of c-Si and a-Si:H

    Single crystal silicon

    Hydrogenated amorphous silicon

    Courtesy IMT-NE

  • 7/31/2019 3 Oerlikon Christopher Con Tan Tine

    5/22

    Page 5 01/10/2008 Oerlikon Solar - Constantine, 24 Sept 08

    (electrons)

    Ec

    Ef

    Ev

    phi

    n

    *

    (holes)

    E

    a-Si:H

    Substrate(glass)

    back contact (1-2m)

    n-layer (~20nm)

    i-layer (~250 nm )

    p-layer (~20nm)front contact

    (1-2m)

    h

    The Amorphous p-i-n Solar Cell: ~0.3 m Thickness!

    p/n doped layers create electric fieldi-layer = active layer, where:

    photons are absorbed

    electron-hole pairs are generated,separated and transported to the contactsCourtesy IMT-NE

  • 7/31/2019 3 Oerlikon Christopher Con Tan Tine

    6/22

    Page 6 01/10/2008 Oerlikon Solar - Constantine, 24 Sept 08

    Deposition of Amorphous Silicon

    Amorphous silicon is deposited by a

    plasma process from a mixture ofsilane and hydrogen

    Plasma deposition parametersinfluence the quality of the layers

    High Frequency RF Increase Plasma

    Energy and Dep Rate

    Gas Inlets

    SubstrateElectrode(Ground)

    PoweredElectrode

    Frequency

    Generator

    Impedance

    MatchingUnit

    Vacuum System

    Substrate

    H2

    SiH

    B H62

    PumpingUnit

    4

    Plasma

    Heater

    Heater

    200 - 250C

    PH3

    /

    PECVD (Plasma EnhancedChemical Vapor Deposition)

    Courtesy IMT-NE

  • 7/31/2019 3 Oerlikon Christopher Con Tan Tine

    7/22

    Page 7 01/10/2008 Oerlikon Solar - Constantine, 24 Sept 08

    Transition to Microcrystalline Silicon by Hydrogen Dilution

    X-Rays diffraction spectra of c-Si:H layers on glass as a function

    of SC= SiH4/SiH4+H2

    5

    10

    15

    20

    25

    5 5.5 6 6.5 7 7.5 8nanocrystalsize

    [nm]

    SiH4 /(SiH4+H2) [%]

    (220)

    (111)

    (311)

    Nanocrystallite size :

    E. Vallat-Sauvain et al., Advances in Microcrystalline Silicon Solar Cell Technologies (2006)

  • 7/31/2019 3 Oerlikon Christopher Con Tan Tine

    8/22

    Page 8 01/10/2008 Oerlikon Solar - Constantine, 24 Sept 08

    Microstructure of Intrinsic c-Si:H

    i-layer microstructure depends on preparation conditions (SC) and on substrate(underlying layer type)!

    Typical AFM topography top view of a 2m

    c-Si:H layer on glass: rough! (rms 16 nm),depends on layer thickness

    3 m

    Corresponding TEM projected view

    E. Vallat-Sauvain et al., Advances in Microcrystalline Silicon Solar Cell Technologies (2006)

  • 7/31/2019 3 Oerlikon Christopher Con Tan Tine

    9/22

    Page 9 01/10/2008 Oerlikon Solar - Constantine, 24 Sept 08

    Microstructure as a Function of Silane Concentration

    E. Vallat-Sauvain et al., Advances in Microcrystalline Silicon Solar Cell Technologies (2006)

    SC=SiH4/SiH4+H2

    crystallinity

    High crystallinity,

    Porous material

    Typical material

    microstructure forbest devices

    Protocrystalline

    material

    Amorphous

    material

    30-100%10 %

  • 7/31/2019 3 Oerlikon Christopher Con Tan Tine

    10/22

    Page 10 01/10/2008 Oerlikon Solar - Constantine, 24 Sept 08

    Microcrystalline Silicon p-i-n Solar Cell

    Institut de Microtechnique Neuchtel in 1994World-wide first thin film c-Si cell deposited at 200 C

    By H2-dilution in the same reactor

    Substrate

    TCO / BC

    n

    i-layer

    pTCO

    h

    Subst rate

    TCO / BC

    ni-layer

    pTCO

    h

    a-Si:H

    c-Si:Ha-Si:H

    c-Si:H

  • 7/31/2019 3 Oerlikon Christopher Con Tan Tine

    11/22

    Page 11 01/10/2008 Oerlikon Solar - Constantine, 24 Sept 08

    c-Si:H Solar Cells: Spectral Response and Jsc

    Typical QE depends on Collection Cell thickness Light-trapping

    Short-circuit current obtained:

    JSC

    20 to 30 mA/cm2

    for i-layer thicknesses of 1-3 m400 600 800 1000

    Spektralre

    sponse[a.u.]

    Wavelength

    a-Si:H

    c-Si:H

  • 7/31/2019 3 Oerlikon Christopher Con Tan Tine

    12/22

    Page 12 01/10/2008 Oerlikon Solar - Constantine, 24 Sept 08

    Stability with Respect to Light-Soaking (Staebler-Wronski)

    a-Si:H

    0

    0.2

    0.4

    0.6

    0.8

    1

    100 102 104 106

    Exposure time [sec]

    Norm

    alizedeffi

    ciency[%]

    cell temperatureT = 485C

    c-Si:H

    1h 10 h

    (final) (init)intensity(suns)

    thicknesscell

    7.7 %7.7 %103.6 mc-Si:H5.1 %10.0 %60.6 ma-Si:H

    100 h

    Well-designed c-Si:H cellsare stable!

  • 7/31/2019 3 Oerlikon Christopher Con Tan Tine

    13/22

    Page 13 01/10/2008 Oerlikon Solar - Constantine, 24 Sept 08

    MicromorphTandem Cell Concept (IMT Neuchtel 1994)

    Gap

    1.1 eV

    1.7 eV

    c-Si:H

    a-Si:H(top cell)

    ZnO

    1.5 - 3 m

    0.2 - 0.3 m

    back contact

    light

    glass

    Optimal Bandgap Combination for tandem cells: 1.1 eV & 1.7 eVT.J. Coutts et al., PVSEC-12

    ZnO

    c-Si:H

    a-Si:H

    ZnO

    glass

    Micro- morph

    SEM micrograph

    Courtesy of IMT-NE

  • 7/31/2019 3 Oerlikon Christopher Con Tan Tine

    14/22

    Page 14 01/10/2008 Oerlikon Solar - Constantine, 24 Sept 08

    Light Trapping by Rough TCO

    Reduction of fabrication time Cost reduction (/Wp) Improvement of stability in case of amorphous cells

    Reduction of thickness in silicon thin film solar cells:

    s u n l i g h t

    a-Si:Hoptical path

    silver or Aluminum

    TCO TCO

    top contact(transparent

    infraredmirror

  • 7/31/2019 3 Oerlikon Christopher Con Tan Tine

    15/22

    Page 15 01/10/2008 Oerlikon Solar - Constantine, 24 Sept 08

    Light-trapping by Front TCOs Surface Morphology

    SnO2 (Best commercial TCO) Oerlikon Solar LPCVD ZnO

    as-grown

  • 7/31/2019 3 Oerlikon Christopher Con Tan Tine

    16/22

    Page 16 01/10/2008 Oerlikon Solar - Constantine, 24 Sept 08

    1.4 m2 a-Si:H p-i-n Modules on

    LPCVD ZnO and Commercial SnO2

    ZnO

    SnO2

    LPCVD ZnO SnO2

  • 7/31/2019 3 Oerlikon Christopher Con Tan Tine

    17/22

    Page 17 01/10/2008 Oerlikon Solar - Constantine, 24 Sept 08

    Concept of TCO Intermediate Reflector: a-Si:H/TCO/c-Si:H)

    standardtandem cell

    c-Si:Ha-Si:H

    tandem cell

    with intermediate

    ZnO reflector

    back reflector

    Introduced by IMT Neuchtel 1996

  • 7/31/2019 3 Oerlikon Christopher Con Tan Tine

    18/22

    Page 18 01/10/2008 Oerlikon Solar - Constantine, 24 Sept 08

    Effect of Intermediate Reflector on Spectral Response

    400 500 600 700 800 900 1000

    QE[a.u.]

    Wavelength [nm]

    a-Si:H/ /c-Si:HZnOJsc-increase in the a-Si:H top cell

    Improvement of stability and

    efficiency

  • 7/31/2019 3 Oerlikon Christopher Con Tan Tine

    19/22

    Page 19 01/10/2008 Oerlikon Solar - Constantine, 24 Sept 08

    Japan: Intermediate Reflector by PECVD (in-situ)

    K. Yamamoto et al. WCPEC-3 (2003, Osaka)

  • 7/31/2019 3 Oerlikon Christopher Con Tan Tine

    20/22

    Page 20 01/10/2008 Oerlikon Solar - Constantine, 24 Sept 08

    Future Trends to Improve Efficiencies

    More and more complex

    stacked structures (> 15 layers)for enhanced efficiency

    Challenge for industrialisation:Build universal PECVDreactors for deposition of very

    thin individual functional layers

    a-Si:H,a-SiO:H

    a-SiC:H,..Int. Reflector

    Top cell

    Middle cell a-Si:H, c-Si:H,a-SiGe:H

    Int. Reflector

    Bottom cellc-Si:H,

    c-SiGe:H,..

    Back reflector

    Subst rate

    TCO

    n

    pTCO

    ARC

    p

    n

    p

    n

    h

    i

    i

    i

    ARC

  • 7/31/2019 3 Oerlikon Christopher Con Tan Tine

    21/22

    Page 21 01/10/2008 Oerlikon Solar - Constantine, 24 Sept 08

    Summary: Why Thin-Film Silicon Solar Cells?

    Much less material involved* which is non-toxic and abundant

    Lower temperature processes (a-Si:H ~180-250C) allows low costsubstrates, like glass, st.-steel, etc. (encapsulation only from one side)

    Composition of multi-junction cells (tandems, triples)

    Monolithic series connection of modules

    Large-area deposition process

    Better temperature coefficient (higher kWh/kWp)

    Low energy payback time (1-2 years) Still further room for improvement (advanced light-trapping)

    Attractive advantages compared to Si wafer-based PV

    (a-Si:H 0.2g SiH4/Wp vers. 10 g/Wp for c-Si)*

    *P. Lechner et al., Proc. 21 EPVSEC(2006)

  • 7/31/2019 3 Oerlikon Christopher Con Tan Tine

    22/22

    Page 22 01/10/2008 Oerlikon Solar - Constantine, 24 Sept 08

    Thank You !