2SPXQGNFRF ` 9FWJQIW8HFF · admno ^jind_`m mc` ]`c\qdjm ja oc`n` api^odjin rdoc m`nk`^o oj \ijoc`m...

18
Rev~Ata Columbiana de MatemdtLcaa (10 lum e n X V\1987 j p a g.6. Z 5 - 42 ON REGULARLY VARYING FUNCTIONS WITH APPLICATIONS TO FUNCTIONS THEORY by O.P. JUNEJA and G.S. SRIVASTAVA RESUMEN, Se estudia e1 comportamiento asint6tico de funciones posi ivas no de- crecientes de orden p~ con respecto a fun ciones de variaci6n regular de indice p,- es decir f~nciones p-hom g~neas en el li- mite 'esto es • R(ax)/R(x) ~a P ua do x 00), Se dan aplicaciones a 1a teoria de ser"as enteras de Taylor y Dirichlet. §1. l n t r oducc l dn . A f unc t i on R(x) is said to be ~egula~ly va~ying at infinity if it is real valued, posit"ve and measurable on [a,oo) for some a > 0 and if for each a > O~ "R(ax) aP 1J.m- R (x) = x-+- oo (1. 1) f or some fixed p in the .i n t e r- 'a1 (_00,00)" The n m- ber p '5 called the index 06 ~egula~ va~iation of the function R(x). It is well known ( ae, e.g. [17J) that if R( x ) is a function of r-e g uLa n va 1. - 25

Transcript of 2SPXQGNFRF ` 9FWJQIW8HFF · admno ^jind_`m mc` ]`c\qdjm ja oc`n` api^odjin rdoc m`nk`^o oj \ijoc`m...

Page 1: 2SPXQGNFRF ` 9FWJQIW8HFF · admno ^jind_`m mc` ]`c\qdjm ja oc`n` api^odjin rdoc m`nk`^o oj \ijoc`m di^m`\ndib ^jiodipjpn api^ odji h;g %!' z1-O`npgon- I`o h&s' ]` Q m`\g q\gp`_* di_`ad,ido`gt

Rev~Ata Columbiana de MatemdtLcaa(10 lum e n X V \1 9 8 7 j pag.6. Z 5 - 4 2

ON REGULARLY VARYING FUNCTIONS WITHAPPLICATIONS TO FUNCTIONS THEORY

by

O.P. JUNEJA and G.S. SRIVASTAVA

RESUMEN, Se estudia e1 comportamientoasint6tico de funciones posi ivas no de-crecientes de orden p~ con respecto a funciones de variaci6n regular de indice p,-es decir f~nciones p-hom g~neas en el li-mite 'esto es • R(ax)/R(x) ~ aP ua dox 00), Se dan aplicaciones a 1a teoria deser"as enteras de Taylor y Dirichlet.

§1. l n t r oduc c l dn . A f unct ion R(x) is said to be~egula~ly va~ying at infinity if it is real valued,posit"ve and measurable on [a,oo) for some a > 0and if for each a > O~

"R(ax) aP1J.m-R(x) =x-+-oo

(1.1)

f or some fixed p in the .in t e r- 'a1 (_00,00)" The n m-ber p '5 called the index 06 ~egula~ va~iation ofthe function R(x). It is well known ( ae, e.g.[17J) that if R( x ) is a function of r-e guLa n va 1. -

25

Page 2: 2SPXQGNFRF ` 9FWJQIW8HFF · admno ^jind_`m mc` ]`c\qdjm ja oc`n` api^odjin rdoc m`nk`^o oj \ijoc`m di^m`\ndib ^jiodipjpn api^ odji h;g %!' z1-O`npgon- I`o h&s' ]` Q m`\g q\gp`_* di_`ad,ido`gt

ion 0, .index then the 0,1 wing h Id true:

1. log. (x)1m------- " f.J

X~OO log x(1. 2)

\,' .. '-

Fc r a c f)' (J < o ,

1p-a (

I~ is obvious that R(x) is regulary varying if andoo .IV if it c a be written .in the form R{x) :;0 x L(x)

where L( x ) '. is -6lowilJ vaJtIj.{,ng, I, e., for each

a :> 0. L( ax

l.tlTl L(x) : 1.X-+OO

(L tj )

T~e ba~ic properties of regularly vary' g fun~.Lons were fi r-st st ud.i d by Karamata ([(I, [10J)and late~,important contrib~tions were made by an umb e r f mathemat'cian~ inclUding Bojani~ [2], S~~"'- [i sln e t a '" "J and others, The aim of the present paperis to ~tudy the asymptor'c behavio~ o~ a pos~tjve,~on-deerea_ lng fu ct'on of order ~ (0 < p < 00) a'

defined by Hayman [4] elative t6 a regularly varying £u.ction of index p (a~ defined above). Thp

resulta thus ob aZned hve ~eeriapplied to get re-f"nemen St sharpenings and generalizations of varLo u s known results in function .b e or-y, F'urt her-mo r e ,the techn"ques used by s are, in most of the cases,differ n from those employed by earlier workerso

To o~ ain t, e res Its ~n a general settlng, we

26

Page 3: 2SPXQGNFRF ` 9FWJQIW8HFF · admno ^jind_`m mc` ]`c\qdjm ja oc`n` api^odjin rdoc m`nk`^o oj \ijoc`m di^m`\ndib ^jiodipjpn api^ odji h;g %!' z1-O`npgon- I`o h&s' ]` Q m`\g q\gp`_* di_`ad,ido`gt

first consider rhe behavior of these functionswith respect to another increasing continuous function m Cx )",

§2. Results. Let m(x) be a real valued, indefi-nitely increasing, continuous function of x, de-fined in the interval (b,oo), where _00 ~ b < 00 andm(b+) = _00, and let .(x) be a positive, non-de-creasing function defined on [a,oo)such that .(x)is of order p (0 < p < 00) with respect to m(x),

1, 10g.(x)lmsup m(x) = p

x+oo( 2 .1)

Let R (x ) be a regularly vary ing function-of index p

such that .(x) is of 'Mean Type' with respect toR(em(x», that is, 0 < 0 ~ y < 00, where

,sup ~(x) y11m ~- =x+OO iof R ( em(x ))0

( 2 • 2 )

For A ~ 0, we putx

~(x) = e-Am(x)! .(t)eAm(t)dm(t),a

(2.3)

and define

(2.4)

( 2.5 )

27

Page 4: 2SPXQGNFRF ` 9FWJQIW8HFF · admno ^jind_`m mc` ]`c\qdjm ja oc`n` api^odjin rdoc m`nk`^o oj \ijoc`m di^m`\ndib ^jiodipjpn api^ odji h;g %!' z1-O`npgon- I`o h&s' ]` Q m`\g q\gp`_* di_`ad,ido`gt

Now we prove

THEOREM 1. F04 the eon~tant~ a~ de6ined above,we have

~ Y-:"(-p-+T-)\"7)-Y·~ D ~ C ~ (pt)\) 6 ( 2 .6)

( 2. 7 )

P4oo6. We shall prove only (2.6), the proof of(2.7) being analogous. For a given E > 0, thereexists xo such that for all x > xo '

( 2 .8)

By (2.3), we havex

,(x) < O(l)te-Am(x)! (Y+E)eAm(tlR(em(t»dm(t)Xo m(x)

= O(l)+(Y+E)e-Am(x)Je

UAR(U)~Um(xo)e

the last assertion being a consequence of (1.3),

Hence, dividing by ~(x) and passing to ~he limit,ywe get C ~ (ptX)S' Similarly, use of the left hand

inequality of (2.8) gives

sD ~ (P+X)y •

This proves Theorem 1.

,THEOREM 2. We have 604 A > 0 ,

28

Page 5: 2SPXQGNFRF ` 9FWJQIW8HFF · admno ^jind_`m mc` ]`c\qdjm ja oc`n` api^odjin rdoc m`nk`^o oj \ijoc`m di^m`\ndib ^jiodipjpn api^ odji h;g %!' z1-O`npgon- I`o h&s' ]` Q m`\g q\gp`_* di_`ad,ido`gt

"'T (p )(PfA)!). . ~ <P(x.) {1 AIjI(X)}-P/~tJ - -pIT ..lm;,;up-=-r-)- - ;j;-( )

x~~ R(em\x) ~ x

and 60!l. .it '" 0,

epT = ". <P(x) { ljI(x)}L'i.m s u p (. ) e x p P~TXT.x~~ R(em x ) ~ x

(2,10)

P!l.oa{. First let 0 < ). < 00 and let {x } be any. n

increasing s.equence of ~ositive numbers tending toinfinity. It is easy to s~e that 'for x > a andn = 1, 2 , 0 • 8 . ~

s o that

~ AIjI(Xn)e~m(xn)+<p(xn){eAm(X)_eAm(xn)}, AR(em(~)~eXm(~)

(2,11)

Lei {y } be another sequence defin~d byn

(2,1L)

Since" from (2,6) we have 0 < D ~ C < 00, it fo1":

lows that there exist constants A1 and A2 suchthat

for all large n. It follows that Yn • ~ as n + 00

Further, by (1.4), if R(x} = xPL(x), then

29

Page 6: 2SPXQGNFRF ` 9FWJQIW8HFF · admno ^jind_`m mc` ]`c\qdjm ja oc`n` api^odjin rdoc m`nk`^o oj \ijoc`m di^m`\ndib ^jiodipjpn api^ odji h;g %!' z1-O`npgon- I`o h&s' ]` Q m`\g q\gp`_* di_`ad,ido`gt

an n ~ 00. Thus (2.11) leads to

Taking Lim Lt s as n+ oo~ we get

, ' 'I!(Yn)or ~ o; a ms u p m(')

X~OO R( e Y n )

( _p_) ( ptA) / Aj, • _~,( x rrl_{ 1- \I 'I! ( x n ) } - o / A~ +A ~lmsup . m(x ) " A~(X )P n~oo R(e n ) ~ n

c .s a n c e the above inequality holds f o r any i creas-'og sequence {xn} tending to 'nfinity, we get

P T >, ( P )' ( p +A ),0." ,. <P( x ) { "" 'I! ( x ) } - P I Av ptA ~~msuPR(, m(x» ~-A~TXT

x<+(X) e(2.13)

o obtain the reverse inequality, we use the factthat (l_pu)pu $ (ltu)-(l+U) for p~ u satisfying0$ p , u < 00 (p and u not: simultaneously zero)",

Sub s t I t ut f ng u ::;'Alp and p - A:i:+ ' we get

(_0_, )(ptA)O. <P(x) " {l_A'I!(x)}-P!A.ptA R(em(x»' ~(x)

(2.14)Proceeding to limits, this leads to

pT ~ (_p_) (ptA) !'Al.imsup--~l~._) ,{1-A ill (x)} -p /A •ptA x~oo R(em(x» ~(x)

(2.15)

Combining (2.13) od (2.15), we get (209). Theproof of (2.10) is similar (or else it can be ob-

30

Page 7: 2SPXQGNFRF ` 9FWJQIW8HFF · admno ^jind_`m mc` ]`c\qdjm ja oc`n` api^odjin rdoc m`nk`^o oj \ijoc`m di^m`\ndib ^jiodipjpn api^ odji h;g %!' z1-O`npgon- I`o h&s' ]` Q m`\g q\gp`_* di_`ad,ido`gt

�ained from (~.~) by_letting ~ + 0)." .

We ~6wobtain a chain of inequ~litie~ betweenthe constants defined earl{e~. Lat~r on, using

-' - .":

these inequalities, we obtiin relations that throwintrinsic light or the relative as ymp t o.t Lc behaviorof </>(x), 'i'(x) and R(x).

THEOREM 3. (1) F04 A > 0 we have

<5 ,<.! < D s: 1 [1 _~( Y .} A /PJ' c T-(P+A)Y , y <, 'A P+A (P+A)T ..' .c" y

1 t" , 1'" . P <5'" A /p~ - ~ 7 s C ~ T" [1--=-:-T{ } J-$p+). u' A P+A (p+A)T .'T Y0" ~ -"C-p...;..+....X .....).,..O·

(2.16)

(ii) F04 A = 0, we havecS . t- ~ - ~py Y D ~ ~T1+log CpT /y )]

~ C .s ~[1+l0g(PT/CS)J (2.17)

P4oo6. ( I ) From (2~9), we have

(2.18)

The a.bove inequalities, in view of the obvious re-lation t ~ min(~C,yD), lead to

!. < D ~ 1 [ P { Y }A /PJ ~T

Y --..: r1-p+). (p+X)T y (2.19)t C ~ 1 [ P cS A /PJ TiS~ r 1-p+>- (P+X)T} ~ -

<531

Page 8: 2SPXQGNFRF ` 9FWJQIW8HFF · admno ^jind_`m mc` ]`c\qdjm ja oc`n` api^odjin rdoc m`nk`^o oj \ijoc`m di^m`\ndib ^jiodipjpn api^ odji h;g %!' z1-O`npgon- I`o h&s' ]` Q m`\g q\gp`_* di_`ad,ido`gt

(2.19) combined with (2.6) and (2.7) yields (2.16).The inequalities (2.17) follow in a si~ilar manneron using the particular cases of (2.6) and (2.7)for A'= 6. This proves Theorem 3.

Next we have "

THEOREM 4. (i) 60~ A ~ 0, we have

-mew) sup_e_~ ......."1' 'l'(x)"~ ~m -- ~P+A x~~inf~(x)mew)ep+A (2.20)

whe~e, 60~ A > 0, w i~ the ~oot tying in the in-te~vat [m~l(o),~) 06 the eq~ation

eAm(x)/P_1 -_te(p+A)m(x)/p_T(p+A)T-----A

(2.21)

and 6o~ A.= 0, w i~ the ~oot lying in the inte~vat[

-1m (O),~) 06 the equation

'(2.22)

The inequalitie~ in (2.20)a~e~ha~p.(ii) 16 'l'(x)~ TR(em(x», then C :;:D = P~A and~(x) ~ (p+A)TR(em(x».(iii) 16 ~(x) ~ yR(em(x», then C =D = _1_ andp+A'l'(x)~ y(p+A)-lR(em(x».

P~006. (i) For A > 0, we consider the functionP(x) = te(P+A)m(x)/P_}e(P+A)m(x)/~em(x) .

It is easy to check that for all x, we have

32

Page 9: 2SPXQGNFRF ` 9FWJQIW8HFF · admno ^jind_`m mc` ]`c\qdjm ja oc`n` api^odjin rdoc m`nk`^o oj \ijoc`m di^m`\ndib ^jiodipjpn api^ odji h;g %!' z1-O`npgon- I`o h&s' ]` Q m`\g q\gp`_* di_`ad,ido`gt

The above resultf< on combination with (2.16)~gives

p{ x ) .~ T. (2.23)

If w is the root of the equation (2.21) lying inthe interval [m-1(O),ClC», then (2.23) for x := OJ

gives T mew)< e(S... -p-+"'"">-_.

Hence, -f rom (2.16), we havemew)

C < e" P+A- .

To prove the left hand inequality of (2.20)1 weconsider the function

Again, it follows that for all x

Q(x) _~ (P+A>t[PT(P+;) _]P!A .(ptA) -AI'

Using (2.16), this easily leads to

Q(x) ~ y

wchich, for x = w gives

-mew) te-ptI""~~ y ~ D.

This proves (2.20). When A = 0, the inequalities(2.20) can be obtained i. an analogous fashion by

using (2.17). To see that the inequalities in

33

Page 10: 2SPXQGNFRF ` 9FWJQIW8HFF · admno ^jind_`m mc` ]`c\qdjm ja oc`n` api^odjin rdoc m`nk`^o oj \ijoc`m di^m`\ndib ^jiodipjpn api^ odji h;g %!' z1-O`npgon- I`o h&s' ]` Q m`\g q\gp`_* di_`ad,ido`gt

(2.20) are sharp, it is enough to take ~(x) =pm(x)

e(ii) If ~(x) = TR(em(x)}, then from (2.4) we

have T = t and so by (2.21) or (2.22), the root wsatisfies em(W) = 1. Hence, from (2.20), we have

1C = D = ---A. Also (2.16) or (2.17) implies thatT p+ T. .D = - and C = 0' ~.e. y = 0 = (p+A)T. Thus ~(x) ~(P+),~TR( em(x».

(iii) When ~(x) = yR(em(x», we have y = o.From (2.6) we have C = D = ~ and (2.7) impliesP+A

i.e. ~(x) = y(p+A)-lR(em(x»= t - Y- p:t"r ,that Tas x -+ 00

This completes the proof of Theorem 4.

§3. Appl ications. In this section, we give a fewapplications of the above results to function theory.

(i) ENTIRE TAYLOR SERIES. Let f, defined by00 iefez) = L a zn, z = re , be an entire function.n=O nIf we set

M(r) = max If(z)l,Izl=r

ll(r)

then M(r), u(r) and vCr) are called respectivelythe maximum modulos, the maximum term and the rankof fez) for Izi = r. Similarly the geometric mean

34

Page 11: 2SPXQGNFRF ` 9FWJQIW8HFF · admno ^jind_`m mc` ]`c\qdjm ja oc`n` api^odjin rdoc m`nk`^o oj \ijoc`m di^m`\ndib ^jiodipjpn api^ odji h;g %!' z1-O`npgon- I`o h&s' ]` Q m`\g q\gp`_* di_`ad,ido`gt

G{r) and the weighted geometric mean gk(r) offez) are defined as

1 12lTreG{r) = exp(~ loglf{re1 )Ide)~

lTo

k+1Ir k= exp(~ logG(x)x dx)~o

-1 < k < 00

(a) It is well known (see~ e.g.~ [1]) that iff has at least one zero then logGer) is an indefi-nitely increasing function of r. If f is of orderP~ i.e.

1. loglogM(r) =lmsup 1 P ,r-+- og r

setsup () ylim logG r = t

r~~inf rP ~

sup () Alim loggk r =r~~inf rP B

Kamthan and Jain [a] showed that6(k+1) P 6 (k+1)/P}p+k+l ~ B ~ 6{1-p+k+1(y)

(3.1)

P p/(k+1) (P+k+1)AY{(P+k+1)-(k+1)(6/y)} ~ k+l ~ y ( 3 • 2)

By taking mer) ='P(r) = loglk(r)

k+1 'check that our Theorem 3 leads to a sharpening ofthe above inequalities. Further, Theorem 2 yields

logr, 4>(r) = logGer), ~ = k+1,and R(r) = rP, it is easy to

35

Page 12: 2SPXQGNFRF ` 9FWJQIW8HFF · admno ^jind_`m mc` ]`c\qdjm ja oc`n` api^odjin rdoc m`nk`^o oj \ijoc`m di^m`\ndib ^jiodipjpn api^ odji h;g %!' z1-O`npgon- I`o h&s' ]` Q m`\g q\gp`_* di_`ad,ido`gt

the following exact relation between the growths

of G(r) and gk(r) not obtained in [8J, viz;

1.0 log gk ( I' ). .lmsup =

r....oo rp

p (p +k+l )/(k+i)' . 10gG-e'r >{ log gk(r)}-fJ/(k+l)(k+l)( k 1) Li msup 1---

p+ + r~ I'p log G( I' ). ,.. "( 3 .3)

-Ag aLn c : :i£'" we' t ak ev-mfr-) '::.:lb~r, 4>(r) = n Lr- )", the

number of zeros of fez) in the disc {z: Izi ~ r}, ..,

and R(r) = rPL(r), we -g et: Theor~m 5 of Jain [6J

from (ii) and (iii) of Theorem 4. Similarly, with

the above substitutions, while Theorem 4 (ii) a~d

(iii) give rise to Theorem '2 of<.[sJ, .Theorem 4 (i)

leads to a new relatiori in this~di~e~tion. It may

be noted that our techniques in all the above the-

orems are different and s ImpLe.r- than tho s e empl01.

ed by Kamthan and Ja'in. (8r~F~;the,rlJlore, if p Lr )

denotes the proximate order [llJ of f, then it is

known that rP(r) is l;i' f unc't Lo n b'£'. regular va'ria.;.f" p

z Lon o-f index o . T;'hus',ir ;{nst~ad of I' we. c.hoo s e:

R(r) = rP(r) then all the above'results stan'd' :'.""

sharpened in a generalized form •.' ; .~

~b) Res~l~~ ~~~lo~ous to ihos~ ment~~n~d in

(a) have been obtained by Shah ([1S], [19J), Gopa-_, . , r- " I ., lo

Lak r Ls hna [3J, S.K.Singh (21J ,~tc. for th'e maxi-

mum term and r~nk of t~e eritire fu~~tioh f. How-

ever, if we' make the 'substitutions mfr-) = Logr- ,A -=0, 4>(r) = vCr), 'l'(1") '= 10g\J(r) and R(r) = 1"PL(r)

. ,

36

Page 13: 2SPXQGNFRF ` 9FWJQIW8HFF · admno ^jind_`m mc` ]`c\qdjm ja oc`n` api^odjin rdoc m`nk`^o oj \ijoc`m di^m`\ndib ^jiodipjpn api^ odji h;g %!' z1-O`npgon- I`o h&s' ]` Q m`\g q\gp`_* di_`ad,ido`gt

where L(x) is slowly increasing, then it isea s i Lv seen that a.l1 the results in [18J, [21J

etc., are sharpened and generalized by our theo-rems. Mention must be made of the following resultgiven by Theorem 4 (i) which yields an exact boundnot given by analogous result of Shah [19]:

16 w denote~ the ~oot, lying in the inte~val[1,00) 06 the equation Tlogx = xt-T, then

sup_1_ -s lim 10flJ(r) <:: ~PW r+ooin f v r) "p

( 3 • 4 )

wheILe, a.6 u.6ual,

sup, ()1• Lo g u I'1m =r+ooinf rPL(r)

T

t

(c) For em ire functions of slow growth, theconcept of logarithmic order P* is used [20J. Forthis case also, analogous study of the propertiesmentioned in (a) and (b) has been made by Srivas-tava [22], J aina nd Chug h [7Jet c. Howe veI' , it isa simple matter to verify that if we choose mer)= loglogr, R(r) = (log!')pl"(r), p1'(r) being loga-rithmic proximate order [22], <p(r) = vCr) logrfor A = 0 and <p(r) = logGer) for A > 0 and '(r)accordingly, then the results of the above mentioned authors are sharpened and generalized by ourtheorems.

(ii) ENTIRE DIRICHLET SERIES. Consider theDirichl~t seri~s

37

Page 14: 2SPXQGNFRF ` 9FWJQIW8HFF · admno ^jind_`m mc` ]`c\qdjm ja oc`n` api^odjin rdoc m`nk`^o oj \ijoc`m di^m`\ndib ^jiodipjpn api^ odji h;g %!' z1-O`npgon- I`o h&s' ]` Q m`\g q\gp`_* di_`ad,ido`gt

F(s) =

where s = 0 + i t ~ ~O < A < A 1 ' II .. • , A +00n n+ n and

L'i log n = 0~m--r-'- .n-+oo n

( 3.6 )

It is well known (see, e.g. 1151) that if the se-ries (3.5) converges absolutely in the s-plane,then F(s) represents an entir~ funcion. We set

M(o) = sup If(O+it)1_oo<t<oo

u(O)OAn= ma x ] Ia Ie}nn~l

F(s) is said to be of Ritt-order p if

1. loglogM(O)~ms up = p .0-+00 0

( 3 .7)

(a) For 0 < P < 00 , and L(x) a slowly increasingfunction, define

Rahman [13J showed that if the constants involvedare non-zero, finite, then T = t if and only ify = 0 and that if x = K is that root of the equa-

38

Page 15: 2SPXQGNFRF ` 9FWJQIW8HFF · admno ^jind_`m mc` ]`c\qdjm ja oc`n` api^odjin rdoc m`nk`^o oj \ijoc`m di^m`\ndib ^jiodipjpn api^ odji h;g %!' z1-O`npgon- I`o h&s' ]` Q m`\g q\gp`_* di_`ad,ido`gt

tion eTx x= e t-eT which lies in the interval (1,00)then

1 sup. .< .1° 10gM(a)~m Xa-+-ooinf v(a)

K< eP

( 3 .8)Kpe

However, if we take m(x) = x, ~(x) = AV(x) ,A = 0,~(x) = log~(x), and R(ex) = epxL(ex), then Theorem4 (ii) and (iii) lead to a simple proof of thefirst result of Rahman, whereas Theorem 4 (i).

yields the following sharp result which is a con-siderable refinement over (3.8).

16 w deno t e.s the «o ot , lying in the in-teJtval[0,00), 06 the equation Tx = teX-T, then

1-.-~wpe( 3.9 )

Further, Theorem 2, with the above substitu-tions, gives the following exact relation betweenthe growths of ~(a) and Av(a):

1'. Lo gu Cc )ep lmsup ~ aa-+-oo ePaL(e)

(3.10)

o Av(a) ( log~(a)= llmsup pa a exp P Xa-+-oo e L(e) v(a)

(b) The geometric means and weighted geometricmeans of an entire Dirichlet series F(s) are de-fined as

TG(o) = eXP{lim2~f logIF(O+it)ldt}

T-+-oo-T39

Page 16: 2SPXQGNFRF ` 9FWJQIW8HFF · admno ^jind_`m mc` ]`c\qdjm ja oc`n` api^odjin rdoc m`nk`^o oj \ijoc`m di^m`\ndib ^jiodipjpn api^ odji h;g %!' z1-O`npgon- I`o h&s' ]` Q m`\g q\gp`_* di_`ad,ido`gt

ogk(O) = exp{ ~oJ ekXlogG(x)dx}

e 0Results analogous to those in (ii) (a) hace alsobeen obtained, involving G(O) and gk(O)' by Srivastava, Agrawal and Kumar [25J. If we take m Ix ) = x ,<P ( x ) = log G (x ), A = k, 'l' ex) = log gk(x )/k, andR(x) = epxL(ex) where L(x) is slowly increasing,then our Theorem 3 gives inequalities sharper thanthose of Theorems 4 and 5 of [25J. Similarly, Theorem 4 (ii) and (iii) yield~ a simple alternativeproof of Theorem 6 of [25J. However, our Theorems1 and 4 (i) lead to new results not obtained bythese authors.

(c) For entire Dirichlet series of zero orderals6, the concept of logarithmic Ritt order isused [14J. In this case, one of the authors [23Jhas made a parallel study. connecting lJ(o), \'(0)'etc. However, it is easily seen that his Theorems1 to 3 of [23J can be obtained from our Theorems aand 4 by making appropriate substitutions. Further,our Theorems 1 and 4 (1) lead to new results notobt~ined in [23J. Analoguous relations for geome-tric means can also be obtained from our results.

(iii) SUBHARMONIC AND MEROMORPHIC FUNCTIONS.The concepts of order, mean values, etc. have alsobe~n intro~uced for sqbbarmonic functions (see e.g.[5J, [12J, [2·4 ] ). Sin ce 0u I" res uIts abo ve havebeen obtained in a ge~eral setting, they can be a£plied in this case also. Similar rem,arks apply tomeromorphic functions.40

Page 17: 2SPXQGNFRF ` 9FWJQIW8HFF · admno ^jind_`m mc` ]`c\qdjm ja oc`n` api^odjin rdoc m`nk`^o oj \ijoc`m di^m`\ndib ^jiodipjpn api^ odji h;g %!' z1-O`npgon- I`o h&s' ]` Q m`\g q\gp`_* di_`ad,ido`gt

[15]

REFERENCES

Boas, R.P., fntL~e FunetLona, Academic Press,New York, 1954.

Bojanic, R. and Seneta, E., Slowty va~ying6unetion~ and a~ymptotie ~etation6, J.Math. Anal. Appl. 34 (1971) 302-315.

Gopalakrishna, J., A type theo~em 60~JXf(t)/tdt and apptLeatLon6 to enti~e 6un~tion~, J.lndian Math. Soc. 30 (1966) 73-78.

Hayman, W.K., Me~omo~phLe FunetIOn6, Oxford,1964.

Heins, M., Enti~e 6unetion6 with bounded minimum modulu6; 6ubha~monLe 6unetion6 anato~9 u e s , Ann. Mat h. 2 (194S) 200-213.

Jain, Pawan K" On the mean value6 06 an en-ti~e 6unetLon Math. Nach. 44, N° 1-6(1970) 305-312. --

Jain, P.K. and Chugh, V.L., Su~ te6 Moyenne~d'une 6onetion entie~e d'o~d~e zl~o, Bull,Se. Math. (2) 97 (1973) 5-15.

Kamthan, P.K. and Jain, P.K., The geomet~iemean6 06 an enti~e 6unetion, Ann. Polon.Math. 21 (1969) 247-255.

Karamata, ~, Su~ un mode de e~oi66anee ~egu-til~e de {onetion~, Mathematica (cluj.) 4(1930) 3S-53. -

-------------, Su~ un mode de e~oi66anee ~lgu-ti(~e, theo~eme6 6ondamentaux, Bull. Soc.Math. France, 61 (1933) 55-62.

Levin, BcJao, Vi6t~butLon 06 ze~06 06 enti~e6unetion6, Vol. 5 Amer. Math. Soc. Trans-lations, Providence, 1964.

Rado,T., Subha~monie Funetion~, Chelsea, NewYork, 1949.

Rahman, Q.L, A note on enti~e 6unetLon6 (de-6Lned by VL~iehtet 6e~Le~1 06 pe~6eetty~eguta~ g~owth, Quart. J, Math. Oxford(2")& (1955) 173-175.

-----------, On the maximum modutu~ and eoe-66ieient~ 06 an enti~e VL~iehtet 6e~ie6,Tohoku Math. J. (2) S (1g56) 10S-113.

Ritt, J.F., On ee~tain paint~ in the theo~y06 Vi~iehtet ~e~ie~, Amer.J.Math. 50(192S) 73-S6.

[4]

[5 ]

[ sJ

41

Page 18: 2SPXQGNFRF ` 9FWJQIW8HFF · admno ^jind_`m mc` ]`c\qdjm ja oc`n` api^odjin rdoc m`nk`^o oj \ijoc`m di^m`\ndib ^jiodipjpn api^ odji h;g %!' z1-O`npgon- I`o h&s' ]` Q m`\g q\gp`_* di_`ad,ido`gt

[16J Seneta,Eo, Sequen~ial e~ite~ia 6o~ ~egula~ va~iation, Quart. J.Math. Oxford (2) 22(1971) 565-570. --

[17J Seneta,Eugene, Regula~y Va~ying Funetion4,......Lecture Notes in Mathematics 508, Springer-." Verlag, Berlin-Heidelberg-New York, 1976.

[18J'Shah, S .M.o, The maximum' te~m 06 an eYlti~e 4e-~ie~IIl, Quart~ J.Math. Oxford sera 19( 1 9 4 8 i 2 2 0 :"2 2 3 • ' --

[19J ', A note on e.nti~e 6un~tion.6 06 pe!l6eetly ~egula~ g~owth, Math.Z. 56 (1952) -254-257. --

[20] Shah, S. M. an dIs haq, M., 0nth e maxim urn m0-dulu.6 and the eoe66ieient.6 06 an enti~e .6ence«, J. Indian Math. Soc, 16 (1952) 177-182'.. ----

[21J Singh,S.K., On the maximum te~m and ~ank 06an enti~e 6unetion, Acta Math. 94 (1955)1-12. --

[22J Srivastava,G.S., On the loga~ithmie p~oximateo~de~.6, Ganita, 21 (2) (1970) 47-570

[23J . , On-enti!le 6unetion4 06 ~lowg~owth ~ep~e.6ented by Vi!liehlet .6e!lie~~Ann. Poion. Math. 24 (1971) 149-158.

[24J ., The mean value.6 06 a .6ubha~-monie 6unetion~ to appear in Rev. Roum. deMat. Pures et Applo

[25J Srivastava,S.N., Agrawal,A.K. and Kumar K.t

On the geomet~Lc mean.6 06 an entL~e 6unc-tLon ~ep~e.6ented by VL~i~hlet .6e!lie4, Math.i.·116 (1970) 359-364.

***Vepa~tment 06 MathematLe.6IndLan In.6tLtute 06 TechnologyKanpu~ 208016, UoPoINOlA.

Vepa~tamento de MatematLeaCent~o de CL~neLa.6 Exata.6Unive~.6idade E.6tadual de Lond~Lna.86100-Lond~in4 (PRJ, BRASIL.

(Recibido en Mayo de 1980)

42