2Phase Stefan problem.ppt

119
The Stefan Problem and the Exact Solution for the Two Phase Stefan Problem DT Project

Transcript of 2Phase Stefan problem.ppt

Page 1: 2Phase Stefan problem.ppt

The Stefan Problemand the

Exact Solution for the Two Phase Stefan Problem

DT Project

Page 2: 2Phase Stefan problem.ppt

First Things First

• We desire to formulate Two-Phase Stefan Model of Melting and Freezing– Non linear model– “Moving Boundary Problem”

• Contains an unknown which is the region to be solved…..

Page 3: 2Phase Stefan problem.ppt

Why Stefan Problem???

•The formulation of the Stefan Problem is a foundation on which more complex models can be built.

Page 4: 2Phase Stefan problem.ppt

First (cont’d)

• Note:– The phase changing process is governed

by the conservation of energy.

– The unknowns are the temperature field and the location of the Interface.

– Involves a phase change material(PCM) with constant density( ), latent heat( ), melt temperature( ), Specific heats( ), and Thermal conductivities( ).

L

mT LS cc ,

LS kk ,

Page 5: 2Phase Stefan problem.ppt

Physical Assumptions

• Conduction only• Constant latent heat (L)• Fixed melting temperature( ) which is

according to the phase change material (PCM)

• Interface thickness is 0 and it is a sharp front; it separates the phases

mT

Page 6: 2Phase Stefan problem.ppt

Assumptions (cont’d)

• Thermophysical properties are different for each phase– Conductivities ( )– Specific heats ( )

• Density remains constant

L Sc c

L Sk k

L S

Page 7: 2Phase Stefan problem.ppt

Other Assumptions

• Nucleation and supercooling are assumed to be not present

• Surface tension and curvature is insignificant

Page 8: 2Phase Stefan problem.ppt

Only Conduction

• Conduction of Heat– Temperature– Heat(enthalphy)– Heat Flux

• Characterizes phases

Page 9: 2Phase Stefan problem.ppt

Heat Equation

-Heat conduction equation (one space dimension):

-well-posed

-Heat equation:

where

( )t x xcT kT

t xxT Tk

c

Page 10: 2Phase Stefan problem.ppt

The Two-Phase Stefan Problem

• A slab, , initially solid at temperature , is melted by imposing a hot temperature at the face and keeping the back face, insulated (all parameters constant).

lx 0minit TT

mL TT

0x lx

Page 11: 2Phase Stefan problem.ppt

Let’s Find a Solution

• The solution of the Stefan Problem is T(x,t) and X(t)!!!!

Page 12: 2Phase Stefan problem.ppt

Mathematical Model

• PDE for

• Interface(t>0)

• Initial Condition

• Boundary Condition

t L xx

t S xx

T T

T T

0 ( ), 0

( ) , 0

X t t

X t x t

( ( ), )

'( ) ( ( ) , ) ( ( ) , )

m

L x S x

T X t t T

LX t k T X t t k T X t t

lxTTxT

X

minit

0,)0,(

0)0(

0),(

0,),0(

tlTk

tTTtT

xS

mL

Page 13: 2Phase Stefan problem.ppt

Be Exact!

• In order to explicitly solve the Two-Phase Problem we need to assume the slab is semi-infinite.

• Physical Problem:– We want to melt a semi-infinite slab, ,

initially solid at a temperature , by imposing temperature , on the face .

– The “alphas” are different for each phase. All parameters constant.

0 x S mT T

L mT T 0x

Page 14: 2Phase Stefan problem.ppt

Mathematical Model

• Heat Equations for

• Interface(t>0)– Stefan condtion:

• Initial Condition

• Boundary Condition

t L xx

t S xx

T T

T T

0 ( ), 0

( ) , 0

X t t

X t x t

( ( ), )

'( ) ( ( ) , ) ( ( ) , )

m

L x S x

T X t t T

LX t k T X t t k T X t t

0,)0,(

0)0(

xTTxT

X

minit

Sx

mL

TtxT

tTTtT

),(lim

0,),0(

Page 15: 2Phase Stefan problem.ppt

Two-Phase Neumann Solution

• We derive the Neumann Solution

– We use the similarity variable, ,and seek the solution for both for the liquid and for the solid.

– Seek a solution for X(t) in the form:

t

x

( , ) ( )LT x t F

( , ) ( )ST x t F

( ) 2 LX t t

Page 16: 2Phase Stefan problem.ppt

Temperature

• Temperature in the liquid region at t>0:

• Temperature in the solid region at t>0:

0 ( )

( )2

( , ) ( ) LL L m

x X t

xerf

tT x t T T T

erf

( )

( )2

( , ) ( )( / )

SS m S

L S

x X t

xerfc

tT x t T T T

erfc

Page 17: 2Phase Stefan problem.ppt

• Neumann similarity solution of the 2-phase Stefan Problem for the interface

( ) 2 LX t t

Page 18: 2Phase Stefan problem.ppt

Transcendental Equation

• There is a different Transcendental Equations that incorporates the TWO Stefan numbers (one for each phase).– Trans. Equation:

– Stefan Numbers and parameter “v”:( )L L m

L

c T TSt

L

( )S m S

S

c T TSt

L

L

S

v

)(exp()()exp( 222 verfcvv

St

erf

St SL

Page 19: 2Phase Stefan problem.ppt

Newton!!!

• Newton's method is an algorithm that finds the root of a given function.-Where F(x) = 0.

• The fastest way to approximate a root.

Page 20: 2Phase Stefan problem.ppt

What now???

• We can use the Newton algorithm to solve the transcendental equation for the Stefan problem

• We do this in order to find a unique root lambda and therefore a unique similarity solution for each 0, 0, 0L SSt St v

Page 21: 2Phase Stefan problem.ppt

Newton Algorithm

1. Guess x0

2. Take a Newton Step

where

3. Terminate if

xxx nn 1

)(

)(

xf

xfx

10*

)(

TOLx

TOLxf

-(Want TOL to be very small so convergence should be noticed)

-Stuck. Better guess

Page 22: 2Phase Stefan problem.ppt

Approximate the Root for Newton

• For the 2-phase problem there is a good approximation which can be x0 in the Newton program.

Approximation of Lambda:

21

22

S SL

St StSt

v v

Page 23: 2Phase Stefan problem.ppt

Glauber’s Salt Input Values

-Tm = 32; -CpL = 3.31;-CpS = 1.76;-kL = .59e-3; -kS = 2.16e-3; -rho = 1460; -Lat = 251.21;-Tinit = 25; -Tbdy = 90;

Page 24: 2Phase Stefan problem.ppt

Water Input Values

- Tm = 0;

- CpL = 4.1868;

- CpS = .5;

- kL = .5664e-3;

- kS = 2.16e-3;

- rho = 1;

- Lat = 333.4;

Page 25: 2Phase Stefan problem.ppt

Glauber’s salt Examplemaximum number of iterations to be performed,20tolerance for the residual,1.0e-7Iterations is 1xn = 5.170729e-001fx = -2.740474e-001

Iterations is 2xn = 5.207715e-001fx = 1.747621e-002

Iterations is 3xn = 5.207862e-001fx = 6.881053e-005

Done. Root is x=5.207862e-001, with Fx=1.068988e-009, Iterations is n=4

LAMBDA=

• 5.207861719133929e-001

Page 26: 2Phase Stefan problem.ppt

Plot Lambda vs StefanFor small Stefan numbers from 0:5 and M=51

Page 27: 2Phase Stefan problem.ppt

Portion of Exact Solution Code• function lambda = neumann2p(CpL, CpS, kL, kS, rho, Tm, Lat, Tbdy,Tinit) • • format long e• %----------------------Input values---------------------------------------• CpL = input('Enter specific heat: ');• CpS = input('Enter specific heat of solid: ');• kL = input('Enter thermal conductivity of liquid: ');• kS = input('Enter themal conductivity of solid: ');• rho = input('Enter density which is constant: ');• Tm = input('Enter the melting temperature of substance: ');• Lat = input('Enter Latent heat: ');• TL = input('Enter temperature at x=0: ');• dat2p;• %--------------------------Constants to derive-----------------------------• alphaL = kL/(rho*CpL);• alphaS = kS/ (rho *CpS);• dT = Tbdy - Tm;• dTa = Tm - Tinit;• v = sqrt(alphaL./alphaS);

StS = (CpS*dTa)/ Lat;• StL = (CpL*dT)/Lat;• %----------------------------Newton-----------------------------------• • x0 = 0.5 * (-StS/ (v*sqrt(pi)) + sqrt(2*StL + (StS/(v*sqrt(pi)))^2));• lambda = transnewton2p(x0,20,1.0e-7,StS,StL,v);

• function Xt = XofT(lambda,alphaL,t)• Xt = 2*lambda*sqrt(alphaL*t);• • • function TofXTL = TofXTL(lambda,alphaL,Tbdy,dT,x,t)• TofXTL = Tbdy-dT*(erf(x./(2*sqrt(alphaL*t)))./erf(lambda));• • function TofXTS = TofXTS(lambda,alphaS,Tinit,dTa,x,t,v)• TofXTS = Tinit +dTa*(erfc(x./(2*sqrt(alphaS*t)))./erfc(lambda*v))

Page 28: 2Phase Stefan problem.ppt

Exact Front for Glauber’s Salt

Page 29: 2Phase Stefan problem.ppt

Exact Front for Water

Page 30: 2Phase Stefan problem.ppt

Exact Histories for Salt

-5,10,15 from top to bottom

Page 31: 2Phase Stefan problem.ppt

Exact Histories for Water

Page 32: 2Phase Stefan problem.ppt

Exact Profiles for Salt

-notice sharp turn at the melt temperature

Page 33: 2Phase Stefan problem.ppt

Exact Profiles for Water

Page 34: 2Phase Stefan problem.ppt

Enthalpy Method for Stefan 2-Phase Problem

Page 35: 2Phase Stefan problem.ppt

Formulation/ Discretization of Stefan 2-Phase Problem

• Discretize Control Mesh

• Discretize Heat Balance

• Discretize Fluxes

• Discretize Boundary Conditions

Page 36: 2Phase Stefan problem.ppt

Partition Control Volumes:

Subdivide the regions into M intervals, or

control volumes: with each

Subregion associate a node .

Volume of :

MVVV ,...,, 21

jxMjxAV jj ,...,1 ,

jV

jV

Page 37: 2Phase Stefan problem.ppt

Create the control mesh:

.

,,...,1 ,)1(

,0

/

2/1

2/1

2/1

lxMx

Mjxjx

x

Mlxx

M

j

j

steps) timediscretize(tntn

Page 38: 2Phase Stefan problem.ppt

Discretize Heat Balance

Integrating heat balance eq’n over control

volume and over time interval

e

T

TTcdTTcE

qE

ref

ref

T

T

xt

ref

E

re temperatureference where

][)(

Equation) Balance(Heat 0

jV ],[ nnn ttt

Page 39: 2Phase Stefan problem.ppt

Continue…

Dividing out the A and integrating the derivatives yields:

Assuming E is uniform and is small:

dxdttxqAdtdxtxEAt

n

n

j

j

j

j

n

n

t

t

x

x

x

x

x

t

t

),(),(1 2/1

2/1

2/1

2/1

1

1

1

2/1

2/1

)],(),([),( 2/12/1

n

n

n

n

j

j

t

t

jjtttt

x

x

dttxqtxqdxtxE

j

x

x

j xtxEdxtxEj

j

),(),(2/1

2/1

jV

Page 40: 2Phase Stefan problem.ppt

Discretized Enthalpy

From Last Slide:

Or

Mjqqx

tEE n

jnj

j

nnj

nj ,...,1 ],[ 2/12/1

1

1

)],(),([

)],(),([

2/12/1

1

n

n

t

t

jj

jnjnj

dttxqtxq

xtxEtxE

Page 41: 2Phase Stefan problem.ppt

Discretize Fluxes

Fourier’s Law:

Approximate q discretely:

x

TkkTq x

Mjxx

TTkq

jj

jjjj ,...,2 ,

1

12/12/1

Page 42: 2Phase Stefan problem.ppt

Discretize Boundary Conditions • Imposing Temperature from left:

• Impose exact temperature at back face.

• The left boundary flux at x=0:

• The right boundary flux at x=l:

,...2,1,0 ),(00 ntTT nn

1

12/1

2/1

012/1

2/1 with ,

k

xR

R

TTq

nnn

02/1 nMq

Page 43: 2Phase Stefan problem.ppt

Liquid Fraction & “Mushy”

• is Solid

• is liquid

• is “mushy”

Liquid Fraction:

jV0jE

jVLE j

jVLE j 0

L

E jj

Page 44: 2Phase Stefan problem.ppt

Energy & Temperature Relation

Solve for T:

(liquid) T ,][

(solid) T ],[

mmL

mmS

TLTTc

TTTcE

(liquid) E ,

)(interface E0 ,

(solid) 0E ,

Lc

LET

LT

c

ET

T

Lm

m

Sm

Page 45: 2Phase Stefan problem.ppt

Energy vs. Temperature Graph with Enthalpy Scheme:

Page 46: 2Phase Stefan problem.ppt

Explicit Time SchemeInitial Temperature Known: Initial Enthalpy Set Resistance and Fluxes from Initial Temperature and Enthalpy Update Enthalpies at Update Temperature Update Liquid Fraction

MjxTT jinitj ,...,2,1 ),(0 MjE j ,...,2,1 ,0

1njE 1nt

Page 47: 2Phase Stefan problem.ppt

Flux and Resistance Drive Heat Flows

with2/1

12/1

j

nj

njn

j R

TTq

SL k

x

k

xR

2

)1(

2

Page 48: 2Phase Stefan problem.ppt

Update Enthalpy at Next Time Step

(The Discretized Enthalpy)

Mjqqx

tEE n

jnj

j

nnj

nj ,...,1 ],[ 2/12/1

1

Page 49: 2Phase Stefan problem.ppt

Update Temperature at Next

Time Step:

(liquid) ,

)(interface 0 ,

(solid) 0 ,

T

LEc

LET

LET

Ec

ET

nj

L

nj

m

njm

nj

S

nj

m

nj

Page 50: 2Phase Stefan problem.ppt

Update Liquid Fractions/Phases:

(liquid) if ,1

(mushy) 0 if ,

(solid) 0 if ,0

nj

nj

nj

nj

nj

EL

LEL

E

E

Page 51: 2Phase Stefan problem.ppt

Glauber’s Salt Example

solidfor ty conductivi10162

liquid)for ity (conductiv10590

solid)for heat (specific761

liquid)for heat (specific313

heat)(latent 21251

re) temperatuimposing (90

re) temperatu(initial25

erature)(melt temp32

(density)1460

3

3

3

CkJ/ms.k

CkJ/ms.k

CkJ/kg.c

CkJ/kg.c

kJ/kg.L

CT

CT

CT

kg/mρ

oS

oL

oS

oL

oL

oS

om

Page 52: 2Phase Stefan problem.ppt

Matlab Code Subroutines

• Call INPUT: a data file contains all the data needed for computing.

• Call MESH: a function sets up control volume, the node and the face vectors.

• Call START: a function initialize temperature, enthalpy and liquid fraction at each control volume.

Page 53: 2Phase Stefan problem.ppt

Continue…• Call FLUX: a function finds the fluxes

for each control volume at current time.• Call PDE: a function updates

temperature, enthalpy and liquid fraction at next time step.

• Call OUTPUT: a function outputs needed and computed parameters.

• Call COMPARE: a function compares the exact and numerical solutions.

Page 54: 2Phase Stefan problem.ppt

Defining Errors• Front error at time:

• T(xout,time) error:

• History Error at :

• Profile Error at :

exioutXoutXout TioutTerrorTerrorT )(,max

exactXfronterrorXerrorX ,max

maxt

outX

exacthistiXoutXout TiTerrorTerrorT )(,max

exactprofitt TiTerrorTerrorT )(,maxmaxmax

Page 55: 2Phase Stefan problem.ppt

Neumann Exact vs. Numerical (Fronts, Histories and

Profiles) Plots for Varied M Values

Page 56: 2Phase Stefan problem.ppt

Exact Front vs. Num. Front at M=32

Page 57: 2Phase Stefan problem.ppt

Exact Front vs. Num. Front at M=60

Page 58: 2Phase Stefan problem.ppt

Exact Front vs. Num. Front at M=80

Page 59: 2Phase Stefan problem.ppt

Exact Front vs. Num. Front at M=120

Page 60: 2Phase Stefan problem.ppt

Exact Front vs. Num. Front at M=160

Page 61: 2Phase Stefan problem.ppt

Exact Front vs. Num. Front at M=256

Page 62: 2Phase Stefan problem.ppt

Exact Hist vs. Num.Hist at M=32

Page 63: 2Phase Stefan problem.ppt

Exact Hist vs. Num. Hist at M=60

Page 64: 2Phase Stefan problem.ppt

Exact Hist vs. Num. Hist at M=80

Page 65: 2Phase Stefan problem.ppt

Exact Hist vs. Num. Hist at M=120

Page 66: 2Phase Stefan problem.ppt

Exact Hist vs. Num. Hist at M=160

Page 67: 2Phase Stefan problem.ppt

Exact Hist vs. Num. Hist at M=256

Page 68: 2Phase Stefan problem.ppt

Exact Profile vs. Num. Profile at M=32

Page 69: 2Phase Stefan problem.ppt

Exact Profile vs. Num. Profile at M=60

Page 70: 2Phase Stefan problem.ppt

Exact Profile vs. Num. Profile at M=80

Page 71: 2Phase Stefan problem.ppt

Exact Profile vs. Num.Profile at M=120

Page 72: 2Phase Stefan problem.ppt

Exact Profile vs. Num. Profile at M=160

Page 73: 2Phase Stefan problem.ppt

Exact Profile vs. Num. Profile at M=256

Page 74: 2Phase Stefan problem.ppt

Summary on Plots

• The numerical solution is getting closer to closer to the exact solution as the number of nodes M gets bigger and bigger.

• The numerical solution profile plots are closer to the exact solution plots even for smaller M’s.

Page 75: 2Phase Stefan problem.ppt

Stefan2p Errors (Front, History and Profile) vs. M Plots at

hrst 50max

Page 76: 2Phase Stefan problem.ppt

Melt Front Error vs. M

Page 77: 2Phase Stefan problem.ppt

Melt Front Error vs. M

Page 78: 2Phase Stefan problem.ppt

Tem-History Error vs. M

Page 79: 2Phase Stefan problem.ppt

Tem-Profile Error vs. M

Page 80: 2Phase Stefan problem.ppt

Tem-Profile Error vs. M

Page 81: 2Phase Stefan problem.ppt

Summary on the Plots

• As the number of nodes M increases, the errors for Stefan2p Front, History and Profile plots appear decreasing trends.

• These decreasing trends are even more so for M equals binary numbers, i.e., 32, 64, 128, 256 and etc.

Page 82: 2Phase Stefan problem.ppt

Mushy2p:

An Alternative to the Enthalpy Scheme

Sherry Linn

Page 83: 2Phase Stefan problem.ppt

E vs. T graph with enthalpy scheme

Page 84: 2Phase Stefan problem.ppt

Why a new scheme?

Enthalpy scheme’s energy vs. temperature curve not differentiable at T = Tm!

Want a scheme based on a piecewise differentiable energy vs. temperature curve.

Page 85: 2Phase Stefan problem.ppt

To achieve piecewise differentiability…

Impose a mushy zone of predetermined length ε:

m

mm

m

TTLiquid

TTTMushy

TTSolid

:

:

:

Page 86: 2Phase Stefan problem.ppt

E vs. T graph with enthalpy scheme (solid) and mushy scheme (dashed)

Page 87: 2Phase Stefan problem.ppt

Introducing mushy2p

Explicit schemeIndependent from Stefan2pDiffers from Stefan 2p (PDE function)Imposed mushy zone affects

- Temperature

- Liquid fraction

Page 88: 2Phase Stefan problem.ppt

Temperature

(solid) if

(mushy) 0.0 if

(liquid) 0.0 if

LEc

LET

LEL

ET

Ec

ET

T

njL

p

nj

m

nj

njm

njS

p

nj

m

nj

Page 89: 2Phase Stefan problem.ppt

Deriving Temperature at Mushy Phase

Two points: (Tm,0), (Tm+epsilon,rho*L)

Obtain equation of line E in terms of T

Solve for T in terms of E

Page 90: 2Phase Stefan problem.ppt

Liquid Fraction in Terms of ε

(liquid) if ,1

(mushy) if ,

(solid) if ,0

njm

mnjm

mnj

mnj

nj

TεT

ε TTTTT

T T

Page 91: 2Phase Stefan problem.ppt

Melt Front Error vs. Epsilon at M = 64

Page 92: 2Phase Stefan problem.ppt

Temp History Error vs. Epsilon at x = .49 m, M = 64

Page 93: 2Phase Stefan problem.ppt

Temp Profile Error vs. Epsilon at t = 50hrs, M = 64

Page 94: 2Phase Stefan problem.ppt

Melt Front Error vs. Epsilon at M = 128

Page 95: 2Phase Stefan problem.ppt

Temp History Error vs. Epsilon at x = .49 m, M = 128

Page 96: 2Phase Stefan problem.ppt

Temp Profile Error vs. Epsilon at t = 50hrs, M = 64

Page 97: 2Phase Stefan problem.ppt

An Optimal Epsilon

Error decreases as epsilon increasesIs there a larger epsilon that causes error to

increase?An optimal epsilon (topic for further research)

Page 98: 2Phase Stefan problem.ppt

Mushy vs. Enthalpy

How good is the mushy scheme?

Which is better, mushy or Stefan?

Page 99: 2Phase Stefan problem.ppt

solidfor ty conductivi10162

liquid)for ity (conductiv10590

solid)for heat (specific761

liquid)for heat (specific313

heat)(latent 21251

re) temperatuimposing (90

re) temperatu(initial25

erature)(melt temp32

(density)1460

3

3

3

CkJ/ms.k

CkJ/ms.k

CkJ/kg.c

CkJ/kg.c

kJ/kg.L

CT

CT

CT

kg/mρ

oS

oL

oS

oL

oL

oS

om

Recap: Glauber’s salt

Page 100: 2Phase Stefan problem.ppt

Recap: Comparing Exact to Numeric Solution

• Requirements/Precautions:– Input data for the explicitly solvable case– Impose exact temperature at back face

• Error Analysis:– L-norm: err = max{ |Fapprox – Fexact| }

• Compare solution via three things:1.Melt front X(t)2.Temperature T(x,t) history at fixed x3.Temperature T(x,t) profile at fixed t

Page 101: 2Phase Stefan problem.ppt

How good is mushy2p?

1. Melt front X(t) location

2. Temperature T(x,t) history at fixed x

3. Temperature T(x,t) profile at fixed t

Page 102: 2Phase Stefan problem.ppt

Melt Front X(t)M = 32, = 1/32 = .03125 = x, tmax = 50 hrs.

Max error 9.24 mm

Page 103: 2Phase Stefan problem.ppt

Melt Front X(t), M = 128, = 1/128 = .0078125 = x, tmax = 50 hrs.

Max error 1.66 mm

Page 104: 2Phase Stefan problem.ppt
Page 105: 2Phase Stefan problem.ppt
Page 106: 2Phase Stefan problem.ppt

How good is mushy2p?

1. Melt front X(t) location

2. Temperature T(x,t) history at fixed x

3. Temperature T(x,t) profile at fixed t

Page 107: 2Phase Stefan problem.ppt

T(x,t) history at x 0.484 mM = 32, = 1/32 = .03125 = x, tmax = 50 hrs.

Max error 7.55×10-2 °C

Page 108: 2Phase Stefan problem.ppt

T(x,t) history at x 0.496 m, M = 128, = 1/128 = .0078125 = x, tmax = 50 hrs.

Max error 1.91×10-2 °C

Page 109: 2Phase Stefan problem.ppt
Page 110: 2Phase Stefan problem.ppt

How good is mushy2p?

1. Melt front X(t) location

2. Temperature T(x,t) history at fixed x

3. Temperature T(x,t) profile at fixed t

Page 111: 2Phase Stefan problem.ppt

T(x,t) profile at t = tmax = 50 hrsM = 32, = 1/32 = .03125 = x

Max error 1.39 °C

Page 112: 2Phase Stefan problem.ppt

T(x,t) profile at t = tmax = 50 hrsM = 128, = 1/32 = .03125 = x

Max error 0.639 °C

Page 113: 2Phase Stefan problem.ppt
Page 114: 2Phase Stefan problem.ppt

Max errors for numeric schemes at various numbers of nodes: Temperature T(x,t) profile at t = 50 hrs.

M stefan2p Mushy2p ( = 1/M)

32 1.39721734740785 1.39111290103978

40 0.65724954768591 0.65923220965860

60 0.29444363002193 0.29550235005397

64 0.83534465188910 0.82963045129535

80 0.14473018624196 0.14560810548880

120 0.22392243999277 0.22044558071511

128 0.64645276473467 0.63885783836963

160 0.40088509319875 0.39523873217349

240 0.19702938327533 0.19715111147884

256 0.12053866446253 0.11876976279872

Page 115: 2Phase Stefan problem.ppt

Max errors for numeric schemes at various numbers of nodes: Temperature T(x,t) profile at t = 50 hrs.

M stefan2p Mushy2p ( = 1/M)

32 1.39721734740785 1.39111290103978

40 0.65724954768591 0.65923220965860

60 0.29444363002193 0.29550235005397

64 0.83534465188910 0.82963045129535

80 0.14473018624196 0.14560810548880

120 0.22392243999277 0.22044558071511

128 0.64645276473467 0.63885783836963

160 0.40088509319875 0.39523873217349

240 0.19702938327533 0.19715111147884

256 0.12053866446253 0.11876976279872

Page 116: 2Phase Stefan problem.ppt
Page 117: 2Phase Stefan problem.ppt

So which is better?

• Stefan2p– Represents physical

reality– Jump in heat flux– Small error, depending

on number of nodes

• Mushy2p– Artificially-imposed

mushy zone– Energy E(T) is

continuous– Smaller error,

depending on (with same nodes)

Page 118: 2Phase Stefan problem.ppt
Page 119: 2Phase Stefan problem.ppt

Is mushy2p a better scheme?

• Is it more efficient?

• What’s the optimal ?• Is the error different enough to be

significant?

• Can we justify using a scheme that doesn’t seem to reflect reality?