2D Attenuation Model

34
1 3 4 5 6 7 8 9 10 11 12 13 14 2 Flood-Exceedance Attenuation by Riparian Land-use Whitworth GA, Brasington JT, Yorke, L Contact: [email protected]

Transcript of 2D Attenuation Model

Page 1: 2D Attenuation Model

1

3

4

5

6

7

8

9

10

11

12

13

14

2

Flood-Exceedance Attenuation by Riparian Land-use

Whitworth GA, Brasington JT, Yorke, LContact: [email protected]

Page 2: 2D Attenuation Model

1

3

4

5

6

7

8

9

10

11

12

13

14

2

Contents

OverviewStudy Site

Flood Defence Background

Numerical ModelExperimental Farming

Software CalibrationAttenuation Gain

Conclusion

Page 3: 2D Attenuation Model

1

3

4

5

6

7

8

9

10

11

12

13

14

2

Research Goals

• Sustainable Flood Defence

• Low Investment

• Low Impact

Page 4: 2D Attenuation Model

1

3

4

5

6

7

8

9

10

11

12

13

14

2

Study SiteRiver Vyrnwy

River Severn

Page 5: 2D Attenuation Model

1

3

4

5

6

7

8

9

10

11

12

13

14

2

Loss of lifeMore Background

Page 6: 2D Attenuation Model

1

3

4

5

6

7

8

9

10

11

12

13

14

2

Study Site

A

R

100km farmscale (‘Glastir’) streamside buffer-strips

100km community-maintained network of watercourses and hedges

40km Main River

Page 7: 2D Attenuation Model

1

3

4

5

6

7

8

9

10

11

12

13

14

2

Point Cloud Assembly

A

C

M

B

R

Munlyn-Buttington

DTM Points parallel to streamflow

Page 8: 2D Attenuation Model

1

3

4

5

6

7

8

9

10

11

12

13

14

2

Parameters and ElementsTerrain Array

•(Munlyn – Buttington)

•Floodplain•Main River

•Maintained Courses•‘Glastir’ Courses

•Infrastructure

Depth and velocity parameters on a coarser set of flow elements

Elevation and roughness parameters on a finer Variable Terrain grid

Page 9: 2D Attenuation Model

1

3

4

5

6

7

8

9

10

11

12

13

14

2

Flow Boundaries

Q = 0.05*H ^1.90

Flume Calibration

Buttington Channel/Weir Interface

MB Boundary Weir Equation

Page 10: 2D Attenuation Model

1

3

4

5

6

7

8

9

10

11

12

13

14

2

Vegetation NetworksBaseline PastureStreamside Feature

Pseudo roughnessfor added flow resistance

Terrain grid overlaying Porous Frictional Weirs

Resistance by form

Page 11: 2D Attenuation Model

1

3

4

5

6

7

8

9

10

11

12

13

14

2

Channel Flow – 100 cumecs

MB in-channel Calibration

73

73.2

73.4

73.6

73.8

74

74.2

74.4

74.6

74.8

16000 36000 56000 76000 96000 116000 136000 156000

Seconds (from 0745 29Mar08)

Mun

lyn

Stag

e (m

)

63

63.5

64

64.5

65

65.5

66

66.5

But

tingt

on S

tage

(m)

Mun (Mar08)

Mun (Model05)

Butt(Mar08)

Butt (Model05)

Buttington 29Mar2008

Buttington Model 0.05

Munlyn 29Mar2008

Munlyn model 0.05

Munlyn to ButtingtonChannel Calibration

Page 12: 2D Attenuation Model

1

3

4

5

6

7

8

9

10

11

12

13

14

2

Overbank Flow - 400 cumecs2D output – ‘MB’ Flow Vectors overlaying water surface elevation

Pasture MaintainedStream-net

Maintained + Glastir

stream-nets

0%

+13% +23%+15%

Stream-nets +intermittent

Main-River friction

Page 13: 2D Attenuation Model

1

3

4

5

6

7

8

9

10

11

12

13

14

2

Attenuation ResultsMB

ReachVolume

(m3^6)

% wet area (km2)

%

Base 5.8 9.05

Streams 6.5 13 8.91 98

Streams and Buffers 6.7 15 8.95 99

Hi-mann-Form+Rough 7.1 23 9.13 101

Hi-mann-Form 6.7 15 8.92 98

Hi-mann-Rough 6.3 9 8.95 99

Munlyn-ButtngtonSample Points

Water-surface longsection over terrain

Page 14: 2D Attenuation Model

1

3

4

5

6

7

8

9

10

11

12

13

14

2

Conclusions & Outcome

October 2000 Loss Peak

December 2000 Benign-Peak

• Flood Storage Gain• Low Lateral Impact• Exceedance control• Improved wellbeing

Page 15: 2D Attenuation Model

1

3

4

5

6

7

8

9

10

11

12

13

14

2

Fin

Acknowledgements & thanksIGES, Aberystwyth UniversityRichard Williams, Jack Southon, Mark HubandEnvironment Agency Data TeamAlberta University River 2D codePowysland IDB BoardWAG Glastir (www.cymru.gov.uk/glastir)John Swogger [email protected] (Backdrop cartography)[Thomas et al], Assessment of Floodplain Woodland[Mandlburger et al], Optimisation of Lidar terrain models[Syme WJ], 2D Modelling of Buildings and Fences

Page 16: 2D Attenuation Model

Data

Analysis

Results

Outcome

Climate Research

Issues for a Model Catchment

Stakeholders

Boundaries

Porosity

Landuse

Topography Hydrometry

Parameters

Software

Hardware

Productivity

Method

Page 17: 2D Attenuation Model

Numerical

VirtualField-Tests

Real-timePublication

ExceedanceControl

Climate Research

A Model Catchment

Stakeholders

Boundaries

Porosity

Diversity

Physical-side Human-side

Parameters

Wellbeing

Blight

Funding

Land-usechange

Data

Page 18: 2D Attenuation Model

1

3

4

5

6

7

8

9

10

11

12

13

14

2

Historic augment and Flood Frequency analysis suggest 2.5% exceedance at Pool Quay of

100cumecs x 16 hrs ~ 6,000,000m3

Say, 50% ~ 3,000,000m3 benign overspill

Leaving 50% ~ 3,000,000m3 additional Floodplain storage

Exceedance Stats

FEH

Upstream• 18% total storage

• 0.12m x 25km2

• (wind effect)

Page 19: 2D Attenuation Model

1

3

4

5

6

7

8

9

10

11

12

13

14

2

3. Field Evidence

~ 200mm headloss

(~ 1:10yr event)

18Nov2009125mm head

Page 20: 2D Attenuation Model

Method Issues

• Point cloud strategy• Longitudinal arrays• Lateral arrays• Bathymetry• Discretization• Sub-reach no and length

Page 21: 2D Attenuation Model

Analysis Issues

• Steady State Flow• Dynamic Wave Flow• Experimental Terrain• Form v. Roughness•

Page 22: 2D Attenuation Model

Results Issues

• Attenuation Volume• Attenuation Time• Wet perimeter• Doorstep Elevation• Stage at High Risk Leveee

Page 23: 2D Attenuation Model

Outcome Issues

• Wellbeing • Ecology• Credibility & Transparency• Error & Uncertainty• Carbon• Visualization

Page 24: 2D Attenuation Model

Software Issues

• GIS linked assembly• EA standard 2D• FEM

• Conserve across domain • Value gradient across cell

• FVM• Conserve across cell • Quicker ??

Page 25: 2D Attenuation Model

Stakeholder Issues

• Government• LLFA• Environment Agenty• Land Drainage Authority• Landowners

Page 26: 2D Attenuation Model

Boundary Issues

• Inflow• Weir > Flo• Flume

• Tributaries• Wet/dry analysis

Page 27: 2D Attenuation Model

Porosity Issues

• Form• Roughness• Velocity instability• Froude number cap

Page 28: 2D Attenuation Model

Landuse Issues

• Glastir• Forestry• Farmside• IDB drainage• Infrastructure• Ecology

Page 29: 2D Attenuation Model

Topography Issues

• Point Cloud Structure• Long feature• Lateral Features• Discretization• Wrack data• Perimeter AP

Page 30: 2D Attenuation Model

Hydrometry Issues

• Time Series• Stochastic Inflow• Bathymetry

Page 31: 2D Attenuation Model

Parameter Issues

• River 2D coefficients• Roughess• Elevation• Velocity• Depth• Absorbence• Convergence• Solution Tolerance

Page 32: 2D Attenuation Model

Hardware Issues

• Single Core• Multi Core• GPU• Multi-thread

Page 33: 2D Attenuation Model

Productivity Issues

• 1:1• Resample confidence• Channel analysis• Overbank wave analysis

Page 34: 2D Attenuation Model

3. Field Evidence

c. 200mm headloss(~ 1:10yr event)

18Nov2009125mm head