2>(?9@#A( ,7&8%'98&:;

20
!"#$%&' )*+ ,-,!./0!1,234./5 Essentially dealing with OXIDATION-REDUCTION REACTIONS Electron transfer reaction SPONTANEOUS REACTIONS: Examples: voltaic cells, batteries. NON-SPONTANEOUS REACTIONS: Examples: electrolysis, electrolytic cells. QUANTITATE REACTIONS How much current flows 6 ,7&8%'98"&:;<%'= 6 Electrochemistry involves the relationship between electrical energy and chemical energy. 2> ?9@#A /&B;&C %"& D#<;8< 9E 9F;G#H9A '&GI8H9A '&#8H9A<J K&7&8%'98"&:;8#7 '&#8H9A<L 3A &7&8%'98"&:;8#7 '&#8H9A<+ 49:&%";AM 79<&< &7&8%'9A< 9' ;< 49:&%";AM M#;A< &7&8%'9A< 9' ;< ."& 9F;G;N;AM #M&A% ;< ."& '&GI8;AM #M&A% ;< ) ,7&8%'98"&:;<%'= 6 2> ?9@#A - OA 0F P /&G !#%

Transcript of 2>(?9@#A( ,7&8%'98&:;

Page 1: 2>(?9@#A( ,7&8%'98&:;

!"#$%&'()*+((,-,!./0!1,234./5(

Essentially dealing with OXIDATION-REDUCTION REACTIONS

Electron transfer reaction

SPONTANEOUS REACTIONS: Examples: voltaic cells, batteries.

NON-SPONTANEOUS REACTIONS:

Examples: electrolysis, electrolytic cells. QUANTITATE REACTIONS

How much current flows 6(,7&8%'98"&:;<%'=(6(

Electrochemistry involves the relationship between electrical energy and chemical energy.

2>(?9@#A(

/&B;&C(%"&(D#<;8<(9E(9F;G#H9A('&GI8H9A('&#8H9A<J(K&7&8%'98"&:;8#7('&#8H9A<L(

3A(&7&8%'98"&:;8#7('&#8H9A<+(49:&%";AM(79<&<(&7&8%'9A<(9'(;<(

49:&%";AM(M#;A<(&7&8%'9A<(9'(;<(

."&(9F;G;N;AM(#M&A%(;<(

."&('&GI8;AM(#M&A%(;<((((

((

)(,7&8%'98"&:;<%'=(6(2>(?9@#A(

-(OA(0F( P(/&G(!#%(

Page 2: 2>(?9@#A( ,7&8%'98&:;

Ionic equation: Net ionic equation:( What is oxidized? What is reduced? What is the oxidizing agent? What is the reducing agent?

Q(,7&8%'98"&:;<%'=(6(2>(?9@#A(

Zn(s) + CuSO4(aq) R ZnSO4(aq) + Cu(s)

Look at this oxidation reduction reaction

3A(9'G&'(%9(S&&$(%'#8S(9E(C"#%(79<&<(&7&8%'9A<(#AG(C"#%(M#;A<(%"&:T(C&(#<<;MA(9F;G#H9A(AI:D&'<J(

U(,7&8%'98"&:;<%'=(6(2>(?9@#A(

Page 3: 2>(?9@#A( ,7&8%'98&:;

VA9C(%"&('I7&<(E9'(G&%&':;A;AM(9F;G#H9A(4%#%&<(1.  Oxidation state of atom in elemental form is zero.

e.g. Cl2 O2 P4 C(s) S8 2. The oxidation number of a monatomic ion equals its charge. 3. Some elements have “common” oxidation numbers that can be used as reference in

determining the oxidation numbers of other atoms in the compound.(Alkali metals +1 Alkaline earth metals +2 Fluorine –1 H usually +1 (Hydrides: metal-H compounds (–1)) O usually –2 (peroxides (-1) & superoxides possible) Cl, Br, I almost always –1

4. Sum of oxidation numbers is equal to overall charge of molecule or ion: •  For a neutral compound the sum of oxidation numbers equals zero. •  For a polyatomic ion, the sum of the oxidation numbers is equal to the charge on the

ion. 5. Shared electrons are assigned to the more electronegative atom of the pair:

•  more electronegative atom will have a negative oxidation number.

W(,7&8%'98"&:;<%'=(6(2>(?9@#A(

0'G&'(9E(%"&<&(;<(<;MA;X8#A%J(

For main group elements (s and p block) The highest possible positive oxidation state is

equal to the group number!

(We won’t worry about the

transition metals right now)

Y(,7&8%'98"&:;<%'=(6(

Driving force: atoms tend to lose or gain electrons to achieve:

2>(?9@#A(

It helps to know the Periodic trends in oxidation states

Page 4: 2>(?9@#A( ,7&8%'98&:;

Can we explain these common oxidation states?

H -1 +1

Li +1

Be +2

F -1

Na +1

Mg +2

Al +3

P +3 +5

Cl -1

+1,3,5,7

K +1

Ca +2

Ga +3

Ge +2 +4

As +3 +5

Br -1

+1,3,5,7

Rb +1

Sr +2

In +1 +3

Sn +2 +4

Sb +3 +5

I -1

+1,3,5,7

Ba +2

Tl +1 +3

Pb +2 +4

Bi +3 +5

O -2,-1

S -2

+2,4,6 Se -2

+2,4,6 Te -2

+2,4,6

Blue: most common oxidation states in Group 5 Z(,7&8%'98"&:;<%'=(6(2>(?9@#A(

1.  Assign Oxidation Numbers.

2.  Write incomplete half-reactions.

3.  Balance each half-reaction separately. a. Balance atoms undergoing redox. b. Balance remaining atoms.

i. Add H2O to balance oxygens. ii. Add H+ to balance hydrogens.

4.  Balance charges by adding electrons. 5.  Multiply each half-reaction so that the same number of electrons

are involved in the reduction and the oxidation.

6.  Add the half-reactions.

7.  In basic solutions, add OH! to neutralize H+

This is the method for BALANCING REDOX REACTIONS

[(,7&8%'98"&:;<%'=(6(2>(?9@#A(

Page 5: 2>(?9@#A( ,7&8%'98&:;

."&(E9779C;AM('&#8H9A(;<(A9%(D#7#A8&GJ((\';%&(%"&(D#7#A8&G("#7E]'&#8H9A<(#AG(9B&'#77('&#8H9A(E9'+(

4A)^K!"L(^((_&Q^K!"L(R(4AU^K!"L(^((_&)^K!"L(

O(1#7E(/&#8H9A(;A87IG&<(&7&8%'9A<(&F$7;8;%7=J(OA(&7&8%'98"&:;8#7('&#8H9A("#<(#A(9F;G#H9A(#AG(#('&GI8H9A(

"#7E('&#8H9AJ(

`(,7&8%'98"&:;<%'=(6(

0F;G#H9A((('&GI8H9A(((?#7#A8&G(/&#8H9A((

2>(?9@#A(

Example: Balancing Redox Reactions in acid(

2>(?9@#A( ,7&8%'98"&:;<%'=(6( 6*(

?#7#A8&(%"&(E9779C;AM('&#8H9A(;A(#8;G(<97IH9A+(!(^(1a0Q(R a0)(^(!0)(^(1)0

Page 6: 2>(?9@#A( ,7&8%'98&:;

Example: Balancing Redox Reactions in base(

2>(?9@#A( ,7&8%'98"&:;<%'=(6( 66(

(?#7#A8&(%"&(E9779C;AM('&#8H9A(;A(D#<;8(<97IH9A+(

bD0)K<L(^(!7cK#dL(^(01cK#dL(R(bDK01LQcK#dL(^(!70cK#dL

Example: Balancing Redox Reactions (

2>(?9@#A( ,7&8%'98"&:;<%'=(6( 6)(

\"&A(%"&(E9779C;AM('&#8H9A(;<(D#7#A8&G(K;A(#8;GL(C"#%(;<(%"&(89&e8;&A%(;A(E'9A%(9E(C#%&'f((

a0)KML(^(1)0K!L(R(a0QcK#dL(^(a0KML

Page 7: 2>(?9@#A( ,7&8%'98&:;

3<(%";<('&#8H9A(4b0a.Oa,0g4f((hA*K<L(^(!I)^K#dL(R((hA)^K#dL(^(!I*K<L((((3E(%"&('&#8H9A(;<(<$9A%#A&9I<(;%(8#A(G9(C9'SJ((19C(8#A(C&("#'A&<<(%";<(&A&'M=f(

SPONTANEOUS ELECTROCHEMICAL REACTIONS can do work.

6Q(,7&8%'98"&:;<%'=(6(2>(?9@#A(

i97%#;8(!&77(;<(#(G&B;8&(;A(C";8"(&7&8%'9A(%'#A<E&'(988I'<(B;#(#A(&F%&'A#7(8;'8I;%J(

6U(,7&8%'98"&:;<%'=(6(2>(?9@#A(

Page 8: 2>(?9@#A( ,7&8%'98&:;

6W(,7&8%'98"&:;<%'=(6(2>(?9@#A(

Voltaic Cells Consist of: (OJ  ,7&8%'9G&<+(((

((((((((."&(%C9(<97;G(:&%#7<(K8#%"9G&(#AG(#A9G&L(((

((((((\"#%("#$$&A<(#%(%"&(OA9G&f((((

((((((\"#%("#$$&A<(#%(%"&(!#%"9G&f(((?J((,7&8%'97=%&(<97IH9A<((!J((\"#%(G9&<(%"&(<#7%(D';GM&(9'($9'9I<(G;B;G&'(G9f(((

4I::#';N&(%"&(E&#%I'&<(9E(#(i97%#;8(!&77(

g<;AM(%"&(hAj!I(i97%#;8(8&77(#<(#A(&F#:$7&T(%'=(%9(#A<C&'(%"&<&(dI&<H9A<J(

6Y(,7&8%'98"&:;<%'=(6(

(k/I7&<l(9E(B97%#;8(8&77<+(6J(O%(%"&(#A9G&(&7&8%'9A<(#'&($'9GI8%<J((()J(O%(%"&(8#%"9G&(&7&8%'9A<(#'&('&#M&A%<J((QJ(,7&8%'9A<(8#AA9%(<C;:m(((

2>(?9@#A(

Which electrode will increase in mass? Which will decrease?

Which direction do the electrons flow?

Page 9: 2>(?9@#A( ,7&8%'98&:;

,7&8%'9A<(n9C(<$9A%#A&9I<7=(;A(#((B97%#;8(8&77J(

\#%&'(9A7=(n9C<(9A&(C#=(<$9A%#A&9I<7=(;A(#(C#%&'E#77J(((-;S&C;<&T(&7&8%'9A<(9A7=(n9C(<$9A%#A&9I<7=(9A&(C#=(;A(#('&G9F('&#8H9AoE'9:(";M"&'(%9(79C&'($9%&AH#7(&A&'M=J(

6Z(,7&8%'98"&:;<%'=(6(2>(?9@#A(

."&($9%&AH#7(G;p&'&A8&(D&%C&&A(%"&(#A9G&(#AG(8#%"9G&(;A(#(8&77(;<(8#77&G(%"&(&7&8%'9:9HB&(E9'8&(K&:ELJ(

3%(;<(#7<9(8#77&G+((

#!&77($9%&AH#7(;<(:&#<I'&G(;A(B97%<(KiLJ(

,8&77(+(3A%&A<;B&($'9$&'%=T(&A&'M=($%&#&7&8%'9A(

6[(,7&8%'98"&:;<%'=(6(2>(?9@#A(

Page 10: 2>(?9@#A( ,7&8%'98&:;

Cell voltage (EMF or Ecell) is the measure of reaction spontaneity (

6`(,7&8%'98"&:;<%'=(6(

Cell voltage depends on:

1)

2)

3)

The more spontaneous a reaction, !  !  ! 

2>(?9@#A(

The standard potential for an electrochemical cell is the potential (voltage) generated when reactants and

products of a redox reaction are in their standard states.(

It is convenient to tabulate redox reactions as half reactions. Standard half-cell potentials When all substances are in standard state:

)*(,7&8%'98"&:;<%'=(6(

Standard State defined so potentials can be tabulated: T = 25°C. Gases, p = 1 atm. [Solutions] = 1M

2>(?9@#A(

Page 11: 2>(?9@#A( ,7&8%'98&:;

4%#AG#'G(/&GI8H9A(b9%&AH#7<(

;A(C#%&'(#%()Wq!((

2>(?9@#A( ,7&8%'98"&:;<%'=(6( )6(

Reduction Half-reaction Eo1/2(V)

F2 (g) + 2e– ! 2F– (aq) +2.87 H2O2 (aq) + 2H+(aq) + 2e– !2H2O(!) +1.776

Au+(aq) + e– ! Au(s) +1.69 PbO2(s) + 4H+(aq) + SO4

2– (aq) + 2e– ! PbSO4(s) + 2H2O(!) +1.685

Cl2 (g) + 2e– ! 2Cl–(aq) +1.359 O2 (g) + 4H+(aq) + 4e– ! 2H2O(!) +1.23

ClO4– (aq) + 2H+(aq) + 2e– ! ClO3

– (aq) + H2O(!) +1.23 Pt2+(aq) + 2e– ! Pt(s) +1.20 2IO3

–(aq) + 12H+(aq) + 10e– ! I2(s) + 6H2O(!) +1.195 Br2 (!) + 2e– ! 2Br–(aq) +1.065

NO3– (aq) + 4H+(aq) + 3e– ! NO(s) + 2H2O(!) +0.96

Ag+(aq) + e– ! Ag(s) +0.799 Fe3+(aq) + e– ! Fe2+(aq) +0.771 O2 (g) + 2H+(aq) + 2e– ! H2O2(aq) +0.68 I2 (s) + 2e– ! 2I–(aq) +0.536 I3

– (aq) + 2e– ! 3I–(aq) +0.53

Cu+(aq) + e– ! Cu(s) +0.521 Cu2+(aq) + 2e– ! Cu(s) +0.337 Sn4+(aq) + 2e–! Sn2+(aq) +0.154 Cu2+(aq) + e– ! Cu+(aq) +0.153 2H+ (aq) + 2e– ! H2(g) +0.00 Pb2+(aq) + 2e– ! Pb(s) –0.126 Sn2+(aq) + 2e– ! Sn(s) –0.136 Co+2(aq) + 2e–! Co(s) "0.277 Ni2+(aq) + 2e– ! Ni(s) –0.28 Cd2+(aq) + 2e– ! Cd(s) –0.403 Fe2+(aq) + 2e– ! Fe(s) –0.440 Cr3+(aq) + 3e– ! Cr(s) –0.74 Zn2+(aq) + 2e– ! Zn(s) –0.763 2H2O (!) + 2e– ! H2(g) + 2OH– (aq) –0.83 SO4

2– (aq) + H2O(!) + 2e– ! SO32– (aq) + 2OH– (aq) –0.93

Mn2+(aq) + 2e– ! Mn(s) –1.18 Al3+(aq) + 3e– ! Al(s) –1.66 Mg2+(aq) + 2e– ! Mg(s) –2.37 Na+(aq) + e– ! Na(s) –2.71 Ca2+(aq) + 2e– ! Ca(s) –2.87 Li+(aq) + e– ! Li(s) –3.05

The 1O-_]!,--(b0.,a.3O-(is the potential associated with the half-reaction.(

Rules for half-cell potentials: 1.  The sum of two half-cells potentials in a cell equals the overall cell potential:

E°cell = E°1/2(oxid) + E°1/2(reduc)

2.  For any half-reaction: E°1/2(oxid) = ! E°1/2(reduc)

3. Standard half-cell is a hydrogen electrode:((

H2(g,1atm) " 2H+ (aq, 1M) + 2e!

E°1/2(oxid) = E°1/2(reduc) = 0 V

))(,7&8%'98"&:;<%'=(6(2>(?9@#A(

Page 12: 2>(?9@#A( ,7&8%'98&:;

E0cell = E°1/2(reduc) + E°1/2(oxid) =

What is E°1/2(reduc) ? What is E°1/2(oxid)?

What is E0cell for Cu/Zn cell?

)Q(,7&8%'98"&:;<%'=(6(2>(?9@#A(

E0cell = E°1/2(reduc) + E°1/2(oxid) =

What is E°1/2(reduc) ? What is E°1/2 (oxid)?

How are half cell potentials measured? A definition of zero potential is needed.

)U(,7&8%'98"&:;<%'=(6(2>(?9@#A(

E0cell = E°1/2(reduc) + E°1/2(oxid) =

What is E°1/2(reduc) ? What is E°1/2 (oxid)?

Page 13: 2>(?9@#A( ,7&8%'98&:;

What is E°cell for the following reaction?

Al(s) + Cu+2(aq) R Al+3(aq) + Cu(s)

Use the table of half cell potentials to find the CELL POTENTIAL for any redox reaction.

)W(,7&8%'98"&:;<%'=(6(2>(?9@#A(

."&(M'&#%&'(%"&($9%&AH#7(G;p&'&A8&(D&%C&&A(%"&(%C9(r('&#8H9A<T(%"&(M'&#%&'(%"&(B97%#M&(9E(%"&(8&77J(

."&(:9'&($9<;HB&(%"&((B#7I&(9E(,8&77T(%"&(7#'M&'(%"&(G';B;AM(E9'8&(E9'(%"&('&#8H9AJ(

2>(?9@#A( )Y(,7&8%'98"&:;<%'=(6(

OA9G&(hAK<L(RhA)^K#dL(^()&s(

!I)^K#dL(^()&s(R(!IK<L(!#%"9G&(

,q8&77(t(^*JQU(s(Ks*JZYL(t(^6J6*i(

^*JQU(i(

s*JZY(i(

,q'&G(KiL(

Page 14: 2>(?9@#A( ,7&8%'98&:;

."&(B#7I&(9E(%"&("#7E(8&77($9%&AH#7(8#A(D&(I<&G(%9(G&%&':;A&(%"&('&7#HB&(<%'&AM%"(9E(#('&#8%#A%(#<(#A(9F;G;N;AM(#M&A%(9'(

'&GI8;AM(#M&A%J(

•  ."&(<%'9AM&<%(9F;G;N&'<+(

•  ."&(<%'9AM&<%('&GI8&'<+(

)Z(,7&8%'98"&:;<%'=(6(

2>(?9@#A(

-;^K#dL(^(&s((((((((((((R(((((((((((((((-;K<L(

_)KML(^()&s(((((((((((((R(((((((((((((()_sK#dL(

)1^K#dL(^()&s((((((((R((((((((((((((1)(KML(

4%'9AM&<%(('&GI8;AM(#M&A%(

29<%(A&M#HB&(B#7I&<(9E(,q'&G(

3A8'&#<;A

M(<%'&AM%"(9E('&G

I8;AM(#M&A

%(

4%'9AM&<%((9F;G;N;AM(#M&A%(

29<%($9<;HB&(B#7I&<(9E(,q'&G(

3A8'&#<;A

M(<%'&AM%"(9E(9

F;G;N;A

M(#M&A

%(

."&(:9'&($9<;HB&('q'&G(%"&(<%'9AM&'(%"&(9F;G;N;AM(#M&A%(9A(%"&(7&uJ((

."&(:9'&(A&M#HB&('q'&G(%"&(<%'9AM&'(%"&('&GI8;AM(#M&A%(9A(%"&(';M"%J(

2>(?9@#A( ,7&8%'98"&:;<%'=(6( )[(

O(<$&8;&<(C";8"(;<(";M"&'(#AG(%9(%"&(7&u(9A(%"&(%#D7&(9E(<%#AG#'G('&GI8H9A($9%&AH#7<(C;77(<$9A%#A&9I<7=(9F;G;N&(#(<$&8;&<(%"#%(;<(79C&'(%9(%"&(';M"%(;A(%"&(%#D7&J((,F#:$7&+(_)(C;77(9F;G;N&(1)(9'(-;(((

(((((((a;)^(C;77(9F;G;N&(O7K(L(

Page 15: 2>(?9@#A( ,7&8%'98&:;

P;B&A(#(7;<%(9E('&#8%#A%<T($I%(%"&:(;A(9'G&'(9E(;A8'&#<;AM(#D;7;%=(%9(9F;G;N&J(

2>(?9@#A( ,7&8%'98"&:;<%'=(6( )`(

Br2 O2 Fe2+ Na+

Which one of these is the best oxidizing agent? Strategy: write out half cell potentials for REDUCTION

4#:$7&(%&<%(dI&<H9A+($#'%(6((

Which is the best reducing agent of the following? Cl!(aq) Fe(s) Fe+3(aq) Fe+2(aq) Cl2(g)

Q*(,7&8%'98"&:;<%'=(6(2>(?9@#A(

Page 16: 2>(?9@#A( ,7&8%'98&:;

4#:$7&(.&<%(dI&<H9A+($#'%()(

Which is the best oxidizing agent of the following? Cl!(aq) Fe(s) Fe+3(aq) Fe+2(aq) Cl2(g)

Q6(,7&8%'98"&:;<%'=(6(2>(?9@#A(

3E(,8&77(;<($9<;HB&T(%"&('&#8H9A(;<(<$9A%#A&9I<J(((vP(;<(%"&(:&#<I'&(9E(%"&(<$9A%#A&;%=(9E(#('&#8H9AJ(

\"#%(;<(%"&('&7#H9A<";$(D&%C&&A(vP(#AG(,f(

)(;<(%"&(AI:D&'(9E(:97&<(9E(&7&8%'9A<(%'#A<E&''&G(;A(#(D#7#A8&G('&#8H9A(

F((((;<(#(89A<%#A%T(%"&(_#'#G#=(Kt(8"#'M&(9A(#(:97&(9E(&7&8%'9A<L+(((( (6(F((t(`YTU[W(!j:97(t(`YTU[W(>ji]:97(

(gAG&'(<%#AG#'G(89AG;H9A<+(

(((

!(

Q)(,7&8%'98"&:;<%'=(6(

"*(E9'(#('&G9F('&#8H9A(+(("G = !nF(((E

2>(?9@#A(

Page 17: 2>(?9@#A( ,7&8%'98&:;

What is the value of "G° for the reaction?

The standard cell potential (E°cell) for the reaction below is 0.89V.

2Cr(s) + 3 Sn4+ (aq) R 2 Cr3+ (aq) + 3 Sn2+ (aq)

QQ(,7&8%'98"&:;<%'=(6(2>(?9@#A(

vPq(t(c)JQ*Q(/.(79M(V&d((#AG( (vPq(t(cA(F(((,q((!9:D;A;AM(%"&<&(%C9(&dI#H9A<+(,q(t()JQ*Q(/.((79M(V&d(

( ( ( (((((((((((((((((A(F((((O%()Wq!(t()`[V+((,q(t((((K)JQ*QLK[JQ6ULK)`[L(79M(V&d(

(AK`YTW**L((,q(t((((K*J*W`)L(79M(V&d((((((((((( (((((A(

bI%(%";AM<(%9M&%"&'(%9(M&%(%"&('&7#H9A<";$(D&%C&&A((,q(#AG(V&dJ(

(vPq(;<('&7#%&G(%9(,q(#AG(vPq(;<('&7#%&G(%9(V&d(

QU(,7&8%'98"&:;<%'=(6(2>(?9@#A(

!9A<%#A%<+(/(t([JQ6U(>jV]:97&(F((t(`YTW**(>ji]:97&(&c(

Corresponds to Standard conditions 1M solution or 1 atm gas pressure T = 298K

Page 18: 2>(?9@#A( ,7&8%'98&:;

3E(%"&(<=<%&:(;<(a0.(;A(;%<(<%#AG#'G(<%#%&(K;E(89A8&A%'#H9A<(w6L(use vP(t(vPq((^(/.((+)(x(

2>(?9@#A( ,7&8%'98"&:;<%'=(6( QW(

Replace "G with !nF((((E and "G° with !nF((((E°

cAF(((,((t(cAF(((,q((^(/.(+)(x((((((

For electrochemical cell at equilibrium: "G = 0, E cell = 0

Nernst equation gives the concentration dependence of cell potential Ecell.(

2>(?9@#A( ,7&8%'98"&:;<%'=(6( QY(

!

E = Eo "RTn#

lnQ

!

E 12

= E 12

0 " RTn#

ln C[ ]c D[ ]d

A[ ]a B[ ]b

!

E 12

= E 12

o " 2.303 RT

n#log

C[ ]c D[ ]d

A[ ]a B[ ]b

!

E 12

= E 12

o " 0.059

nlog

C[ ]c D[ ]d

A[ ] a B[ ]b at 298K

So for a half reaction: aA + bB + n e! R cC + dD

Page 19: 2>(?9@#A( ,7&8%'98&:;

Sample problem using the Nernst equation for a half cell potential.(

2>(?9@#A( ,7&8%'98"&:;<%'=(6( QZ(

What is the half cell potential of the Ag/Ag+ redox couple (E0 = +0.799 V) in a 1 M NaCl solution that contains solid

AgCl (Ksp = 1.1 x 10!10)?

For an overall cell reaction: lL + mM R pP + qQ

!

Ecell = E cell0 "

RTn#

ln P[ ]p Q[ ]q

L[ ]l M[ ]m

!

Ecell = E cell0 "

2.303 RTn#

logP[ ] p Q[ ]q

L[ ]l M[ ]m

!

Ecell = E cell0 "

0.0592n

logP[ ]p Q[ ]q

L[ ]l M[ ]m

Q[(,7&8%'98"&:;<%'=(6(2>(?9@#A(

Nernst equation gives the concentration dependence of cell potential Ecell.(

Page 20: 2>(?9@#A( ,7&8%'98&:;

4#:$7&(b'9D7&:(using the Nernst equation (

2>(?9@#A( ,7&8%'98"&:;<%'=(6( Q`(

\"#%(;<(%"&(89A8&A%'#H9A(9E(hA)^K#dL(C"&A(%"&(8&77(D#<&G(9A(%"&(E9779C;AM('&#8H9A("#<(#($9%&AH#7(9E(6JQ*i(#%()Wq!f(((

hAK<L(^(!I)^K#dLK6J*(F(6*cW(2L(R(hA)^K#dLKF(2L(^(!IK<L(((OJ((((6J*(2(?J((((6JZ(F(6*c6)(2(!J((((UJU(F(6*c[Z(2(yJ((((UJ6(F(6*c`(2(,J((((Y*J)(2((