279 39 Solutions Instructor Manual Chapter 11 Power System Stability

download 279 39 Solutions Instructor Manual Chapter 11 Power System Stability

of 8

Transcript of 279 39 Solutions Instructor Manual Chapter 11 Power System Stability

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 11 Power System Stability

    1/19

    CHAPTER – 11: Power System Stability

    11.1  Assume that three machines whose ratings and inertia constants are respectively

    given by 332211 ,,,,,   H Gand  H G H G  are operating in synchronism, that is

    ( )

    ( )

    ( )s

    ui

    s

    s

    ui

    s

    s

    ui

    s

    G

    GPP

    dt 

     f G

     H G

    G

    GPP

    dt 

     f G

     H G

    G

    GPP

    dt 

     f G

     H G

    3332

    32

    33

    2222

    22

    22

    1112

    12

    11

    −=

    −=

    −=

    δ  

    π 

    δ  

    π 

    δ  

    π 

     

    Since the machines are swinging coherently,   δ  δ  δ  δ     === 321 . Thus ,

    ( ) ( )

    ( ) ( )

    ⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ ++=

    −=

    ++−++=⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ ++

    sss

    eq

     puueq puieq

    eq

    s

    uuuiii

    sss

    G

     H G

    G

     H G

    G

     H G H where

    PPdt 

     f 

     H 

    G

    GPPPPPP

    dt 

     f G

     H G

    G

     H G

    G

     H G

    332211

    2

    2

    11113212

    2332211 1

    δ  

    π 

    δ  

    π 

     

    ⎟⎟ ⎠ ⎞⎜⎜

    ⎝ ⎛  ++=

    sss

    eqG H G

    G H G

    G H G H  332211  

    » 200*4/1000+500*3/1000+750*5/1000 = 6.05 MVJ/MVA

    M = f 

    GH 

    ×180 = 1000*6.05/(180*50) = 0.6722 MJ-sec/elect-deg

    11.2  Synchronous speed2

    5022

      ××=   π ω  rads/sec = 314.16 rads/sec

    KE = 1/2*75000*(314.1593)^2*10^(-6) = 3.7011e+003 MJ

    H = (3.7011e+03)/250 = 14.8044 MJ/MVA

    M = 250*14.8044/(180*50) = 0.4112 MJ-sec/elec. deg

    11.3 

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 11 Power System Stability

    2/19

      » M=175/(180*50) = 0.0194 MJ-sec/rad

    At the time of fault, power input is given by

    » Pi=50*0.8 = 40 MW

    Power output during fault

    » Pu=0.4*40 = 16 MW

    Accelerating power is as follows

    » Acclpower=Pi-Pu = 24 MW

    Acceleration is given by

    » Accl=Acclpower/M = 1.2343e+003 elec deg/sec

    2

     

    11.4  Pre-fault current

    » Ig=Pi*10^6/(sqrt(3)*11*10^3*0.8) = 874.7731 A

    Ig=Ig*(0.8-i*0.6) = 6.9982e+002 -5.2486e+002i A

    Generator voltage per phase

    » Vgpp=(11*10^3/sqrt(3)+i*Ig*2)/(10^3) = 7.4006 + 1.3996i = 7.5318 kV

    Line to line generator voltage

    » Vgll=abs(Vgpp)*sqrt(3) = 13.0454 kV

    Pre-fault rotor angle

    » delta=asin(Pi/(Vgll*11))*180/pi = 16.18540 

    » Accl=Accl*pi/180 = 21.5423 elec. rads/sec2 

    » t=5/50 = 0.1000 sec

    Rotor velocity at the time of occurrence of fault

    » ddeltadt=sqrt(2*Accl*(delta*pi/180)) = 3.4887 elec. rads/sec = 66.6290 rpm

    Rotor velocity at the end of acceleration period =2

    50120× + 66.6290

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 11 Power System Stability

    3/19

    = 1566.6290 rpm

    Rotor angle at the end of the acceleration period

    » deltan=Accl*t^2+delta*pi/180 = 0. 0.4979 rads = 28.52830 

    11.5  The swing equations of the two machines are

    ui

    ui

    PPdt 

     f 

     H 

    PPdt 

     f 

     H 

    222

    22

    2

    112

    12

    1

    −=

    −=

    δ  

    π 

    δ  

    π  

    ( )

    ( )21

    2112

    21

    21122112

    21

    21

    2

    122

    21

    2112

    21

    2112

    2

    212

    21

    21

    21

    2112

    21

    2112

    2

    22

    1

    11

    2

    22

    2

    12

    ,,,

    1

    1

     H  H 

    P H P H andP

     H  H 

    P H P H P

     H  H 

     H  H  H where

    PPdt 

    d  H 

     f 

     H  H 

    P H P H 

     H  H 

    P H P H 

    dt 

     H  H 

     H  H 

     f 

     H  H 

    P H P H 

     H  H 

    P H P H  f 

     H 

    PP f 

     H 

    PP f 

    dt 

    dt 

    uuequ

    iieqieq

    equeqieq

    uuii

    uuii

    uiui

    +

    −=

    +

    −=−=

    +=

    −=

    +

    −−

    +

    −=⎟

     ⎠

     ⎞⎜⎜

    ⎝ 

    ⎛    −

    +

    ⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛    −−

    −=

    ⎟⎟

     ⎠

     ⎞⎜⎜

    ⎝ 

    ⎛    −−⎟⎟

     ⎠

     ⎞⎜⎜

    ⎝ 

    ⎛    −=−

    δ  δ  δ  

    δ  

    π 

    δ  δ  

    π 

    π 

    π π δ  δ  

       MVA MJ  H  H 

     H  H  H eq /5714.2

    5.10

    0.65.4

    21

    21 =×

    =+

    =  

     pu H  H 

    P H P H P   iieqi 2429.0

    5.10

    1.15.425.10.6

    21

    2112 =×−×

    =+

    −=  

    Max power =( )

      pu9714.115.04.015.0

    15.12.1=

    ++

    × 

    11.6  Input data:

    » Pl=0.8;E=1.0;pf=0.85;H=4.0;

    » phi=-acos(pf) = -0.5548 rads. = -31.78830 

    Load current:

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 11 Power System Stability

    4/19

    » I=Pl/(E*pf) = 0.9412 pu = 0.8000 - 0.4958i pu

    Pre-fault transfer reactance between the internal generator bus and infinite bus

    » Xl=0.25+0.15 = 0.4000 pu

    Generator voltage behind transient reactance

    » Edash=E+i*I*Xl = 1.1983 + 0.3200i pu = 1.2403 pu

    Power angle

    » delta=angle(Edash) = 0.2610 rads. = 14.95140 

    During fault transfer reactance between generator internal bus and infinite bus

    » Xlf=1.15;

    Power output during fault

    » Poutf=(abs(Edash)*E/Xlf)*sin(delta) = 0.2783 pu

    Accelerating power at the time of fault

    » Paccl=0.8-Poutf = 0.5217 pu

    Inertia constant

    » M=H/(pi*50) = 0.0255 MJ-sec/elec. rad.

    Acceleration at the time of fault

    » Accl=Paccl/M = 20.4886 elec. rads./sec2 

    δ  δ  δ  

    sin2941.423725.31sin15.1

    0.1*2403.18.0

    0255.0

    12

    2

    −=⎟ ⎠

     ⎞⎜⎝ 

    ⎛ −=

    dt 

    d  

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 11 Power System Stability

    5/19

     

    11.7 From the previous problem'

     E  =1.2403 pu,  M  = 0.0255 MJ-sec/elec. rad.,

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 11 Power System Stability

    6/19

    δ0 = 0.2610 rads. = 14.95140. Power input 0iP  = 0.8 pu

    Fault duration t = 10 cycles = 0.2 secs.

    Rotor angle δ at the time of fault clearance is given by

    020

    2δ  δ     +=   t 

     M 

    Pi = 0.8885 rads.

    Accelerating area  A1 = Pi0 (δ – δ0) = 0.5020

    Decelerating area  A2 = ( )[ ]   ( )δ  δ  δ  δ     −−−×

    mm 8.0coscos4.0

    0.12403.1 

    = ( )[ ]   ( )δ  δ  δ  δ     −−−   mm 8.0coscos1007.3

    For stability,  A1 =  A2 , that is,

    ( )[ ]   ( )δ  δ  δ  δ     −−−   mm 8.0coscos1007.3 = 0.5020

     f  (δm) = 3.1007 cos δm + 0.8 δm – 2.1641

    ( )m

    m

    m

    df δ  

    δ  

    δ  sin1007.3=  

    » tolr=0.0001;

    » [deltam] = P1207(tolr);

    initial estimate of deltam60*pi/180

    deltam = 66.52200 

    Maximum swing of the rotor angle is δm = 66.52200.

    Since δm is less than (π – δ0) the system will remain stable.

    (ii) Assume that the critical clearing angle is δc.

    Accelerating area  A1 = Pi0 (δc – δ0) = 0.8 (δc – 0.2610 ) = 0.8 δc – 0.2088

    Decelerating area  A2 =   ( )cmiPd m

    c

    δ  δ  δ  δ  δ  

    δ  −−∫ 0sin1007.3

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 11 Power System Stability

    7/19

      [ ] )(8.0coscos1007.3 002   cc A   δ  δ  π δ  δ     −−−+=  

    = 3.1007 cos δc + 0.8 δc +0.6912 

    For stability  A1 =  A2, that is,

    0.8 δc – 0.2088 = 3.1007 cos δc + 0.8 δc +0.6912

    ( ) 01 8733.106.8653.11007.3

    6912.02088.0cos   ==⎟

     ⎠

     ⎞⎜⎝ 

    ⎛    +−=   − radscδ    

    ( )   ( )3198.0

    8.0

    2610.08653.10255.022

    0

    0 =−×

    =−

    =i

    cc

    P

     M t 

      δ  δ  secs. = 16 cycles

    11.8  Input data:

    » Pi0=0.8;Einfint=1.0;Xlprefault=0.4;Xlfault=1.05;Xlpfault=0.55;pf=1.0;

    Load current

    » I=0.8/(Einfint*pf) = 0.8000 pu

    Voltage behind generator transient reactance

    » Edash=Einfint+i*Xlprefault*I = 1.0000 + 0.3200i pu = 1.05 pu

    Initial power angle

    » delta0=angle(Edash) = 0.3097 rads. = 17.74470

    Pre fault maximum power

    » PmA=Edash*Einfint/Xlprefault = 2.6249 pu

    Post fault maximum power

    » PmB=Edash*Einfint/Xlpfault = 1.9090 pu

    During fault maximum power

    » PmC=Edash*Einfint/Xlfault = 1.0000 pu

    Maximum power angle

    » deltam=(180-(asin(Pi0/PmB)*180/pi)) = 155.22430 = 2.7092 rads

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 11 Power System Stability

    8/19

    Cosine of critical clearing power angle

    » cosdeltac=(Pi0*(deltam-delta0)+PmB*cos(deltam)-PmC*cos(delta0))/(PmB-

    PmC) = -0.8427

    Critical clearing power angle

    » deltac=acos(cosdeltac)*180/pi = 147.43070 

    Critical clearing time computation:

    » tc=sqrt(2*M*(147.4307-17.7447)/0.8) = 0.3796 secs. = 18.9800 cycles.

    Plotting the power output versus power angle

    » delta=linspace(0,pi,500);

    » P1=2.6249*sin(delta);

    » P2=1.0*sin(delta);

    » P3=1.9090*sin(delta);

    » plot(delta*180/pi,P1,'k-')

    » grid

    » hold on

    » plot(delta*180/pi,P2,'k-.')

    » plot(delta*180/pi,P3,'k--')

    » x=linspace(0,180,500);

    » y=0.8;

    » plot(x,y,'k-')

    » xlabel('Power angle in degrees')

    » ylabel('Power output in pu')

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 11 Power System Stability

    9/19

    » legend('Pre-fault power output','During fault power output','Post fault power

    output')

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 11 Power System Stability

    10/19

    0 20 40 60 80 100 120 140 160 1800

    0.5

    1

    1.5

    2

    2.5

    3

    Power angle in degrees

       P  o  w  e  r  o  u   t  p  u   t   i  n  p  u

    Pre-fault power output

    During fault power output

    Post fault power output

    11.9  Input data:

    » Pi0=1.0;Edash=1.20;Einfinit=1.0;Xlprefault=0.6;Xlfault=1.0267;

    » tf=15/50;H=3.5;

    (i) Rotor angle prior to the fault

    » delta0=asin(Pi0*Xlprefault/(Edash*Einfinit)) = 0.5236 rads. = 30.00000 

    (ii) Computation of generator output, accelerating power, and rotor acceleration

    » Poutgen=(Edash*Einfinit/Xlfault)*sin(delta0) = 0.5844 pu

    » Paccl=Pi0-Poutgen = 0.4156 pu

    » M=H/(pi*50) = 0.0223 MJ-sec./elec. rad.

    » Accl=Paccl/M = 18.6522 rads./sec2 

    Computation of rotor angle and decelerating power at the instance of fault clearance:

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 11 Power System Stability

    11/19

    » delta=delta0+(Paccl/(2*M))*tf^2 = 1.3629 rads. = 78.09120

    Generator output at the instance of fault clearance

    » Poutgenf=(Edash*Einfinit/Xlfault)*sin(delta) = 1.1436 pu

    Genrator accelerating power at the instance of fault clearance

    » Paccl=Pi0-Poutgenf = -0.1436 pu

    11.10 

    f unct i on ydot = p1210( t , y) ;ydot =t 3̂- y 2̂;

    Input to the command window

    » tspan=[0 1];

    » y0=0.5;

    » [t,y]=ode23('p1210',tspan,y0)

    Output

    t = y =

    0 0.5000

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 11 Power System Stability

    12/19

      0.1000 0.4762

    0.2000 0.4549

    0.3000 0.4367

    0.4000 0.4226

    0.5000 0.4144

    0.6000 0.4141

    0.7000 0.4242

    0.8000 0.4477

    0.9000 0.4875

    1.0000 0.5469

    Plot of y vs i

    » plot(t,y,'k--');

    » hold on

    » grid

    » xlabel('t')

    » ylabel('y')

    » title('Solution of differential eq. of problem 12.10')

    » hold off

    »

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 11 Power System Stability

    13/19

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.4

    0.42

    0.44

    0.46

    0.48

    0.5

    0.52

    0.54

    0.56

    t

      y

    Solution of differential eq. of problem 12.10

     

    11.11  The second order differential swing equation is written as two first order

    differential equations, that is,

     Z 1 = δ and.

    2   δ  = Z   

    ⎥⎥⎥

    ⎢⎢⎢

    =⎥⎥

    ⎢⎢

    ⎡=

    ⎥⎥⎥

    ⎢⎢⎢

    =⎥⎥

    ⎢⎢

    ⎡=⎥

    ⎤⎢⎣

    ⎡=

    .

    2.

    2

    2

    .

    .

    2

    1.

    .

    2

    1,

    aP

     Z 

     Z 

     Z 

     Z 

     Z  Z 

     Z 

     Z  Z 

    δ  

    δ  

     

    Function ‘p1211’ comput es t he st ate vari abl es 

    f unct i on Zdot = p1211( t , Z) ;

    % I nput i s t i me t and Z = [ Z( 1) ; Z( 2) ]

    % Out put i s Zdot

    i f t >= 0. 25;Pa=0. 75- 1. 5*si n( Z( 1) ) ;

    el sePa=0. 75- 0. 30*si n( Z( 1) ) ;

    endZdot=[ Z( 2) ; Pa] ;

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 11 Power System Stability

    14/19

      The f ol l owi ng scr i pt f i l e execut es ode23

    » tspan=[0 2.0]; % Sets the time span

    » Z0=[30*pi/180;0]; % Assigns the initial rotor angle in radians

    » [t,Z]=ode23('P1211',tspan,Z0) % Executes ode23

    Output:

    t vs δ and t vs.

    δ   is obtained and plotted

    » x=Z(:,1);y=Z(:,2); % Sets first and second columns of Z equal to x and y

    respectively

    » subplot(2,1,1)

    » plot(t,x*180/pi,'k--')

    » grid

    » xlabel('Time t in sec.')

    » ylabel('Rotor angle in radians')

    » title('Rotor Angle Versus Time')

    » subplot(2,1,2)

    » plot(t,y,'k--')

    » grid

    » xlabel('Time t in sec.')

    » ylabel('Rotor velocity in radians/sec.')

    » title('Rotor Velocity Versus Time')

    »

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 11 Power System Stability

    15/19

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 228

    30

    32

    34

    36

    38

    Time t in sec.

       R  o   t  o  r  a  n  g   l  e

       i  n  r  a   d   i  a  n  s

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-0.1

    -0.05

    0

    0.05

    0.1

    0.15

    Time t in sec.

       R  o   t  o  r  v  e   l  o  c   i   t  y

       i  n  r  a   d   i  a  n  s   /  s  e  c . Rotor Angle Versus Time

     Rotor Angle Versus Time

    11.12 For derivation please see 7.3.1 Power flow equations in [Y  bus] frame of reference.

    The power flow equation is given by

    ( )12121221111121 coscos   δ  θ θ    −+=   Y  E  E Y  E P where δ12 = δ1 – δ2  (I)

    Eq. (I) modifies as follows for the problem case

    ( )12121221121221 coscos   δ  θ θ    −+=   Y  E  E Y  E P  

    For maximum power transfer; ( )1212   δ  θ    −  = 0. Hence, δ12 = θ12. θ12 of a transmission line

    having resistance is < 900.

    If Z 

    Y 1

    12  =  and Z 

     R=12cosθ  . Assuming  Z  =  R + j  X .

    The maximum steady limit is written as

     Z 

     E  E 

     Z 

     R E P 21

    2

    21 +−=   (II)

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 11 Power System Stability

    16/19

    [Note: In deriving (I) in Sec.7.3.1, θ12 was substituted by (180 – θ12)]

    When resistance is neglected, θ11 = 900. Therefore power transferred is given by

    1221 sinδ  

     X 

     E  E P =  

     X 

     E  E P 21max  =  when δ12 = 90

    0  (III)

    Comparison of (II) and (III) shows that the steady limit is more when resistance of the

    line is neglected.

    11.14  Computation of reactance between generator terminal and infinite bus

    » X12=0.4/2+0.4 = 0.6000 pu

    Pf angle:

    » phi=-acos(0.85) = -0.5548 rads. = -31.78830 

    Load current

    » I=0.75/(1.0*0.85) = 0.8824 pu = 0.7500 - 0.4648i pu

    Voltage behind generator reactance

    » E2=1.0+i*X12*I = 1.2789 + 0.4500i pu

    Magnitude of voltage behind generator reactance

    » Emag2=abs(E2) = 1.3557 pu

    Power angle δ0 prior to the disturbance

    » delta0 = angle(E2) = 0.3383 rads. = 19.38540 

    Synchronizing coefficient

    » Ps=(Emag2*1.0/X12)*cos(delta0) = 2.1315 pu

    Coefficient of damping power

    » Pd=0.15;

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 11 Power System Stability

    17/19

    » M=8/(pi*50) = 0.0509 MJ-sec/elec. rad

    Damping factor

    » Pd/M = 2.9452

    » Ps/M = 41.8514

     Natural frequency of oscillations 8514.41= M 

    Ps = 6.4693 rads/sec.

    The equation representing the motion of the rotor following a disturbance is, thus,

    written as

    08514.419452.2

    ...

    =+Δ+Δ   δ  δ    

    The second order differential equation is written as two first order differential

    equations for employing MATLAB to plot variation of rotor angle δ and rotor

    velocity ω against time.

    ⎥⎥

    ⎢⎢

    Δ

    Δ=⎥

    ⎤⎢⎣

    ⎡= .

    2

    1

    δ  

    δ  

     x

     x x  

    The two first order differential equations become

    122

    .

    21

    .

    8514.419452.2   x x x

     x x

    −−=

    The MATLAB function ‘p1214’ computes the state variables

    f unct i on xdot = p1214( t , x) ;xdot=[ x(2) ; - 2. 9452*x( 2) - 41. 8514*x( 1) ] ;

    The following script file executes ode23 

    » tspan=[0 5.0];

    » x0=[12.5*pi/180;0];

    » [t,x]=ode23('P1214',tspan,x0)

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 11 Power System Stability

    18/19

    » x1=x(:,1);y1=x(:,2);

    » plot(t,x1*180/pi,'k-')

    » grid

    » hold on

    » plot(t,y1,'k-.')

    » xlabel('Time t in secs.')

    » ylabel('Rotor angle in degrees')

    » ylabel('Rotor velocity in rads./sec')

    » ylabel('Rotor angle in degrees & velocity in rads./sec')

    » legend('Rotor angle delta','Rotor velocity')

    » title('Plot of rotor angle and velocity versus time')

    »

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-6

    -4

    -2

    0

    2

    4

    6

    8

    10

    12

    14

    Time t in secs.

       R  o   t  o  r  a  n  g   l  e   i  n   d  e  g  r  e  e  s   &

      v  e   l  o  c   i   t  y   i  n  r  a   d  s .   /  s  e  c

    Plot of rotor angle and velocity versus time

    Rotor angle delta

    Rotor velocity

  • 8/19/2019 279 39 Solutions Instructor Manual Chapter 11 Power System Stability

    19/19