27 Uni Presentation

155
Pr inc ipl e of Virtual Work Unit Loa d Method App lications . . Lecture : Ener gy Meth ods (II) — Principle of Virtual Work and Unit Load Met hod Yubao Zhen Dec , Energy Methods (II) — Virtual Work a nd Unit Loa d Method

Transcript of 27 Uni Presentation

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 1/155

. . . . . .

Principle of Virtual Work Unit Load Method Applications

.

.

Lecture : Energy Methods (II) — Principle of Virtual

Work and Unit Load Method

Yubao Zhen

Dec ,

Energy Methods (II) — Virtual Work and Unit Load Method

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 2/155

. . . . . .

Principle of Virtual Work Unit Load Method Applications

.

Review: Elastic energy associated with deformations

elastic energy densities for basic and general D stress state

U e = W i = ∫  V [σ xє x +

σ  y є  y +

σ z є z +

τ xy γxy +

τ  yz γ yz +

τ xz γxz ] dV 

elastic energy stored due to basic loads

Axial load N (x ):

U e =

  

L

EA

dx  prismatic: U e =N L

EABending moment M (x ):

U e =   L

 M 

EI dx  prismatic: U e =

 M L

EI  Transverse shear V (x ):

U e=

  

L

 f sV 

GAdx  prismatic: U 

e=

 f sV L

GA Torsional moment T (x ):

U e =   L

GI  pdx  prismatic: U e =

T L

GI  p

principle of conservation of energy: W = U e

Energy Methods (II) — Virtual Work and Unit Load Method

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 3/155

. . . . . .

Principle of Virtual Work Unit Load Method Applications

.

Review: Elastic energy associated with deformations

elastic energy densities for basic and general D stress state

U e = W i = ∫  V [σ xє x +

σ  y є  y +

σ z є z +

τ xy γxy +

τ  yz γ yz +

τ xz γxz ] dV 

elastic energy stored due to basic loads

Axial load N (x ):

U e =

  

L

EA

dx  prismatic: U e =N L

EABending moment M (x ):

U e =   L

 M 

EI dx  prismatic: U e =

 M L

EI  Transverse shear V (x ):

U e=

  

L

 f sV 

GAdx  prismatic: U 

e=

 f sV L

GA Torsional moment T (x ):

U e =   L

GI  pdx  prismatic: U e =

T L

GI  p

principle of conservation of energy: W = U e

Energy Methods (II) — Virtual Work and Unit Load Method

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 4/155

. . . . . .

Principle of Virtual Work Unit Load Method Applications

.

Review: Elastic energy associated with deformations

elastic energy densities for basic and general D stress state

U e = W i = ∫  V [σ xє x +

σ  y є  y +

σ z є z +

τ xy γxy +

τ  yz γ yz +

τ xz γxz ] dV 

elastic energy stored due to basic loads

Axial load N (x ):

U e =

  

L

EA

dx  prismatic: U e =N L

EABending moment M (x ):

U e =   L

 M 

EI dx  prismatic: U e =

 M L

EI  Transverse shear V (x ):

U e=

  

L

 f sV 

GAdx  prismatic: U 

e=

 f sV L

GA Torsional moment T (x ):

U e =   L

GI  pdx  prismatic: U e =

T L

GI  p

principle of conservation of energy: W = U e

Energy Methods (II) — Virtual Work and Unit Load Method

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 5/155

. . . . . .

Principle of Virtual Work Unit Load Method Applications

.

Review: Elastic energy associated with deformations

elastic energy densities for basic and general D stress state

U e = W i = ∫  V [σ xє x +

σ  y є  y +

σ z є z +

τ xy γxy +

τ  yz γ yz +

τ xz γxz ] dV 

elastic energy stored due to basic loads

Axial load N (x ):

U e =

  

L

EA

dx  prismatic: U e =N L

EABending moment M (x ):

U e =   L

 M 

EI dx  prismatic: U e =

 M L

EI  Transverse shear V (x ):

U e=

  

L

 f sV 

GAdx  prismatic: U 

e=

 f sV L

GA Torsional moment T (x ):

U e =   L

GI  pdx  prismatic: U e =

T L

GI  p

principle of conservation of energy: W = U e

Energy Methods (II) — Virtual Work and Unit Load Method

l f l k d h d l

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 6/155

. . . . . .

Principle of Virtual Work Unit Load Method Applications

.

Review: Elastic energy associated with deformations

elastic energy densities for basic and general D stress state

U e = W i = ∫  V [σ xє x +

σ  y є  y +

σ z є z +

τ xy γxy +

τ  yz γ yz +

τ xz γxz ] dV 

elastic energy stored due to basic loads

Axial load N (x ):

U e =

  

L

EA

dx  prismatic: U e =N L

EABending moment M (x ):

U e =   L

 M 

EI dx  prismatic: U e =

 M L

EI  Transverse shear V (x ):

U e =

  

L

 f sV 

GAdx  prismatic: U e =

 f sV L

GA Torsional moment T (x ):

U e =   L

GI  pdx  prismatic: U e =

T L

GI  p

principle of conservation of energy: W = U e

Energy Methods (II) — Virtual Work and Unit Load Method

P i i l f Vi t l W k U it L d M th d A li ti

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 7/155

. . . . . .

Principle of Virtual Work Unit Load Method Applications

.

Review: Elastic energy associated with deformations

elastic energy densities for basic and general D stress state

U e = W i = ∫  V [σ xє x +

σ  y є  y +

σ z є z +

τ xy γxy +

τ  yz γ yz +

τ xz γxz ] dV 

elastic energy stored due to basic loads

Axial load N (x ):

U e =

  

L

EA

dx  prismatic: U e =N L

EABending moment M (x ):

U e =   L

 M 

EI dx  prismatic: U e =

 M L

EI  Transverse shear V (x ):

U e =

  

L

 f sV 

GAdx  prismatic: U e =

 f sV L

GA Torsional moment T (x ):

U e =   L

GI  pdx  prismatic: U e =

T L

GI  p

principle of conservation of energy: W = U e

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 8/155

. . . . . .

Principle of Virtual Work Unit Load Method Applications

.

Review: Elastic energy associated with deformations

elastic energy densities for basic and general D stress state

U e = W i = ∫  V [σ xє x +

σ  y є  y +

σ z є z +

τ xy γxy +

τ  yz γ yz +

τ xz γxz ] dV 

elastic energy stored due to basic loads

Axial load N (x ):

U e =   L

EA

dx  prismatic: U e =N L

EABending moment M (x ):

U e =   L

 M 

EI dx  prismatic: U e =

 M L

EI  Transverse shear V (x ):

U e =

  

L

 f sV 

GAdx  prismatic: U e =

 f sV L

GA Torsional moment T (x ):

U e =   L

GI  pdx  prismatic: U e =

T L

GI  p

principle of conservation of energy: W = U e

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 9/155

. . . . . .

Principle of Virtual Work Unit Load Method Applications

.

Outline

. principle of virtual work  ——虚功原理

concepts of virtual quantities, the principle

. unit load method ——单位力法theory, Mohr integration (摩尔 /莫尔积分), procedure

. applications

bending, truss

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 10/155

. . . . . .

Principle of Virtual Work Unit Load Method Applications

.

Outline

. principle of virtual work  ——虚功原理

concepts of virtual quantities, the principle

.

unit load method ——单位力法theory, Mohr integration (摩尔 /莫尔积分), procedure

. applications

bending, truss

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 11/155

. . . . . .

Principle of Virtual Work Unit Load Method Applications

.

Outline

. principle of virtual work  ——虚功原理

concepts of virtual quantities, the principle

.

unit load method ——单位力法theory, Mohr integration (摩尔 /莫尔积分), procedure

. applications

bending, truss

Energy Methods (II) — Virtual Work and Unit Load Method

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 12/155

. Principle of virtual work 

(虚功原理)

. . . . . .

Principle of Virtual Work  Unit Load Method Applications Virtual work 

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 13/155

. . . . . .

p pp

.

Limitations on direct application of energy conservation

ext. work: W e =

F ∆, strain energy: U e =∑k(U ke)requires a force at the point of interest where ∆ is needed.

non-applicable if . direction of ∆ required is not along the force. there is no such an applied force. if there are more than one such applied forces

(∵ only eqn. for energy conservation)

solution: principle of virtual work (虚功原理)

to find displacement or rotation at any point in a structure

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 14/155

. . . . . .

.

Limitations on direct application of energy conservation

ext. work: W e =

F ∆, strain energy: U e =∑k(U ke)requires a force at the point of interest where ∆ is needed.

non-applicable if . direction of ∆ required is not along the force. there is no such an applied force. if there are more than one such applied forces

(∵ only eqn. for energy conservation)

solution: principle of virtual work (虚功原理)

to find displacement or rotation at any point in a structure

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 15/155

. . . . . .

.

Limitations on direct application of energy conservation

ext. work: W e =

F ∆, strain energy: U e =∑k(U ke)requires a force at the point of interest where ∆ is needed.

non-applicable if . direction of ∆ required is not along the force. there is no such an applied force. if there are more than one such applied forces

(∵ only eqn. for energy conservation)

solution: principle of virtual work (虚功原理)

to find displacement or rotation at any point in a structure

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 16/155

. . . . . .

.

Limitations on direct application of energy conservation

ext. work: W e =

F ∆, strain energy: U e =∑k(U ke)requires a force at the point of interest where ∆ is needed.

non-applicable if . direction of ∆ required is not along the force. there is no such an applied force. if there are more than one such applied forces

(∵ only eqn. for energy conservation)

solution: principle of virtual work (虚功原理)

to find displacement or rotation at any point in a structure

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 17/155

. . . . . .

.

Limitations on direct application of energy conservation

ext. work: W e =

F ∆, strain energy: U e =∑k(U ke)requires a force at the point of interest where ∆ is needed.

non-applicable if . direction of ∆ required is not along the force. there is no such an applied force. if there are more than one such applied forces

(∵ only eqn. for energy conservation)

solution: principle of virtual work (虚功原理)

to find displacement or rotation at any point in a structure

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 18/155

. . . . . .

.

Principle of virtual work in rigid body mechanics: review

Principle of virtual work (principle of virtual displacement)

At equilibrium, any infinitesimal virtual displacement in configuration

space, consistent with the constraints, requires NO work .

. A virtual displacement means an instantaneous (即时的,瞬间

的), imaginary and small change in coordinates

.

Mathematically: i F iδ r i =

r i: generalized coordinates; F i: generalized force

k

x

friction free

δ initial

final forces at x : spring kx ; external F A small perturbation δ :

 Total virtual work (based on position atx ):

W = F δ − kx δ = (F − kx )δ  . if x ≠ F /k, non-equilibrium

. if x = F 

/k, equilibrium

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 19/155

. . . . . .

.

Principle of virtual work in rigid body mechanics: review

Principle of virtual work (principle of virtual displacement)

At equilibrium, any infinitesimal virtual displacement in configuration

space, consistent with the constraints, requires NO work .

. A virtual displacement means an instantaneous (即时的,瞬间

的), imaginary and small change in coordinates

.

Mathematically: i F iδ r i =

r i: generalized coordinates; F i: generalized force

k

x

friction free

δ initial

final forces at x : spring kx ; external F A small perturbation δ :

 Total virtual work (based on position atx ):

W = F δ − kx δ = (F − kx )δ  . if x ≠ F /k, non-equilibrium

. if x = F 

/k, equilibrium

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 20/155

. . . . . .

.

Principle of virtual work in rigid body mechanics: review

Principle of virtual work (principle of virtual displacement)

At equilibrium, any infinitesimal virtual displacement in configuration

space, consistent with the constraints, requires NO work .

. A virtual displacement means an instantaneous (即时的,瞬间

的), imaginary and small change in coordinates

.

Mathematically: i F iδ r i =

r i: generalized coordinates; F i: generalized force

k

x

friction free

δ initial

final forces at x : spring kx ; external F A small perturbation δ :

 Total virtual work (based on position atx ):

W = F δ − kx δ = (F − kx )δ  . if x ≠ F /k, non-equilibrium

. if x = F 

/k, equilibrium

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 21/155

. . . . . .

.

Principle of virtual work in rigid body mechanics: review

Principle of virtual work (principle of virtual displacement)

At equilibrium, any infinitesimal virtual displacement in configuration

space, consistent with the constraints, requires NO work .

. A virtual displacement means an instantaneous (即时的,瞬间

的), imaginary and small change in coordinates

.

Mathematically: i F iδ r i =

r i: generalized coordinates; F i: generalized force

k

x

friction free

δ initial

final forces at x : spring kx ; external F A small perturbation δ :

 Total virtual work (based on position atx ):

W = F δ − kx δ = (F − kx )δ  . if x ≠ F /k, non-equilibrium

. if x = F 

/k, equilibrium

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 22/155

. . . . . .

.

Principle of virtual work in rigid body mechanics: review

Principle of virtual work (principle of virtual displacement)

At equilibrium, any infinitesimal virtual displacement in configuration

space, consistent with the constraints, requires NO work .

. A virtual displacement means an instantaneous (即时的,瞬间

的), imaginary and small change in coordinates

.

Mathematically: i F iδ r i =

r i: generalized coordinates; F i: generalized force

k

x

friction free

δ initial

final forces at x : spring kx ; external F A small perturbation δ :

 Total virtual work (based on position atx ):

W = F δ − kx δ = (F − kx )δ  . if x ≠ F /k, non-equilibrium

. if x = F 

/k, equilibrium

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 23/155

. . . . . .

.

Virtual displacement

.

Virtual displacement.

.

Any imaginary displacement consistent with the constraints of thestructure, i.e., displacement boundary conditions at the supports are

satisfied

before deformation

(equilibrium without load)

after deformation

(equilibrium with load)

a virtual deformation

(with load)

P 1

P 2

P 3

virtual displacement

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

f

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 24/155

. . . . . .

.

Virtual force

.

Virtual force.

.Any imaginary system of forces in equilibrium.

before deformation(equilibrium without load)

after deformation

(equilibrium with load)

a virtual forceP 1

P 2

P 3

induced

virtual displacement

before deformation

(equilibrium without load)

P ′∆

induced reactions

real loading system virtual loading system

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

Vi l k

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 25/155

. . . . . .

.

Virtual work 

.

Virtual work .

.

Work done by a real force acting through a virtual displacement or a

virtual force acting through a real displacement.

Remarks

. virtual forces and/or displacements can be arbitrary

. generalized sense for virtual quantities

force —— translation, moment —— rotation

. in practical applications

force→ real, then displacement→ virtual

displacement→ real, then force→ virtual

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

Vi l k

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 26/155

. . . . . .

.

Virtual work 

.

Virtual work .

.

Work done by a real force acting through a virtual displacement or a

virtual force acting through a real displacement.

Remarks

. virtual forces and/or displacements can be arbitrary

. generalized sense for virtual quantities

force —— translation, moment —— rotation

. in practical applications

force→ real, then displacement→ virtual

displacement→ real, then force→ virtual

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

Vi t l k

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 27/155

. . . . . .

.

Virtual work 

.

Virtual work .

.

Work done by a real force acting through a virtual displacement or a

virtual force acting through a real displacement.

Remarks

. virtual forces and/or displacements can be arbitrary

. generalized sense for virtual quantities

force —— translation, moment —— rotation

. in practical applications

force→ real, then displacement→ virtual

displacement→ real, then force→ virtual

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

Vi t l k

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 28/155

. . . . . .

.

Virtual work 

.

Virtual work .

.

Work done by a real force acting through a virtual displacement or a

virtual force acting through a real displacement.

Remarks

. virtual forces and/or displacements can be arbitrary

. generalized sense for virtual quantities

force —— translation, moment —— rotation

. in practical applications

force→ real, then displacement→ virtual

displacement→ real, then force→ virtual

Energy Methods (II) — Virtual Work and Unit Load Method

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 29/155

. P.V.W. for

deformable bodies

(变形体虚功原理)

. . . . . .

Principle of Virtual Work  Unit Load Method Applications Virtual work 

Principle of virtual work for deformable bodies

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 30/155

. . . . . .

.

Principle of virtual work for deformable bodies

.

Principle of Virtual work for deformable bodies.

.

External virtual work is equal to internal virtual work when

equilibrated forces and stresses undergo unrelated but consistent

displacements and strains. i.e.,W  virtuale = W  virtuali

Note: case for deformable bodies includes the case for rigid bodies in

which the internal virtual work becomes zero.

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

Remarks on P V W

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 31/155

. . . . . .

.

Remarks on P.V.W.

equilibrated forces (平衡力系): surface/body forces, internal stresses σ 

consistent displacements (协调位移): u and consistent internal strains є 

virtual components —— displacements and strains

imaginary displacements and compatible strains

equivalent to:

equilibrium equations + stress BCs

for given loads, any displacement field is a candidate of equilibrium

state, and can be regarded as virtual

one and only one satisfies both equilibrium and compatibility —the equilibrium (real) state where makes system potential

Π = U − W  minimum

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

Remarks on P V W

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 32/155

. . . . . .

.

Remarks on P.V.W.

equilibrated forces (平衡力系): surface/body forces, internal stresses σ 

consistent displacements (协调位移): u and consistent internal strains є 

virtual components —— displacements and strains

imaginary displacements and compatible strains

equivalent to:

equilibrium equations + stress BCs

for given loads, any displacement field is a candidate of equilibrium

state, and can be regarded as virtual

one and only one satisfies both equilibrium and compatibility —the equilibrium (real) state where makes system potential

Π = U − W  minimum

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

Remarks on P V W

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 33/155

. . . . . .

.

Remarks on P.V.W.

equilibrated forces (平衡力系): surface/body forces, internal stresses σ 

consistent displacements (协调位移): u and consistent internal strains є 

virtual components —— displacements and strains

imaginary displacements and compatible strains

equivalent to:

equilibrium equations + stress BCs

for given loads, any displacement field is a candidate of equilibrium

state, and can be regarded as virtual

one and only one satisfies both equilibrium and compatibility —the equilibrium (real) state where makes system potential

Π = U − W  minimum

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

Remarks on P V W

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 34/155

. . . . . .

.

Remarks on P.V.W.

equilibrated forces (平衡力系): surface/body forces, internal stresses σ 

consistent displacements (协调位移): u and consistent internal strains є 

virtual components —— displacements and strains

imaginary displacements and compatible strains

equivalent to:

equilibrium equations + stress BCs

for given loads, any displacement field is a candidate of equilibrium

state, and can be regarded as virtual

one and only one satisfies both equilibrium and compatibility —the equilibrium (real) state where makes system potential

Π = U − W  minimum

Energy Methods (II) — Virtual Work and Unit Load Method

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 35/155

. Internal virtual work 

——内力虚功

. . . . . .

Principle of Virtual Work  Unit Load Method Applications Virtual work 

Internal virtual work for various loadings

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 36/155

. . . . . .

.

Internal virtual work for various loadings

General strategy:

for one set of internal forces, use another set’s corresponding

deformations as the virtual displacements

dθ′

M T 

dx

V  N N 

dx

V  

dφ′

∆dx′

n

vm

t

γ ′

(y)

notations:

‘Real’ loads: N ,V , M ,T ;

‘Virtual’ quantities

. loads: n, v , m, t ; . displacements: ∆dx ′

, γ′

dx , d θ ′

, d ϕ′

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

Internal virtual work for various loadings

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 37/155

. . . . . .

.

Internal virtual work for various loadings

General strategy:

for one set of internal forces, use another set’s corresponding

deformations as the virtual displacements

dθ′

M T 

dx

V  N N 

dx

V  

dφ′

∆dx′

n

vm

t

γ ′

(y)

notations:

‘Real’ loads: N ,V , M ,T ;

‘Virtual’ quantities

. loads: n, v , m, t ; . displacements: ∆dx ′

, γ′

dx , d θ ′

, d ϕ′

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

Elementary virtual work 

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 38/155

. . . . . .

.

y

γ 

(y)

dx

V  N N 

dx

V  

∆dx′

n

v

(2)(1)

. axial load: ∆dx ′

=ndx 

 AE, dW V iN = N ∆dx 

=Nn

 AEdx ,

W V iN =   L

nN 

 AE

dx 

. transverse shear force: γ′

dx by v , dW V iV = ∫  A τγ′

dxdA = f svV 

GAdx ,

W V iV =   L

 f svV 

GAdx 

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

Elementary virtual work 

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 39/155

. . . . . .

.

y

γ 

(y)

dx

V  N N 

dx

V  

∆dx′

n

v

(2)(1)

. axial load: ∆dx ′

=ndx 

 AE, dW V iN = N ∆dx 

=Nn

 AEdx ,

W V iN =   L

nN 

 AE

dx 

. transverse shear force: γ′

dx by v , dW V iV = ∫  A τγ′

dxdA = f svV 

GAdx ,

W V iV =   L

 f svV 

GAdx 

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

Elementary Virtual work (cont.)

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 40/155

. . . . . .

.

y

dθ′

M T M 

dφ′

m

t

(4)(3)

. bending moment: d θ ′

=m

EI dx , dW V iM = Md θ 

=mM 

EI dx ,

W V iM =   L

mM 

EI dx 

. torque: d ϕ′

=t 

GI  pdx , dW V iT = Td ϕ

=tT 

GI  pdx ,

W V iT =   L

tT 

GI  pdx 

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

Elementary Virtual work (cont.)

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 41/155

. . . . . .

.

y

dθ′

M T M 

dφ′

m

t

(4)(3)

. bending moment: d θ ′

=m

EI dx , dW V iM = Md θ 

=mM 

EI dx ,

W V iM =   L

mM 

EI dx 

. torque: d ϕ′

=t 

GI  pdx , dW V iT = Td ϕ

=tT 

GI  pdx ,

W V iT =   L

tT 

GI  pdx 

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

On the form of internal virtual work 

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 42/155

. . . . . .

.

inW 

i,

  L

nN 

EAdx    

L

 f svV 

GAdx 

  L

mM 

EI dx    

L

tT 

GI  pdx 

internal loads (n,

N ), (v ,

V ), (m, M ) and (t 

,T ) are symmetric.

two explanations:

equilibrated forces: from real load system

consistent displacements: from virtual load system

equilibrated forces: from virtual load system

consistent displacements: from real load system

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

On the form of internal virtual work 

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 43/155

. . . . . .

.

inW 

i,

  L

nN 

EAdx    

L

 f svV 

GAdx 

  L

mM 

EI dx    

L

tT 

GI  pdx 

internal loads (n,

N ), (v ,

V ), (m, M ) and (t 

,T ) are symmetric.

two explanations:

equilibrated forces: from real load system

consistent displacements: from virtual load system

equilibrated forces: from virtual load system

consistent displacements: from real load system

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

Strain energy .vs. internal virtual work 

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 44/155

. . . . . .

.

Deformation caused by Strain energy (U e) Internal virtual work (W V i )

axial load N    L

EAdx    

L

nN 

EAdx 

transverse shear V    L

 f sV 

GAdx    

L

 f svV 

GAdx 

bending moment M    L

 M 

EI dx    

L

mM 

EI dx 

torsional moment T    

L

GI  p dx    

L

tT 

GI  p dx 

real/physical internal loads: N , V , M , T ;

virtual/imaginary internal loads: n, v , m, t 

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

Internal virtual work for combined loadings

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 45/155

. . . . . .

.

By principle of superposition (for N , V , M ,T only):

i=

∫  

L

nN 

EA dx +

 f svV 

GA dx +

mM 

EI  dx +

tT 

GI  p dx For a complete list, if all internal loads are non-zero (x coincides with N )

W V i = ∫  

L

nN 

EAdx +

 f sv  y V  y 

GAdx +

 f sv z V z 

GAdx +

mz  M z 

EI z dx +

m y  M  y 

EI  y dx +

tT 

GI  pdx 

Remarks:

. In general, these terms are NOT in the same order in magnitude.

For most cases, N , V terms≪ M , T terms

. For system with only axial loads (e.g., trusses), all M , V , T terms vanish

.

For small eccentric loading, N term is in the same order of  M term; for largeeccentricity, N term can be ignored.

. for springs in the system, virtual internal work form: F f 

k

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

.

Internal virtual work for combined loadings

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 46/155

. . . . . .

By principle of superposition (for N , V , M ,T only):

i=

∫  

L

nN 

EA dx +

 f svV 

GA dx +

mM 

EI  dx +

tT 

GI  p dx For a complete list, if all internal loads are non-zero (x coincides with N )

W V i = ∫  

L

nN 

EAdx +

 f sv  y V  y 

GAdx +

 f sv z V z 

GAdx +

mz  M z 

EI z dx +

m y  M  y 

EI  y dx +

tT 

GI  pdx 

Remarks:

. In general, these terms are NOT in the same order in magnitude.

For most cases, N , V terms≪ M , T terms

. For system with only axial loads (e.g., trusses), all M , V , T terms vanish

.

For small eccentric loading, N term is in the same order of  M term; for largeeccentricity, N term can be ignored.

. for springs in the system, virtual internal work form: F f 

k

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

.

Internal virtual work for combined loadings

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 47/155

. . . . . .

By principle of superposition (for N , V , M ,T only):

i=

∫  

L

nN 

EA dx +

 f svV 

GA dx +

mM 

EI  dx +

tT 

GI  p dx For a complete list, if all internal loads are non-zero (x coincides with N )

W V i = ∫  

L

nN 

EAdx +

 f sv  y V  y 

GAdx +

 f sv z V z 

GAdx +

mz  M z 

EI z dx +

m y  M  y 

EI  y dx +

tT 

GI  pdx 

Remarks:

. In general, these terms are NOT in the same order in magnitude.

For most cases, N , V terms≪ M , T terms

. For system with only axial loads (e.g., trusses), all M , V , T terms vanish

.

For small eccentric loading, N term is in the same order of  M term; for largeeccentricity, N term can be ignored.

. for springs in the system, virtual internal work form: F f 

k

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications Virtual work 

.

Internal virtual work for combined loadings

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 48/155

. . . . . .

By principle of superposition (for N , V , M ,T only):

W V 

i=

∫  

L

nN 

EAdx +

 f svV 

GAdx +

mM 

EI dx +

tT 

GI  pdx 

For a complete list, if all internal loads are non-zero (x coincides with N )

W V i = ∫  

L

nN 

EAdx +

 f sv  y V  y 

GAdx +

 f sv z V z 

GAdx +

mz  M z 

EI z dx +

m y  M  y 

EI  y dx +

tT 

GI  pdx 

Remarks:

. In general, these terms are NOT in the same order in magnitude.

For most cases, N , V terms≪ M , T terms

. For system with only axial loads (e.g., trusses), all M , V , T terms vanish

.

For small eccentric loading, N term is in the same order of  M term; for largeeccentricity, N term can be ignored.

. for springs in the system, virtual internal work form: F f 

k

Energy Methods (II) — Virtual Work and Unit Load Method

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 49/155

. Unit load method

(or) Mohr’s method

——单位力法/摩尔方法

. . . . . .

Principle of Virtual Work  Unit Load Method Applications

.

Displacement/rotation anywhere along any direction

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 50/155

. . . . . .

before deformation

(equilibrium without load)

after deformation

(equilibrium with load)

a virtual deformation

(with load) for the unit load

P 1

P 2

P 3

virtual displacement

before deformation

(equilibrium without load)

1

. to get ∆, apply a unit load (a force or a moment) at exactly the same

location and along the same direction as requested.

. Apply principle of virtual work W  virtuale = W  virtuali .

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

Displacement/rotation anywhere along any direction

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 51/155

. . . . . .

before deformation

(equilibrium without load)

after deformation

(equilibrium with load)

a virtual deformation

(with load) for the unit load

P 1

P 2

P 3

virtual displacement

before deformation

(equilibrium without load)

1

. to get ∆, apply a unit load (a force or a moment) at exactly the same

location and along the same direction as requested.

. Apply principle of virtual work W  virtuale = W  virtuali .

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

Unit Load Method (单位力法,Mohr’s method)

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 52/155

. . . . . .

before deformation

(equilibrium without load)

after deformation

(equilibrium with load)

a virtual deformation

(with load) for the unit load

P 1

P 2

P 3

virtual displacement

before deformation

(equilibrium without load)

1

. take the physical state with the real loadings t o b e a ‘virtual state’

. superpose it to the equilibrium state of the unit loaded system (having its own

deformation, of no interest though).

⋅ ∆ = ∫  nN 

 AEdx +∫  mM 

EI dx + ∫  

f svV 

GAdx + ∫   tT 

GI  pdx 

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

Unit Load Method (单位力法,Mohr’s method)

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 53/155

. . . . . .

before deformation

(equilibrium without load)

after deformation

(equilibrium with load)

a virtual deformation

(with load) for the unit load

P 1

P 2

P 3

virtual displacement

before deformation

(equilibrium without load)

1

. take the physical state with the real loadings t o b e a ‘virtual state’

. superpose it to the equilibrium state of the unit loaded system (having its own

deformation, of no interest though).

⋅ ∆ = ∫  nN 

 AEdx +∫  mM 

EI dx + ∫  

f svV 

GAdx + ∫   tT 

GI  pdx 

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

Mohr Integration (摩尔积分)

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 54/155

. . . . . .

∆ =

  

nN 

 AE

dx +

  

mM 

EI 

dx +

  

f svV 

GA

dx +

  

tT 

GI  pdx 

Mohr Integration

. extend to include terms if needed.

. N , M ,V , T :

internal loads on cross sections of the real load system with ∆ to be

solved

. n, m, v , t :

internal loads on cross sections of the unit load system

. if spring is present, addFf 

kto the R.H.S.

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

Mohr Integration (摩尔积分)

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 55/155

. . . . . .

∆ =

  

nN 

 AE

dx +

  

mM 

EI 

dx +

  

f svV 

GA

dx +

  

tT 

GI  pdx 

Mohr Integration

. extend to include terms if needed.

. N , M ,V , T :

internal loads on cross sections of the real load system with ∆ to be

solved

. n, m, v , t :

internal loads on cross sections of the unit load system

. if spring is present, addFf 

kto the R.H.S.

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

Mohr Integration (摩尔积分)

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 56/155

. . . . . .

∆ =

  

nN 

 AE

dx +

  

mM 

EI 

dx +

  

f svV 

GA

dx +

  

tT 

GI  pdx 

Mohr Integration

. extend to include terms if needed.

. N , M ,V , T :

internal loads on cross sections of the real load system with ∆ to be

solved

. n, m, v , t :

internal loads on cross sections of the unit load system

. if spring is present, addFf 

kto the R.H.S.

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

Mohr Integration (摩尔积分)

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 57/155

. . . . . .

∆ =

  

nN 

 AE

dx +

  

mM 

EI 

dx +

  

f svV 

GA

dx +

  

tT 

GI  pdx 

Mohr Integration

. extend to include terms if needed.

. N , M ,V , T :

internal loads on cross sections of the real load system with ∆ to be

solved

. n, m, v , t :

internal loads on cross sections of the unit load system

. if spring is present, addFf 

kto the R.H.S.

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

Procedure to apply Mohr’s method

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 58/155

. . . . . .

.

set up the unit load system (单位载荷系统)an identical structure with all physical external loadings removed

. apply a generalized unit load at the location where generalized

displacement is requested

for translation, apply a unit force

for rotation, apply a unit couple moment

. use method of sections to solve the internal loads

N (), V (), M (), T () in the real load system

n(), v (), m(), t () in the unit load system

for real/virtual internal loads in a segment, use the same coordinateand the same sign conventions

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

Procedure to apply Mohr’s method

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 59/155

. . . . . .

.

set up the unit load system (单位载荷系统)an identical structure with all physical external loadings removed

. apply a generalized unit load at the location where generalized

displacement is requested

for translation, apply a unit force

for rotation, apply a unit couple moment

. use method of sections to solve the internal loads

N (), V (), M (), T () in the real load system

n(), v (), m(), t () in the unit load system

for real/virtual internal loads in a segment, use the same coordinateand the same sign conventions

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

Procedure to apply Mohr’s method

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 60/155

. . . . . .

.

set up the unit load system (单位载荷系统)an identical structure with all physical external loadings removed

. apply a generalized unit load at the location where generalized

displacement is requested

for translation, apply a unit force

for rotation, apply a unit couple moment

. use method of sections to solve the internal loads

N (), V (), M (), T () in the real load system

n(), v (), m(), t () in the unit load system

for real/virtual internal loads in a segment, use the same coordinateand the same sign conventions

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

Procedure to apply Mohr’s method

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 61/155

. . . . . .

.

set up the unit load system (单位载荷系统)an identical structure with all physical external loadings removed

. apply a generalized unit load at the location where generalized

displacement is requested

for translation, apply a unit force

for rotation, apply a unit couple moment

. use method of sections to solve the internal loads

N (), V (), M (), T () in the real load system

n(), v (), m(), t () in the unit load system

for real/virtual internal loads in a segment, use the same coordinateand the same sign conventions

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

Procedure to apply Mohr’s method

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 62/155

. . . . . .

.

set up the unit load system (单位载荷系统)an identical structure with all physical external loadings removed

. apply a generalized unit load at the location where generalized

displacement is requested

for translation, apply a unit force

for rotation, apply a unit couple moment

. use method of sections to solve the internal loads

N (), V (), M (), T () in the real load system

n(), v (), m(), t () in the unit load system

for real/virtual internal loads in a segment, use the same coordinateand the same sign conventions

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

Procedure to apply Mohr’s method

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 63/155

. . . . . .

.

set up the unit load system (单位载荷系统)an identical structure with all physical external loadings removed

. apply a generalized unit load at the location where generalized

displacement is requested

for translation, apply a unit force

for rotation, apply a unit couple moment

. use method of sections to solve the internal loads

N (), V (), M (), T () in the real load system

n(), v (), m(), t () in the unit load system

for real/virtual internal loads in a segment, use the same coordinateand the same sign conventions

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

Procedure (cont.)

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 64/155

. . . . . .

. evaluate term by term in the Mohr integration.

if with bending/torsion, ignore (in general) N , V terms;

for trusses, only N terms are available.

.

use (arbitrary) consistent energy units system in evaluation.n, v , m, t absorb (吸收) the unit (单位) for the unit load (单位载荷)

.  judge the direction of generalized displacement.

if ∆ > : along the prescribed direction of the unit load;

if ∆ < : along the opposite prescribed direction of the unit load.

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

Procedure (cont.)

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 65/155

. . . . . .

. evaluate term by term in the Mohr integration.

if with bending/torsion, ignore (in general) N , V terms;

for trusses, only N terms are available.

.

use (arbitrary) consistent energy units system in evaluation.n, v , m, t absorb (吸收) the unit (单位) for the unit load (单位载荷)

.  judge the direction of generalized displacement.

if ∆ > : along the prescribed direction of the unit load;

if ∆ < : along the opposite prescribed direction of the unit load.

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

Procedure (cont.)

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 66/155

. . . . . .

. evaluate term by term in the Mohr integration.

if with bending/torsion, ignore (in general) N , V terms;

for trusses, only N terms are available.

.

use (arbitrary) consistent energy units system in evaluation.n, v , m, t absorb (吸收) the unit (单位) for the unit load (单位载荷)

.  judge the direction of generalized displacement.

if ∆ > : along the prescribed direction of the unit load;

if ∆ < : along the opposite prescribed direction of the unit load.

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

Procedure (cont.)

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 67/155

. . . . . .

. evaluate term by term in the Mohr integration.

if with bending/torsion, ignore (in general) N , V terms;

for trusses, only N terms are available.

.

use (arbitrary) consistent energy units system in evaluation.n, v , m, t absorb (吸收) the unit (单位) for the unit load (单位载荷)

.  judge the direction of generalized displacement.

if ∆ > : along the prescribed direction of the unit load;

if ∆ < : along the opposite prescribed direction of the unit load.

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

Procedure (cont.)

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 68/155

. . . . . .

. evaluate term by term in the Mohr integration.

if with bending/torsion, ignore (in general) N , V terms;

for trusses, only N terms are available.

.

use (arbitrary) consistent energy units system in evaluation.n, v , m, t absorb (吸收) the unit (单位) for the unit load (单位载荷)

.  judge the direction of generalized displacement.

if ∆ > : along the prescribed direction of the unit load;

if ∆ < : along the opposite prescribed direction of the unit load.

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

Application of unit load method to beams

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 69/155

. . . . . .

in beams, analysis on the magnitude of contributions

load is perpendicular to beam→N is negligibletransverse shear effect≪ bending effect→V is negligible

no torsion T 

conclusion: (in general) in bending problems, only bending moment term

is considered in the unit load method.

for deflection ∆: a virtual unit load is applied

⋅ ∆ =   L

mM 

EI dx 

for slope θ : a virtual unit couple moment is applied

⋅ θ =   L

mθ  M 

EI dx 

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

Application of unit load method to beams

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 70/155

. . . . . .

in beams, analysis on the magnitude of contributions

load is perpendicular to beam→N is negligibletransverse shear effect≪ bending effect→V is negligible

no torsion T 

conclusion: (in general) in bending problems, only bending moment term

is considered in the unit load method.

for deflection ∆: a virtual unit load is applied

⋅ ∆ =   L

mM 

EI dx 

for slope θ : a virtual unit couple moment is applied

⋅ θ =   L

mθ  M 

EI dx 

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

Application of unit load method to beams

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 71/155

. . . . . .

in beams, analysis on the magnitude of contributions

load is perpendicular to beam→

N is negligibletransverse shear effect≪ bending effect→V is negligible

no torsion T 

conclusion: (in general) in bending problems, only bending moment term

is considered in the unit load method.

for deflection ∆: a virtual unit load is applied

⋅ ∆ =   L

mM 

EI dx 

for slope θ : a virtual unit couple moment is applied

⋅ θ =   L

mθ  M 

EI dx 

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

Application of unit load method to beams

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 72/155

. . . . . .

in beams, analysis on the magnitude of contributions

load is perpendicular to beam→

N is negligibletransverse shear effect≪ bending effect→V is negligible

no torsion T 

conclusion: (in general) in bending problems, only bending moment term

is considered in the unit load method.

for deflection ∆: a virtual unit load is applied

⋅ ∆ =   L

mM 

EI dx 

for slope θ : a virtual unit couple moment is applied

⋅ θ =   L

mθ  M 

EI dx 

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

Application of unit load method to beams

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 73/155

. . . . . .

in beams, analysis on the magnitude of contributions

load is perpendicular to beam→

N is negligibletransverse shear effect≪ bending effect→V is negligible

no torsion T 

conclusion: (in general) in bending problems, only bending moment term

is considered in the unit load method.

for deflection ∆: a virtual unit load is applied

⋅ ∆ =   L

mM 

EI dx 

for slope θ : a virtual unit couple moment is applied

⋅ θ =   L

mθ  M 

EI dx 

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

On the sign convention

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 74/155

. . . . . .

an absolute one —— the traditional rule. N : tensile/compressive.  M : concave/convex (straight beam);

tensile/compressive side (curved beam). V : clockwise/counter-clockwise.

T : right-hand rule

a relative one —— practically very useful. treat the internal loads in the real load system as positive. use it to judge the sign of corresponding internal loads in the unit

load system

(positive: same direction, negative: opposite direction)

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

On the sign convention

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 75/155

. . . . . .

an absolute one —— the traditional rule. N : tensile/compressive.  M : concave/convex (straight beam);

tensile/compressive side (curved beam). V : clockwise/counter-clockwise.

T : right-hand rule

a relative one —— practically very useful. treat the internal loads in the real load system as positive. use it to judge the sign of corresponding internal loads in the unit

load system

(positive: same direction, negative: opposite direction)

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

On the sign convention

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 76/155

. . . . . .

an absolute one —— the traditional rule. N : tensile/compressive.  M : concave/convex (straight beam);

tensile/compressive side (curved beam). V : clockwise/counter-clockwise.

T : right-hand rule

a relative one —— practically very useful. treat the internal loads in the real load system as positive. use it to judge the sign of corresponding internal loads in the unit

load system

(positive: same direction, negative: opposite direction)

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

On the sign convention

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 77/155

. . . . . .

an absolute one —— the traditional rule. N : tensile/compressive.  M : concave/convex (straight beam);

tensile/compressive side (curved beam). V : clockwise/counter-clockwise.

T : right-hand rule

a relative one —— practically very useful. treat the internal loads in the real load system as positive. use it to judge the sign of corresponding internal loads in the unit

load system

(positive: same direction, negative: opposite direction)

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

On the sign convention

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 78/155

. . . . . .

an absolute one —— the traditional rule. N : tensile/compressive.  M : concave/convex (straight beam);

tensile/compressive side (curved beam). V : clockwise/counter-clockwise.

T : right-hand rule

a relative one —— practically very useful. treat the internal loads in the real load system as positive. use it to judge the sign of corresponding internal loads in the unit

load system

(positive: same direction, negative: opposite direction)

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

On the sign convention

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 79/155

. . . . . .

an absolute one —— the traditional rule. N : tensile/compressive.  M : concave/convex (straight beam);

tensile/compressive side (curved beam). V : clockwise/counter-clockwise.

T : right-hand rule

a relative one —— practically very useful. treat the internal loads in the real load system as positive. use it to judge the sign of corresponding internal loads in the unit

load system

(positive: same direction, negative: opposite direction)

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

On the sign convention

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 80/155

. . . . . .

an absolute one —— the traditional rule. N : tensile/compressive.  M : concave/convex (straight beam);

tensile/compressive side (curved beam). V : clockwise/counter-clockwise.

T : right-hand rule

a relative one —— practically very useful. treat the internal loads in the real load system as positive. use it to judge the sign of corresponding internal loads in the unit

load system

(positive: same direction, negative: opposite direction)

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work  Unit Load Method Applications

.

On the sign convention

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 81/155

. . . . . .

an absolute one —— the traditional rule. N : tensile/compressive.  M : concave/convex (straight beam);

tensile/compressive side (curved beam). V : clockwise/counter-clockwise.

T : right-hand rule

a relative one —— practically very useful. treat the internal loads in the real load system as positive. use it to judge the sign of corresponding internal loads in the unit

load system

(positive: same direction, negative: opposite direction)

Energy Methods (II) — Virtual Work and Unit Load Method

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 82/155

. Applications

. . . . . .

Principle of Virtual Work Unit Load Method Applications

.

Example — bending

Given: cantilevered beam, distributed load w

D t i ∆ d θ

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 83/155

. . . . . .

Determine: ∆B and θ B

virtual unit load

Solution:. x runs to the right.

unit force downward, unit couple moment

counter-clockwise

.

unit force: m= −

x ; unit moment: mθ = −

. bending moment by real load M (x ) = −w

. Mohr integration:

∆B = ∫  mM EI 

dx = ∫  L (−

x )(−

w

)EI dx = wL

EI 

θ B = ∫  mθ  M 

EI dx = ∫  

L

(−)(−w

x )

EI dx =

wL

EI 

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example — bending

Given: cantilevered beam, distributed load w

Determine ∆ and θ

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 84/155

. . . . . .

Determine: ∆B and θ B

virtual unit load

Solution:. x runs to the right.

unit force downward, unit couple moment

counter-clockwise

.

unit force: m= −

x ; unit moment: mθ = −

. bending moment by real load M (x ) = −w

. Mohr integration:

∆B = ∫  mM EI 

dx = ∫  L (−

x )(−

w

)EI dx = wL

EI 

θ B = ∫  mθ  M 

EI dx = ∫  

L

(−)(−w

x )

EI dx =

wL

EI 

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example — bending

Given: cantilevered beam, distributed load w

Determine: ∆ and θ

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 85/155

. . . . . .

Determine: ∆B and θ B

virtual unit load

Solution:. x runs to the right.

unit force downward, unit couple moment

counter-clockwise

.

unit force: m= −

x ; unit moment: mθ = −

. bending moment by real load M (x ) = −w

. Mohr integration:

∆B = ∫  mM EI 

dx = ∫  L (−

x )(−

w

)EI dx = wL

EI 

θ B = ∫  mθ  M 

EI dx = ∫  

L

(−)(−w

x )

EI dx =

wL

EI 

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example — bending

Given: cantilevered beam, distributed load w

Determine: ∆B and θB

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 86/155

. . . . . .

Determine: ∆B and θ B

virtual unit load

Solution:. x runs to the right.

unit force downward, unit couple moment

counter-clockwise

.

unit force: m= −

x ; unit moment: mθ = −

. bending moment by real load M (x ) = −w

. Mohr integration:

∆B = ∫  mM EI 

dx = ∫  L (−

x )(−

w

)EI dx = wL

EI 

θ B = ∫  mθ  M 

EI dx = ∫  

L

(−)(−w

x )

EI dx =

wL

EI 

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example — bending

Given: cantilevered beam, distributed load w

Determine: ∆B and θB

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 87/155

. . . . . .

Determine: ∆B and θ B

virtual unit load

Solution:. x runs to the right.

unit force downward, unit couple moment

counter-clockwise

.

unit force: m= −

x ; unit moment: mθ = −

. bending moment by real load M (x ) = −w

. Mohr integration:

∆B = ∫  mM EI 

dx = ∫  L (−

x )(−

w

)EI dx = wL

EI 

θ B = ∫  mθ  M 

EI dx = ∫  

L

(−)(−w

x )

EI dx =

wL

EI 

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example — bending

Given: cantilevered beam, distributed load w

Determine: ∆B and θB

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 88/155

. . . . . .

Determine: ∆B and θ B

virtual unit load

Solution:. x runs to the right.

unit force downward, unit couple moment

counter-clockwise

.

unit force: m= −

x ; unit moment: mθ = −

. bending moment by real load M (x ) = −w

. Mohr integration:

∆B = ∫  mM EI 

dx = ∫  L (−x 

)(−

w

)EI dx = wL

EI 

θ B = ∫  mθ  M 

EI dx = ∫  

L

(−)(−w

x )

EI dx =

wL

EI 

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example — bending

Given: cantilevered beam, distributed load w

Determine: ∆B and θB

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 89/155

. . . . . .

Determine: ∆B and θ B

virtual unit load

Solution:. x runs to the right.

unit force downward, unit couple moment

counter-clockwise

.

unit force: m= −

x ; unit moment: mθ = −

. bending moment by real load M (x ) = −w

. Mohr integration:

∆B = ∫  mM EI 

dx = ∫  L (−x 

)(−

w

)EI dx = wL

EI 

θ B = ∫  mθ  M 

EI dx = ∫  

L

(−)(−w

x )

EI dx =

wL

EI 

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example — bending

Given: cantilevered beam, concentrated load P 

Determine: θB and ∆B

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 90/155

. . . . . .

Determine: θ B and ∆B

virtual unit moment load

Solution:. unit loads

a virtual unit couple moment at B for θ B(counter-clockwise)

a virtual unit load at B for ∆B (downward)

. calculation of mθ  in CA piecewise

mθ  = (for AB, ≤ x  ≤L

)

mθ  = (for BC , ≤ x  ≤L

)

. calculation of m in CA piecewise

m = (for AB, ≤ x  ≤L

)

m = −x  (for BC , ≤ x  ≤L

)

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example — bending

Given: cantilevered beam, concentrated load P 

Determine: θ B and ∆B

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 91/155

. . . . . .

Dete e: θB a d B

virtual unit moment load

Solution:. unit loads

a virtual unit couple moment at B for θ B(counter-clockwise)

a virtual unit load at B for ∆B (downward)

. calculation of mθ  in CA piecewise

mθ  = (for AB, ≤ x  ≤L

)

mθ  = (for BC , ≤ x  ≤L

)

. calculation of m in CA piecewise

m = (for AB, ≤ x  ≤L

)

m = −x  (for BC , ≤ x  ≤L

)

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example — bending

Given: cantilevered beam, concentrated load P 

Determine: θ B and ∆B

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 92/155

. . . . . .

B B

virtual unit moment load

Solution:. unit loads

a virtual unit couple moment at B for θ B(counter-clockwise)

a virtual unit load at B for ∆B (downward)

. calculation of mθ  in CA piecewise

mθ  = (for AB, ≤ x  ≤L

)

mθ  = (for BC , ≤ x  ≤L

)

. calculation of m in CA piecewise

m = (for AB, ≤ x  ≤L

)

m = −x  (for BC , ≤ x  ≤L

)

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example — bending

Given: cantilevered beam, concentrated load P 

Determine: θ B and ∆B

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 93/155

. . . . . .

B B

virtual unit moment load

Solution:

. unit loads

a virtual unit couple moment at B for θ B(counter-clockwise)

a virtual unit load at B for ∆B (downward)

. calculation of mθ  in CA piecewise

mθ  = (for AB, ≤ x  ≤L

)

mθ  = (for BC , ≤ x  ≤L

)

. calculation of m in CA piecewise

m = (for AB, ≤ x  ≤L

)

m = −x  (for BC , ≤ x  ≤L

)

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example — bending

Given: cantilevered beam, concentrated load P 

Determine: θ B and ∆B

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 94/155

. . . . . .

virtual unit moment load

Solution:

. unit loads

a virtual unit couple moment at B for θ B(counter-clockwise)

a virtual unit load at B for ∆B (downward)

. calculation of mθ  in CA piecewise

mθ  = (for AB, ≤ x  ≤L

)

mθ  = (for BC , ≤ x  ≤L

)

. calculation of m in CA piecewise

m = (for AB, ≤ x  ≤L

)

m = −x  (for BC , ≤ x  ≤L

)

Energy Methods (II) Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example — bending

Given: cantilevered beam, concentrated load P 

Determine: θ B and ∆B

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 95/155

. . . . . .

virtual unit moment load

Solution:

. unit loads

a virtual unit couple moment at B for θ B(counter-clockwise)

a virtual unit load at B for ∆B (downward)

. calculation of mθ  in CA piecewise

mθ  = (for AB, ≤ x  ≤L

)

mθ  = (for BC , ≤ x  ≤L

)

. calculation of m in CA piecewise

m = (for AB, ≤ x  ≤L

)

m = −x  (for BC , ≤ x  ≤L

)

Energy Methods (II) Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example (cont.)

Solution:

l l i f M i CA i i

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 96/155

. . . . . .

real load

. calculation of  M in C  A piecewise

 M  = −Px  (for AB, ≤ x  ≤ L

)

 M  = −P (L

+ x ) (for BC , ≤ x  ≤

L

)

. virtual work eqn.

θ B = ∫  mmomentθ  M 

EI dx = ∫  

L/

()(−P (L

+ x ))

EI dx  = −

PL

EI 

∆B =∫  m

force

θ  M EI 

dx = ∫  L/

(−x 

)(−P 

(L

+ x 

))EI dx 

=

PL

EI +

PL

EI =

PL

EI 

double check with the elastic curve in Appendix G: v = −Px (L − x )/EI 

Energy Methods (II) Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example (cont.)

Solution:

l l ti f M i CA i i

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 97/155

. . . . . .

real load

. calculation of  M in C  A piecewise

 M  = −Px  (for AB, ≤ x  ≤ L

)

 M  = −P (L

+ x ) (for BC , ≤ x  ≤

L

)

. virtual work eqn.

θ B = ∫  mmomentθ  M 

EI dx = ∫  

L/

()(−P (L

+ x ))

EI dx  = −

PL

EI 

∆B =∫  m

force

θ  M EI 

dx = ∫  L/

(−x 

)(−P 

(L

+ x 

))EI dx 

=

PL

EI +

PL

EI =

PL

EI 

double check with the elastic curve in Appendix G: v = −Px (L − x )/EI 

Energy Methods (II) Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example (cont.)

Solution:

l l ti f M i CA i i

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 98/155

. . . . . .

real load

. calculation of  M in C  A piecewise

 M  = −Px  (for AB, ≤ x  ≤ L

)

 M  = −P (L

+ x ) (for BC , ≤ x  ≤

L

)

. virtual work eqn.

θ B = ∫  mmomentθ  M 

EI dx = ∫  

L/

()(−P (L

+ x ))

EI dx  = −

PL

EI 

∆B =∫  m

force

θ  M EI 

dx = ∫  L/

(−x 

)(−P 

(L

+ x 

))EI dx 

=

PL

EI +

PL

EI =

PL

EI 

double check with the elastic curve in Appendix G: v = −Px (L − x )/EI 

Energy Methods (II) Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example (cont.)

Solution:

calculation of M in CA piecewise

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 99/155

. . . . . .

real load

. calculation of  M in C  A piecewise

 M  = −Px  (for AB, ≤ x  ≤ L

)

 M  = −P (L

+ x ) (for BC , ≤ x  ≤

L

)

. virtual work eqn.

θ B = ∫  mmomentθ  M 

EI dx = ∫  

L/

()(−P (L

+ x ))

EI dx  = −

PL

EI 

∆B =∫  m

force

θ  M EI  dx = ∫  L/

(−x 

)(−P 

(L

+ x 

))EI  dx 

=

PL

EI +

PL

EI =

PL

EI 

double check with the elastic curve in Appendix G: v = −Px (L − x )/EI 

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example (cont.)

Solution:

calculation of M in CA piecewise

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 100/155

. . . . . .

real load

. calculation of  M in C  A piecewise

 M  = −Px  (for AB, ≤ x  ≤ L

)

 M  = −P (L

+ x ) (for BC , ≤ x  ≤

L

)

. virtual work eqn.

θ B = ∫  mmomentθ  M 

EI dx = ∫  

L/

()(−P (L

+ x ))

EI dx  = −

PL

EI 

∆B =∫  m

force

θ  M EI  dx = ∫  L/

(−x 

)(−P 

(L

+ x 

))EI  dx 

=

PL

EI +

PL

EI =

PL

EI 

double check with the elastic curve in Appendix G: v = −Px (L − x )/EI 

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example —— coincident locations of F and ∆

Given: () circular arc, fixed at A; () a force F at B; () EI , R

Determine: Horizontal and vertical displacements at B

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 101/155

. . . . . .

p

θ

AO

B

θ

1

AO

B

θ

AO

B 1

B

θ

V  N 

B

θv

n

m

1

B

θ

1

O

O

O

v

n

m

. set up unit load systems for vertical/

horizontal displacements

. N , V , M co-exist, ignore N , V 

. sign convention: the relative one

. Internal bending moments:

Real load system:

 M = FR sin θ Vertical unit load system:

m=

×

R sin θ =

R sin θ Horizontal unit load system:

m = × (R − R cos θ ) = R( − cos θ )

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example —— coincident locations of F and ∆

Given: () circular arc, fixed at A; () a force F at B; () EI , R

Determine: Horizontal and vertical displacements at B

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 102/155

. . . . . .

p

θ

AO

B

θ

1

AO

B

θ

AO

B 1

B

θ

V  N 

B

θv

n

m

1

B

θ

1

O

O

O

v

n

m

. set up unit load systems for vertical/

horizontal displacements

. N , V , M co-exist, ignore N , V 

. sign convention: the relative one

. Internal bending moments:

Real load system:

 M = FR sin θ Vertical unit load system:

m= ×

Rsin

θ =

Rsin

θ Horizontal unit load system:

m = × (R − R cos θ ) = R( − cos θ )

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example —— coincident locations of F and ∆

Given: () circular arc, fixed at A; () a force F at B; () EI , R

Determine: Horizontal and vertical displacements at B

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 103/155

. . . . . .

θ

AO

B

θ

1

AO

B

θ

AO

B 1

B

θ

V  N 

B

θv

n

m

1

B

θ

1

O

O

O

v

n

m

. set up unit load systems for vertical/

horizontal displacements

. N , V , M co-exist, ignore N , V 

. sign convention: the relative one

. Internal bending moments:

Real load system:

 M = FR sin θ Vertical unit load system:

m= ×

Rsin

θ =

Rsin

θ Horizontal unit load system:

m = × (R − R cos θ ) = R( − cos θ )

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example —— coincident locations of F and ∆

Given: () circular arc, fixed at A; () a force F at B; () EI , R

Determine: Horizontal and vertical displacements at B

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 104/155

. . . . . .

θ

AO

B

θ

1

AO

B

θ

AO

B 1

B

θ

V  N 

B

θv

n

m

1

B

θ

1

O

O

O

v

n

m

. set up unit load systems for vertical/

horizontal displacements

. N , V , M co-exist, ignore N , V 

. sign convention: the relative one

. Internal bending moments:

Real load system:

 M = FR sin θ Vertical unit load system:

m= ×

Rsin

θ =

Rsin

θ Horizontal unit load system:

m = × (R − R cos θ ) = R( − cos θ )

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example —— coincident locations of F and ∆

Given: () circular arc, fixed at A; () a force F at B; () EI , R

Determine: Horizontal and vertical displacements at B

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 105/155

. . . . . .

θ

AO

B

θ

1

AO

B

θ

AO

B 1

B

θ

V  N 

B

θv

n

m

1

B

θ

1

O

O

O

v

n

m

. set up unit load systems for vertical/

horizontal displacements

. N , V , M co-exist, ignore N , V 

. sign convention: the relative one

. Internal bending moments:

Real load system:

 M = FR sin θ Vertical unit load system:

m= ×

Rsin

θ =

Rsin

θ Horizontal unit load system:

m = × (R − R cos θ ) = R( − cos θ )

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example —— coincident locations of F and ∆

Given: () circular arc, fixed at A; () a force F at B; () EI , R

Determine: Horizontal and vertical displacements at B

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 106/155

. . . . . .

θ

AO

B

θ

1

AO

B

θ

AO

B 1

B

θ

V  N 

B

θv

n

m

1

B

θ

1

O

O

O

v

n

m

. set up unit load systems for vertical/

horizontal displacements

. N , V , M co-exist, ignore N , V 

. sign convention: the relative one

. Internal bending moments:

Real load system:

 M = FR sin θ Vertical unit load system:

m= ×

Rsin

θ =

Rsin

θ Horizontal unit load system:

m = × (R − R cos θ ) = R( − cos θ )

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example —— coincident locations of F and ∆

Given: () circular arc, fixed at A; () a force F at B; () EI , R

Determine: Horizontal and vertical displacements at B

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 107/155

. . . . . .

θ

AO

B

θ

1

AO

B

θ

AO

B 1

B

θ

V  N 

B

θv

n

m

1

B

θ

1

O

O

O

v

n

m

. set up unit load systems for vertical/

horizontal displacements

. N , V , M co-exist, ignore N , V 

. sign convention: the relative one

. Internal bending moments:

Real load system:

 M = FR sin θ Vertical unit load system:

m= ×

Rsin

θ =

Rsin

θ Horizontal unit load system:

m = × (R − R cos θ ) = R( − cos θ )

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example (cont.)

B

BM 

. vertical and horizontal displacements

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 108/155

. . . . . .

θ

AO

θ

1

AO

B

θ

AO

B 1

θV  N 

B

θv

n

m

1

B

θ

1

O

O

O

v

n

m

∆B y  =∫  s

mM 

EI ds = ∫  

π /

FRsin

θ 

EI d θ 

=

FR

EI 

θ −

sinθ ∣π /

=

π FR

EI 

∆Bx =∫  s

mM 

EI ds = ∫  

π /

FRsin θ −

FR

sinθ 

EI Rd θ 

=

FR

EI 

cosθ − cos θ 

π /

=

π FR

EI 

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example (cont.)

B

BM 

. vertical and horizontal displacements

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 109/155

. . . . . .

θA

O

θ

1

AO

B

θ

AO

B 1

θV  N 

B

θv

n

m

1

B

θ

1

O

O

O

v

n

m

∆B y  =∫  s

mM 

EI ds = ∫  

π /

FR sin θ 

EI d θ 

=

FR

EI 

θ −

sinθ ∣π /

=

π FR

EI 

∆Bx =∫  s

mM 

EI ds = ∫  

π /

FRsin θ −

FR

sinθ 

EI Rd θ 

=

FR

EI 

cosθ − cos θ 

π /

=

π FR

EI 

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example (cont.)

B

BM 

. vertical and horizontal displacements

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 110/155

. . . . . .

θA

O

θ

1

AO

B

θ

AO

B 1

θV  N 

B

θv

n

m

1

B

θ

1

O

O

O

v

n

m

∆B y  =∫  s

mM 

EI ds = ∫  

π /

FR sin θ 

EI d θ 

=

FR

EI 

θ −

sinθ ∣π /

=

π FR

EI 

∆Bx =∫  s

mM 

EI ds = ∫  

π /

FRsin θ −

FR

sinθ 

EI Rd θ 

=

FR

EI 

cosθ − cos θ 

π /

=

π FR

EI 

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example (cont.)

B

BM 

. vertical and horizontal displacements

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 111/155

. . . . . .

θA

O

θ

1

AO

B

θ

AO

B 1

θV  N 

B

θv

n

m

1

B

θ

1

O

O

O

v

n

m

∆B y  =∫  s

mM 

EI ds = ∫  

π /

FR sin θ 

EI d θ 

=

FR

EI 

θ −

sinθ ∣π /

=

π FR

EI 

∆Bx =∫  s

mM 

EI ds = ∫  

π /

FRsin θ −

FR

sinθ 

EI Rd θ 

=

FR

EI 

cosθ − cos θ 

π /

=

π FR

EI 

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example —— different locations of F and ∆

Given: () structure as shown () load at C , D a force F ; () EI , F , R;

Determine: relative displacement ∆ A−B, and horizontal ∆ Ax

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 112/155

. . . . . .

AC

E

G

F D B

θ

R

R RF 

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example (cont.)

AC

E

θ

R R

F .

set up unit load systems

. consider only bending moment M ;

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 113/155

. . . . . .

G

F D B

R

AC

E

G

F D B

1

1

θ

R

R R

a vertical pair for ∆ A−B

and a half structure due to symmetry. internal bending moments:

real load system:

 M = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

, ( AC , ≤ x ≤ R)

F (x − R), (CE, R ≤ x ≤ R)

FR( + sin θ ), (EG, ≤ θ ≤ π /)

vertical unit load system:

m =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x , ( AC , ≤ x ≤ R)

x , (CE, R ≤ x ≤ R)

R + R sin θ , (EG, ≤ θ ≤ π /)

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example (cont.)

AC

E

θ

R R

F .

set up unit load systems

. consider only bending moment M ;

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 114/155

. . . . . .

G

F D B

R

AC

E

G

F D B

1

1

θ

R

R R

a vertical pair for ∆ A−B

and a half structure due to symmetry. internal bending moments:

real load system:

 M = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

, ( AC , ≤ x ≤ R)

F (x − R), (CE, R ≤ x ≤ R)

FR( + sin θ ), (EG, ≤ θ ≤ π /)

vertical unit load system:

m =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x , ( AC , ≤ x ≤ R)

x , (CE, R ≤ x ≤ R)

R + R sin θ , (EG, ≤ θ ≤ π /)

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example (cont.)

AC

E

θ

R R

F .

set up unit load systems

. consider only bending moment M ;

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 115/155

. . . . . .

G

F D B

R

AC

E

G

F D B

1

1

θ

R

R R

a vertical pair for ∆ A−B

and a half structure due to symmetry. internal bending moments:

real load system:

 M = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

, ( AC , ≤ x ≤ R)

F (x − R), (CE, R ≤ x ≤ R)

FR( + sin θ ), (EG, ≤ θ ≤ π /)

vertical unit load system:

m =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x , ( AC , ≤ x ≤ R)

x , (CE, R ≤ x ≤ R)

R + R sin θ , (EG, ≤ θ ≤ π /)

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.

Example (cont.)

AC

E

θ

R R

F .

set up unit load systems

. consider only bending moment M ;

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 116/155

. . . . . .

G

F D B

R

AC

E

G

F D B

1

1

θ

R

R R

a vertical pair for ∆ A−B

and a half structure due to symmetry. internal bending moments:

real load system:

 M = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

, ( AC , ≤ x ≤ R)

F (x − R), (CE, R ≤ x ≤ R)

FR( + sin θ ), (EG, ≤ θ ≤ π /)

vertical unit load system:

m =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x , ( AC , ≤ x ≤ R)

x , (CE, R ≤ x ≤ R)

R + R sin θ , (EG, ≤ θ ≤ π /)

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.Example (cont.)

AC

E

θ

R R

F .

set up unit load systems

. consider only bending moment M ;

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 117/155

. . . . . .

G

F D B

R

AC

E

G

F D B

1

1

θ

R

R R

a vertical pair for ∆ A−B

and a half structure due to symmetry. internal bending moments:

real load system:

 M = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

, ( AC , ≤ x ≤ R)

F (x − R), (CE, R ≤ x ≤ R)

FR( + sin θ ), (EG, ≤ θ ≤ π /)

vertical unit load system:

m =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x , ( AC , ≤ x ≤ R)

x , (CE, R ≤ x ≤ R)

R + R sin θ , (EG, ≤ θ ≤ π /)

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.Example (cont.)

AC

E

θ

R R

F .

set up unit load systems

. consider only bending moment M ;

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 118/155

. . . . . .

G

F D B

R

AC

E

G

F D B

1

1

θ

R

R R

a vertical pair for ∆ A−B

and a half structure due to symmetry. internal bending moments:

real load system:

 M = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

, ( AC , ≤ x ≤ R)

F (x − R), (CE, R ≤ x ≤ R)

FR( + sin θ ), (EG, ≤ θ ≤ π /)

vertical unit load system:

m =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x , ( AC , ≤ x ≤ R)

x , (CE, R ≤ x ≤ R)

R + R sin θ , (EG, ≤ θ ≤ π /)

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.Example (cont.)

AC

E

1

θ

R R

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 119/155

. . . . . .

G

F D B

1

R

. relative displacement between A and B

∆ A−B = [ +  R

R

F (x − R)x 

EI dx +  

π /

FR( + sin θ )R( + sin θ )EI 

Rd θ ]=

EI [−  R

RRxdx +  

R

Rx dx + R   

π /

( + sin θ + sin θ )d θ ]=

FR

EI (

+

π )

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.Example (cont.)

AC

E1

θ

R R

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 120/155

. . . . . .

G

F D B

R

1

.

Horizontal unit load system:special handling: removing of the horizontal translation by

symmetry

m =

⎧⎪⎪⎨⎪⎪⎩

, ( AE)

R( − cos θ ), (EG, ≤ θ ≤ π /)

∆ Ax = +  π /

FR( + sin θ )R( − cos θ )EI 

Rd θ =π −

FR

EI Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.Applications to trusses (桁架)

Application to trusses: due to axial load only

aim: to get the nodal displacement along any direction

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 121/155

. . . . . .

structural load

∆ = ∑ nNL

 AE

temperature change

∆ =∑n(α∆TL)Fabrication errors

∆ = ∑n(∆L)idea:

take displacement of the real load system as ’virtual’ displacement

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.Applications to trusses (桁架)

Application to trusses: due to axial load only

aim: to get the nodal displacement along any direction

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 122/155

. . . . . .

structural load

∆ = ∑ nNL

 AE

temperature change

∆ =∑n(α∆TL)Fabrication errors

∆ = ∑n(∆L)idea:

take displacement of the real load system as ’virtual’ displacement

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.Applications to trusses (桁架)

Application to trusses: due to axial load only

aim: to get the nodal displacement along any direction

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 123/155

. . . . . .

structural load

∆ = ∑ nNL

 AE

temperature change

∆ =∑n(α∆TL)Fabrication errors

∆ = ∑n(∆L)idea:

take displacement of the real load system as ’virtual’ displacement

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

.General procedure for truss problems

k id i l i h ll l l d d

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 124/155

. . . . . .

make an identical truss with all real loads removed;

apply the unit load along the same direction in which ∆ is requested

apply equilibrium condition to calculate the ni and N i

apply the principle of virtual work 

important tricks:

. numbering (编号) of the truss element bars and

. organization (组织) —— tabulating intermediate results

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. General procedure for truss problems

k id i l i h ll l l d d

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 125/155

. . . . . .

make an identical truss with all real loads removed;

apply the unit load along the same direction in which ∆ is requested

apply equilibrium condition to calculate the ni and N i

apply the principle of virtual work 

important tricks:

. numbering (编号) of the truss element bars and

. organization (组织) —— tabulating intermediate results

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. General procedure for truss problems

k id ti l t ith ll l l d d

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 126/155

. . . . . .

make an identical truss with all real loads removed;

apply the unit load along the same direction in which ∆ is requested

apply equilibrium condition to calculate the ni and N i

apply the principle of virtual work 

important tricks:

. numbering (编号) of the truss element bars and

. organization (组织) —— tabulating intermediate results

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. General procedure for truss problems

k id ti l t ith ll l l d d

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 127/155

. . . . . .

make an identical truss with all real loads removed;

apply the unit load along the same direction in which ∆ is requested

apply equilibrium condition to calculate the ni and N i

apply the principle of virtual work 

important tricks:

. numbering (编号) of the truss element bars and

. organization (组织) —— tabulating intermediate results

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. General procedure for truss problems

make an identical truss with all real loads removed;

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 128/155

. . . . . .

make an identical truss with all real loads removed;

apply the unit load along the same direction in which ∆ is requested

apply equilibrium condition to calculate the ni and N i

apply the principle of virtual work 

important tricks:

. numbering (编号) of the truss element bars and

. organization (组织) —— tabulating intermediate results

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. General procedure for truss problems

make an identical truss with all real loads removed;

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 129/155

. . . . . .

make an identical truss with all real loads removed;

apply the unit load along the same direction in which ∆ is requested

apply equilibrium condition to calculate the ni and N i

apply the principle of virtual work 

important tricks:

. numbering (编号) of the truss element bars and

. organization (组织) —— tabulating intermediate results

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. Example : Truss example —— final exam (A)

Given: truss with stiffness EA for all members, horizontal P at B

Solve: vertical displacement at D

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 130/155

. . . . . .

Solve: vertical displacement at D

30◦

30◦

A

B

a

a

a

a

D

C

analysis:

. no other method applicable, except

energy method

.

statically determinate structure, applyunit load at D

. bars, a long expression. Use table to

organize

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. Example : Truss example —— final exam (A)

Given: truss with stiffness EA for all members, horizontal P at B

Solve: vertical displacement at D

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 131/155

. . . . . .

Solve: vertical displacement at D

30◦

30◦

A

B

a

a

a

a

D

C

analysis:

. no other method applicable, except

energy method

.

statically determinate structure, applyunit load at D

. bars, a long expression. Use table to

organize

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. Example : Truss example —— final exam (A)

Given: truss with stiffness EA for all members, horizontal P at B

Solve: vertical displacement at D

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 132/155

. . . . . .

Solve: vertical displacement at D

30◦

30◦

A

B

a

a

a

a

D

C

analysis:

. no other method applicable, except

energy method

.

statically determinate structure, applyunit load at D

. bars, a long expression. Use table to

organize

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. Example : Truss example —— final exam (A)

Given: truss with stiffness EA for all members, horizontal P at B

Solve: vertical displacement at D

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 133/155

. . . . . .

Solve: vertical displacement at D

30◦

30◦

A

B

a

a

a

a

D

C

analysis:

. no other method applicable, except

energy method

.

statically determinate structure, applyunit load at D

. bars, a long expression. Use table to

organize

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. Example : Truss example —— final exam (A)

Given: truss with stiffness EA for all members, horizontal P at B

Solve: vertical displacement at D

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 134/155

. . . . . .

Solve: vertical displacement at D

30◦

30◦

A

B

a

a

a

a

D

C

analysis:

. no other method applicable, except

energy method

.

statically determinate structure, applyunit load at D

. bars, a long expression. Use table to

organize

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. Example : Truss example —— final exam (A)

Given: truss with stiffness EA for all members, horizontal P at B

Solve: vertical displacement at D

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 135/155

. . . . . .

Solve: vertical displacement at D

30◦

30◦

A

B

a

a

a

a

D

C

analysis:

. no other method applicable, except

energy method

.

statically determinate structure, applyunit load at D

. bars, a long expression. Use table to

organize

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. Example : Truss example —— solution

Internal loads in bars due to F and unit force (upward) at D

30◦

B

a

bar i N 

F i ni l i N F i nil i

F a Fa

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 136/155

. . . . . .

30◦

30

A

a

a

a

a

D

C

12

34

567

F  √ / a √ Fa/ −√ / a

√ 

/ a

−√ 

√ 

a

a

−√ 

F  √ 

a

F  a

by Mohr integration:

∆D =√ 

Fa

EA(upward)

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. Example : Truss example —— solution

Internal loads in bars due to F and unit force (upward) at D

30◦

B

a

bar i N 

F i ni l i N F i nil i

F  a Fa

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 137/155

. . . . . .

30◦

30

A

a

a

a

a

D

C

12

34

567 √ / √  /

−√ / a

√ 

/ a

−√ 

√ 

a

a

−√ 

F  √ 

a

F  a

by Mohr integration:

∆D =√ 

Fa

EA(upward)

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. Example : Truss example —— solution

Internal loads in bars due to F and unit force (upward) at D

30◦

B

a

bar i N 

F i ni l i N F i nil i

F  / a Fa//

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 138/155

. . . . . .

30◦

30

A

a

a

a

a

D

C

12

34

567 √ / √  /

−√ / a

√ 

/ a

−√ 

√ 

a

a

−√ 

F  √ 

a

F  a

by Mohr integration:

∆D =√ 

Fa

EA(upward)

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. Example : Truss example

Given: three-bar steel truss, AB has ∆T = ○C, αst = × −/○C,

Est = GPa, A = mm

Determine: horizontal displacement of joint B

Solution:

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 139/155

. . . . . .

. apply horizontal unit load kN to the left

(note: the unit)

. calculation of n.

n AB = −/(cos○) = −. kN.

Note n AC = nBC = .

. calculation of N :combined effects of axial load and

temperature.

from node C , N BC cos ○ + kN = →

N BC = − kN

from node B, N  AB = N BC = − kN

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. Example : Truss example

Given: three-bar steel truss, AB has ∆T = ○C, αst = × −/○C,

Est = GPa, A = mm

Determine: horizontal displacement of joint B

Solution:

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 140/155

. . . . . .

. apply horizontal unit load kN to the left

(note: the unit)

. calculation of n.

n AB = −/(cos○) = −. kN.

Note n AC = nBC = .

. calculation of N :combined effects of axial load and

temperature.

from node C , N BC cos ○ + kN = →

N BC = − kN

from node B, N  AB = N BC = − kN

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. Example : Truss example

Given: three-bar steel truss, AB has ∆T = ○C, αst = × −/○C,

Est = GPa, A = mm

Determine: horizontal displacement of joint B

Solution:

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 141/155

. . . . . .

. apply horizontal unit load kN to the left

(note: the unit)

. calculation of n.

n AB = −/(cos○) = −. kN.Note n AC = nBC = .

. calculation of N :combined effects of axial load and

temperature.

from node C , N BC cos ○ + kN = →

N BC = − kN

from node B, N  AB = N BC = − kN

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. Example : Truss example

Given: three-bar steel truss, AB has ∆T = ○C, αst = × −/○C,

Est = GPa, A = mm

Determine: horizontal displacement of joint B

Solution:

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 142/155

. . . . . .

. apply horizontal unit load kN to the left

(note: the unit)

. calculation of n.

n AB = −/(cos○) = −. kN.Note n AC = nBC = .

. calculation of N :combined effects of axial load and

temperature.

from node C , N BC cos ○ + kN = →

N BC = − kN

from node B, N  AB = N BC = − kN

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. Example : Truss example

Given: three-bar steel truss, AB has ∆T = ○C, αst = × −/○C,

Est = GPa, A = mm

Determine: horizontal displacement of joint B

Solution:

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 143/155

. . . . . .

. apply horizontal unit load kN to the left

(note: the unit)

. calculation of n.

n AB = −/(cos○) = −. kN.Note n AC = nBC = .

. calculation of N :combined effects of axial load and

temperature.

from node C , N BC cos ○ + kN = →

N BC = − kN

from node B, N  AB = N BC = − kN

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. Example : Truss example

Given: three-bar steel truss, AB has ∆T = ○C, αst = × −/○C,

Est = GPa, A = mm

Determine: horizontal displacement of joint B

Solution:

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 144/155

. . . . . .

. apply horizontal unit load kN to the left

(note: the unit)

. calculation of n.

n AB = −/(cos○) = −. kN.Note n AC = nBC = .

. calculation of N :combined effects of axial load and

temperature.

from node C , N BC cos ○ + kN = →

N BC = − kN

from node B, N  AB = N BC = − kN

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. Example : Truss example (cont.)

Solution (cont.):

.

Application of PVW.nNL

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 145/155

. . . . . .

⋅ ∆Bh = ∑nNL

 AE+∑n(α∆TL) =

n ABN  ABL AB

 AE+ n AB(α∆TL AB) =

(−.

(−

( × −) × ( × ) +(−. × × −/○C × )→∆Bh = −. m

final displacement at B: . mm to

the right

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. Example : Truss example (cont.)

Solution (cont.):

.

Application of PVW.nNL ( )

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 146/155

. . . . . .

⋅ ∆Bh = ∑nNL

 AE+∑n(α∆TL) =

n ABN  ABL AB

 AE+ n AB(α∆TL AB) =

(−.

(−

( × −) × ( × ) +(−. × × −/○C × )→∆Bh = −. m

final displacement at B: . mm to

the right

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. Example : Truss example (cont.)

Solution (cont.):

.

Application of PVW.

∆ ∑ nNL ∑ ( ∆T )

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 147/155

. . . . . .

⋅ ∆Bh = ∑n

 AE+∑n(α∆TL) =

n ABN  ABL AB

 AE+ n AB(α∆TL AB) =

(−.

(−

( × −) × ( × ) +(−. × × −/○C × )→∆Bh = −. m

final displacement at B: . mm to

the right

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. Example : Truss example (cont.)

Solution (cont.):

.

Application of PVW.

∆ ∑ nNL ∑ ( ∆TL)

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 148/155

. . . . . .

⋅ ∆Bh = ∑  AE+∑n(α∆TL) =

n ABN  ABL AB

 AE+ n AB(α∆TL AB) =

(−.

(−

( × −) × ( × ) +(−. × × −/○C × )→∆Bh = −. m

final displacement at B: . mm to

the right

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. Summary

principle of virtual work  /virtual displacement

calculation of internal virtual work for various loadings

axial load: L nN 

dx shear: L  f svV 

dx

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 149/155

. . . . . .

axial load:    EA

dx  shear:    GA

dx 

bending moment:   L

mM 

EI dx  torque:   

L

tT 

GI  pdx 

Unit load method /Mohr integration∆ =   nN 

 AEdx +  mM 

EI dx +  f svV 

GAdx +   tT 

GI  pdx 

. physics; . procedure; . units and signs;

Most important cases:

beams (bending moments only, in general)trusses (axial loads only)

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. Summary

principle of virtual work  /virtual displacement

calculation of internal virtual work for various loadings

axial load: L nN 

dx shear: L  f svV 

dx

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 150/155

. . . . . .

axial load:    EA

dx  shear:    GA

dx 

bending moment:   L

mM 

EI dx  torque:   

L

tT 

GI  pdx 

Unit load method /Mohr integration

∆ =   nN 

 AEdx +  mM 

EI dx +  f svV 

GAdx +   tT 

GI  pdx 

. physics; . procedure; . units and signs;

Most important cases:

beams (bending moments only, in general)trusses (axial loads only)

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. Summary

principle of virtual work  /virtual displacement

calculation of internal virtual work for various loadings

axial load: L nN 

dx shear: L  f svV 

dx

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 151/155

. . . . . .

axial load:    EA

dx  shear:    GA

dx 

bending moment:   L

mM 

EI dx  torque:   

L

tT 

GI  pdx 

Unit load method /Mohr integration

∆ =   nN 

 AEdx +  mM 

EI dx +  f svV 

GAdx +   tT 

GI  pdx 

. physics; . procedure; . units and signs;

Most important cases:

beams (bending moments only, in general)trusses (axial loads only)

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. Summary

principle of virtual work  /virtual displacement

calculation of internal virtual work for various loadings

axial load: L nN 

Adx  shear:

L  f svV 

GAdx 

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 152/155

. . . . . .

   EA

   GA

bending moment:   L

mM 

EI dx  torque:   

L

tT 

GI  pdx 

Unit load method /Mohr integration

∆ =   nN 

 AEdx +  mM 

EI dx +  f svV 

GAdx +   tT 

GI  pdx 

. physics; . procedure; . units and signs;

Most important cases:

beams (bending moments only, in general)trusses (axial loads only)

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. Summary

principle of virtual work  /virtual displacement

calculation of internal virtual work for various loadings

axial load: L nN 

EAdx  shear:

L  f svV 

GAdx 

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 153/155

. . . . . .

   EA

   GA

bending moment:   L

mM 

EI dx  torque:   

L

tT 

GI  pdx 

Unit load method /Mohr integration

∆ =   nN 

 AEdx +  mM 

EI dx +  f svV 

GAdx +   tT 

GI  pdx 

. physics; . procedure; . units and signs;

Most important cases:

beams (bending moments only, in general)trusses (axial loads only)

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. Summary

principle of virtual work  /virtual displacement

calculation of internal virtual work for various loadings

axial load: L nN 

EAdx  shear:

L  f svV 

GAdx 

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 154/155

. . . . . .

   EA

   GA

bending moment:   L

mM 

EI dx  torque:   

L

tT 

GI  pdx 

Unit load method /Mohr integration

∆ =   nN 

 AEdx +  mM 

EI dx +  f svV 

GAdx +   tT 

GI  pdx 

. physics; . procedure; . units and signs;

Most important cases:

beams (bending moments only, in general)trusses (axial loads only)

Energy Methods (II) — Virtual Work and Unit Load Method

Principle of Virtual Work Unit Load Method Applications

. Homework (problems repeated in HW )

Chap. - , ,

7/29/2019 27 Uni Presentation

http://slidepdf.com/reader/full/27-uni-presentation 155/155

. . . . . .

ALL by unit load method

Due: .. (Fri.)

Energy Methods (II) — Virtual Work and Unit Load Method