26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

27
HIGH-ENERGY ASTROPHYSICS 26.02.2018 Accretion power in astrophysics 26.02.2018 1 Accretion

Transcript of 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

Page 1: 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

HIGH-ENERGY ASTROPHYSICS

26.02.2018

Accretion power in astrophysics

26.02.2018 1Accretion

Page 2: 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

Textbook

โ€ข Accretion power in astrophysics - Frank, King and Raine http://qxyang.lamost.org/uploads/books/Accretion_Power_in_Astrophysics.pdf

26.02.2018 2Accretion

Page 3: 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

Goals

โ€ข Eddington limit with derivation

โ€ข Bondi accretion (Spherical symmetry):โ€“ Accretion radius

โ€“ Supersonic accretion

โ€ข Wind accretion vs Roche Lobe overflow

โ€ข Accretion disk properties: temperature and typical spectrum

19.02.2018 Acceleration mechanisms 2 3

Page 4: 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

Introductionโ€ข Accretion luminosity and

role of compactness.

โ€ข Eddington luminosity

โ€“ Balance radiation with gravitation

โ€“ Assume ionized hydrogen

โ€“ Discuss deviations

โ€ข Typical temperatures:

โ€“ Temperature if radiation were a black body

โ€“ Temperature if gravitational energy were all converted into heat

โ€ข Perform these calculations as in book

26.02.2018 Accretion 4

Page 5: 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

Bondi accretionโ€ข Spherical accretion

โ€ข Solution with sonic point

โ€ข Bernoulli eq.

26.02.2018 Accretion 5

Page 6: 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

Accretion radiusโ€ข Accretion radius:

โ€“ Radius at which gravitational pull equals the sonic speed of medium (thermal motion)

โ€ข Efficiency of spherical accretion is low.

โ€ข For X-ray binaries, we need to have others mechanisms.

26.02.2018 Accretion 6

Page 7: 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

Inefficiently radiating flow?โ€ข Density of the flow is

๐œŒ =แˆถ๐‘€

4๐œ‹๐‘Ÿ2๐‘ฃ= ๐œŒ๐‘Ž๐‘๐‘

๐‘Ÿ

๐‘Ÿ๐‘Ž๐‘๐‘

โˆ’3/2

โ€ข Density near a stellar black hole reach 1022๐‘๐‘šโˆ’3 like the Earth atmosphere, near a supermassive (106 โˆ’ 109) ๐‘€๐‘ ๐‘ข๐‘› black-hole ?

โ€ข Matter falls on a free-fall time scale

๐‘ก๐‘“๐‘“ =๐‘…๐‘Ž๐‘๐‘

32

๐บ๐‘€ 1/2~๐บ๐‘€

๐‘Ÿ๐‘Ž๐‘๐‘๐‘Ÿ๐ต๐ป

3/2

~10โˆ’5๐‘€

๐‘€๐‘ ๐‘œ๐‘™

๐‘Ÿ๐‘Ž๐‘๐‘

๐‘Ÿ๐ต๐ป

3/2s

โ€ข Accretion flow could be heated at the temperature in the GeV range

๐‘‡~๐‘š๐‘ฃ๐‘“๐‘“2 ~

๐บ๐‘€๐‘š

๐‘Ÿ~mc2

โ€ข However, emission can be produced oly if the time scale of energy loss is lower than the free-fall time scale

๐‘ก๐ต๐‘Ÿ~ 10โˆ’5๐‘›

1020 ๐‘๐‘šโˆ’3

โˆ’1

๐‘ 

โ€ข For very low accretion rate, particles cannot interact and there is no emission.

26.02.2018 Accretion 7

Page 8: 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

Galactic centerโ€ข Density of medium is around

102๐‘๐‘šโˆ’3

โ€ข Temperature from X-rays around 0.1-1 keV

โ€ข From motion of stars, we derive a mass of 4 ร— 106๐‘€๐‘ ๐‘ข๐‘› and the closest star orbits at 1000 gravitational radii

โ€ข Variability occurs on time scales of 10 min, comparable to a Keplerian orbit around the BH

26.02.2018 Accretion 8

Page 9: 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

Sgr A*โ€ข We can use the accretion radius and the

free-fall time scale (Exercise) to derive an accretion rate corresponding to a luminosity of 1041 erg/s (efficiency 0.1), at 8 kpc, this would be way too high for observations (10โˆ’10erg/s/cm2)

โ€ข We think of a very inefficient way of producing X-rays from accreting material: radio, flares in IR, in X-ray and TeV gamma-rays -> particles do not interact while falling!

26.02.2018 Accretion 9

Page 10: 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

Observationsโ€ข Quiescent and flaring

periods

26.02.2018 Accretion 10

F. Yusef-Zadeh M. Et al.ApJ 144, 1 (2012)

Page 11: 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

Galactic center as an emitterโ€ข Letโ€™s focus on IR and X-ray flare, which are

correlatedโ€ข Electrons are heated up at the energy of

protons, which fall onto the central object at ~GeV energy giving rise to IR-range photons

๐œ–๐‘ ๐‘ฆ๐‘›๐‘โ„Ž = 0.05๐ต

1๐บ

๐ธ

1๐บ๐‘’๐‘‰

2eV

โ€ข These photons can Inverse Compton on the same population of electrons in the hard X-ray range

๐œ–๐ผ๐ถ =๐ธ๐‘’๐‘š๐‘’

2

๐œ–๐‘ ๐‘ฆ๐‘›๐‘โ„Ž

= 100๐œ–๐‘ ๐‘ข๐‘›๐‘โ„Ž0.01๐‘’๐‘‰

๐ธ๐‘’1๐บ๐‘’๐‘‰

2

๐‘˜๐‘’๐‘‰

โ€ข We know the peak energy, but what about the intensities? We need to know the magnetic field and radiation densities

โ€ข Letโ€™s estimate the radiation field as the observed luminosity in a dimension close to the Schwarschild radius

๐‘ˆ๐‘Ÿ๐‘Ž๐‘‘ =๐ฟ

4๐œ‹๐‘Ÿ2= 1012.5๐ฟ36

๐‘…

10๐บ๐‘€

2 ๐‘’๐‘‰

๐‘๐‘š3

โ€ข X-ray is comparable or smaller than IR, then the energy density of magnetic field should be similar

๐‘ˆ๐ต =๐ต2

8๐œ‹= 1012.5

๐ต

10 ๐บ

2 ๐‘’๐‘‰

๐‘๐‘š3

Value of B-field? (~10 G)

26.02.2018 Accretion 11

Page 12: 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

TeV and radio emissionsโ€ข TeV and radio emissions cannot

be straightforwardly interpreted and are probably due to ifferent populations of electron and or radiation processes

โ€ข They are not variable, therefore they could be roduced at larger distances

โ€ข Very active research of Sgr A* and its surroundings

โ€ข For instance echo of past activity on molecular clouds

26.02.2018 Accretion 12

Page 13: 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

Wind accretionโ€ข Early-type stars have a strong

wind, powered by absorption of lines in the UV. Mass loss rate is 10โˆ’10 โˆ’ 10โˆ’6๐‘€๐‘ ๐‘ข๐‘›/๐‘ฆ๐‘Ÿ

โ€ข if a compact object is embedded, it can accrete. Bondi-Hoyle accretion

โ€ข Wind speeds is ๐‘ฃ๐‘ค๐‘–๐‘›๐‘‘ ๐‘Ÿ =

๐‘ฃโˆž 1 โˆ’๐‘…โˆ—

๐‘Ÿ

โˆ’๐›ฝwith terminal

velocity of ~1000 km/sโ€ข A strong tidal tail is formed, but

when accretion s possible?

26.02.2018 Accretion 13

Manousakis et al. (2014)

Page 14: 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

Wind accretionโ€ข In stedy state, accretion radius is

๐‘Ÿ๐‘Ž๐‘๐‘ =2๐บ๐‘€

๐‘๐‘ 2

โ€ข With a mass accretion rateแˆถ๐‘€ = ๐œ‹๐‘Ÿ๐‘Ž๐‘๐‘

2 ๐œŒ๐‘š๐‘๐‘ โ€ข In a binary system, the medium

velocity is not the sound speed, but the wind speed plus the orbital motion

โ€ข ๐‘ฃ๐‘‚๐‘Ÿ๐‘ = 2๐บ๐‘€/๐‘Ž with a the binary separation

โ€ข We must substitute to ๐‘๐‘ 2 the

value ๐‘ฃ๐‘ค๐‘–๐‘›๐‘‘2 + ๐‘ฃ๐‘œ๐‘Ÿ๐‘

2 ~๐บ๐‘€

๐‘Ž+

๐‘ฃ๐‘ค๐‘–๐‘›๐‘‘,โˆž2

โ€ข Considering the density ๐œŒ๐‘ค๐‘–๐‘›๐‘‘ =แˆถ๐‘€๐‘ค๐‘–๐‘›๐‘‘

4๐œ‹๐‘Ž2๐‘ฃ๐‘ค๐‘–๐‘›๐‘‘2 , we can derive

26.02.2018 Accretion 14

Page 15: 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

Beyond a simple theory

โ€ข Acrretion from close binaries: Vela X-1, Cyg X-1

โ€ข We need to consider several other aspects, such as the photionization of the wind, which decellerates wind

โ€ข Possible to form a small and possibly intermittent accreiton disk.

26.02.2018 Accretion 15

Page 16: 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

Useful parametrizationโ€ข We use a frame rotating with

the system and account for Coriol force to obtain the effective potential

26.02.2018 Accretion 16

โ€ข The solution of this equation is not straightforward, but we obtain the potentials of the previous figure. A good parametrization (๐‘ž =

๐‘€2

๐‘€1)

Page 17: 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

Exercisesโ€ข Derive the free-fall time scale.โ€ข Derive the energy gained by a free falling

proton on a body of 1 Solar mass and radius R. Compute it it for the Schwartschild radius.

โ€ข Compute the temperature of a fluid of protons fallen onto the surface of a star for Solar mass, Solar radius, Earth radius, neutron star radius (10 km), and Scharschild radius.

โ€ข Get an estimate of the accretion radius for a one solar mass star in the ISM (T~10000 K).

โ€ข Estimate the mass accretion rate and accretion luminosity for one solar mass with the above radii

โ€ข Compute the temperature of a black-body emitting all the gravitational energy as a black-body for the previous cases.

โ€ข Estimate the sonic point radius and speed as function of the value at infinity (use Bernoulli equation). Can we use the adiabatic approximation ? (gamma=5/3)

โ€ข Get the temperature radial dependency at any radius from a central object for a mass accretion rate แˆถ๐‘š . Is temperature higher far or close to the central object? Waht is the luminosity?

26.02.2018 Accretion 17

Page 18: 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

Roche Lobe overflow

26.02.2018 Accretion 18

โ€ข Matter can inflow from inner lagrangian point

โ€ข It posseses a sizeable angular momentum

Page 19: 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

Formation of an accretion diskโ€ข When streaming from the inner

Lagrangian point, particles have an angular momentum.

โ€ข Gas speed is dominated by the orbital motion (~1000 km/s) while the sound speed is ~10 km/s

โ€ข The stream will intersect itself in different ellipses and create shocks. It will settle at the first stable orbit which conserves initial angular momentum, the circularization radius, obtained from equating the angular momentum at the Lagrangian point to a circular orbit

26.02.2018 Accretion 19

๐‘€ = ๐‘€1 +๐‘€2, 4๐œ‹๐‘Ž3 = ๐บ๐‘€๐‘ƒ2

Page 20: 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

Thin accretion disk

โ€ข H<<R, radiation pressure negligeable, strictly valid only for ๐ฟ โ‰ช ๐ฟ๐ธ๐‘‘๐‘‘

โ€ข Gas pressure must support disk vertically against gravitation

26.02.2018 Accretion 20

Page 21: 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

Thin diskโ€ข Remember that sound

speed is ๐‘๐‘ 2 โ‰ˆ

๐‘ƒ

๐œŒ

26.02.2018 Accretion 21

โ€ข Is the flow supersonic or subsonic?

โ€ข ๐‘ฃ = 1.2 ร— 1010๐‘€/

๐‘€๐‘ ๐‘œ๐‘™ ๐‘…6cm/s

โ€ข Like in Bondi accretion, but matter remains very long in orbit, so efficient emission !!

Page 22: 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

Thin disk/2

โ€ข Radial acceleration due to pressure, negligeable as compared to gravitation

โ€ข Radial speed is very low, almost Keplerian motion

26.02.2018 Accretion 22

โ€ข แˆถ๐‘€ = โˆ’2๐œ‹ ๐œŽ ๐‘ฃ๐‘Ÿ with sigma the surface density

โ€ข Vertical density scales exponentially due to assumption that the pressure balances gravity

โ€ข ๐น๐‘ง โˆ๐บ๐‘€

๐‘…2๐‘ง

๐‘…โˆ ๐‘ง

โ€ข ๐‘› ๐‘ง โˆ exp(โˆ’๐‘ง

๐ป)

Page 23: 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

Thin disks/3โ€ข Since angular speed is

๐‘Ÿ =๐บ๐‘€

๐‘…3

1

2, there is

differential motion and thus, possibly shear visccosity.

โ€ข Angular momentun decreases with decreasing radius (write equation)

โ€ข Accretion disks are pumps of angular momentum

โ€ข Force due to viscosity is

26.02.2018 Accretion 23

Page 24: 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

Torque

โ€ข This torque need to balance the loss of angular momentum

26.02.2018 Accretion 24

Page 25: 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

Temperature profileโ€ข We need to equate the

dissipation torque to thermal emission at each radius

โ€ข 2๐œŽ๐‘†๐ต๐‘‡4 = ๐ท(๐‘…)

โ€ข Why the 2?

โ€ข ๐‘‡ ๐‘… โˆ ๐‘…โˆ’3

4

26.02.2018 Accretion 25

Page 26: 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

Accretion disk spectrumโ€ข Disk emits as a suprposion of

black bodiesโ€ข In reality other factors also

need to included, such as metallicity, viscous parameter, preseence of an atmosphere, properties of the compact object etc.

โ€ข Pivot temperature is the inner disk temperature

๐‘‡~5 ๐‘€9โˆ’1

4eV

26.02.2018 Accretion 26

โ€ข Spectrum of AGN in the UV, of X-ray binaries in X-rays

Page 27: 26.02.2018 Accretion power in astrophysics HIGH-ENERGY ...

Dissipationโ€ข Disk dissipate

half of potentl energy of the accretion flow.

โ€ข From virial theorem

26.02.2018 Accretion 27