26 - Universitas Al Azhar Indonesia · 2020. 11. 3. · 2010 22.58 2011 10 13 ... cites / doc. (3 y...

13
also developed by scimago: SCIMAGO INSTITUTIONS RANKINGS Scimago Journal & Country Rank Home Journal Rankings Country Rankings Viz Tools Help About Us Advanced Science Letters discontinued in Scopus as of 2017 Country United States - SIR Ranking of United States 26 H Index Subject Area and Category Computer Science Computer Science (miscellaneous) Energy Energy (miscellaneous) Engineering Engineering (miscellaneous) Environmental Science Environmental Science (miscellaneous) Mathematics Mathematics (miscellaneous) Social Sciences Education Health (social science) Publisher American Scientic Publishers Publication type Journals ISSN 19366612, 19367317 Coverage 2010-2017 Scope Information not localized Join the conversation about this journal Enter Journal Title, ISSN or Publisher Name Templates For Filmmakers Unlimited Downloads, Over 500,000 Video Assets, Easy To Use & High Quality, Join Free. Motion Array OPEN Unlimited Premiere Templates Unlimited Downloads, Over 500,000 Video Assets, Easy To Use & High Quality, Join Free. Motion Array Q til

Transcript of 26 - Universitas Al Azhar Indonesia · 2020. 11. 3. · 2010 22.58 2011 10 13 ... cites / doc. (3 y...

  • also developed by scimago: SCIMAGO INSTITUTIONS RANKINGS

    Scimago Journal & Country Rank

    Home Journal Rankings Country Rankings Viz Tools Help About Us

    Advanced Science Lettersdiscontinued in Scopus as of 2017

    Country United States  -  SIR Ranking of United States 26H Index

    Subject Area and Category Computer Science Computer Science (miscellaneous)

    Energy

    Energy (miscellaneous)

    Engineering Engineering (miscellaneous)

    Environmental Science

    Environmental Science (miscellaneous)

    Mathematics Mathematics (miscellaneous)

    Social Sciences

    Education Health (social science)

    Publisher American Scienti�c Publishers

    Publication type Journals

    ISSN 19366612, 19367317

    Coverage 2010-2017

    Scope Information not localized

    Join the conversation about this journal

    Enter Journal Title, ISSN or Publisher Name

    Templates For FilmmakersUnlimited Downloads, Over 500,000 Video Assets, Easy To Use & High Quality, Join Free.

    Motion Array OPEN

    Unlimited Premiere Templates

    Unlimited Downloads, Over 500,000 Video Assets, Easy To Use & High Quality, Join Free.

    Motion Array

    Q til

    https://www.scimagoir.com/https://www.scimagojr.com/https://www.scimagojr.com/index.phphttps://www.scimagojr.com/journalrank.phphttps://www.scimagojr.com/countryrank.phphttps://www.scimagojr.com/viztools.phphttps://www.scimagojr.com/help.phphttps://www.scimagojr.com/aboutus.phphttps://www.scimagojr.com/journalrank.php?country=UShttps://www.scimagoir.com/rankings.php?country=USAhttps://www.scimagojr.com/journalrank.php?area=1700https://www.scimagojr.com/journalrank.php?area=2100https://www.scimagojr.com/journalrank.php?area=2200https://www.scimagojr.com/journalrank.php?area=2300https://www.scimagojr.com/journalrank.php?area=2600https://www.scimagojr.com/journalrank.php?area=3300https://www.scimagojr.com/journalrank.php?category=1701https://www.scimagojr.com/journalrank.php?category=2101https://www.scimagojr.com/journalrank.php?category=2201https://www.scimagojr.com/journalrank.php?category=2301https://www.scimagojr.com/journalrank.php?category=2601https://www.scimagojr.com/journalrank.php?category=3304https://www.scimagojr.com/journalrank.php?category=3306https://www.scimagojr.com/journalsearch.php?q=American%20Scientific%20Publishers&tip=pubhttps://www.googleadservices.com/pagead/aclk?sa=L&ai=ChYc4k5qhX7m9FcnHogP96KToAZeIsK5fjKLbueQLlbfv2vYaEAEgkNnHe2DpgoCA5A2gAcm1vuMDyAEBqAMByAPLBKoEgwJP0GsV-vvFKuFjoAg0mvObnitHtTmsjtXptq9e2SybfgeqqQSWJ1s8-qPmreY7HoN6FMi1u8FNTHgXi1HdtWol2qB6ayDz8R4A8up-Llp6vuFfHPzkK8z_2jUGCCiyiGqymvGS1l79hp2r0TeT6ZY20LQrxcguXLcHUx62AkmeasKn4lnj1BJgufRYkxyt3RjUSDWSdiBEklTrY3dWHcMtYrPDLEAE-4g9z0C4Vu2b2Ezq2sVUnguqO6OpEigq4LH8hxpKyRSd_FsF-sN8WuSIO0mPsGHxS4wCtz8NDWm3kKVbcl6B9p6JqC-HMXixtarQFpp7_nHIYM4Tswwfw9TcsA7EwATL2vvCgAOAB5_KwRyoB9XJG6gH8NkbqAfy2RuoB47OG6gHk9gbqAe6BqgH7paxAqgHpr4bqAfs1RuoB_PRG6gH7NUbqAeW2BuoB8LaG9gHAdIIBwiAYRABGB-xCQY22cICMwf1gAoBigqnAWh0dHBzOi8vYWQuYXRkbXQuY29tL3MvZ287YWR2PTExMTQ3MjM4MDYxNzEwO2VjPTExMTQ3MjM4Mzk5MzIxO2MuYT0xMDQzNjUzMzEzMztzLmE9Z29vZ2xlO3AuYT0xMDQzNjUzMzEzMzthcy5hPTEwMzIxOTY1Mzk2MztxcGI9MTs_Ymlka3c9ZGVmYXVsdGtleXdvcmQmZHZjPWMmaD17bHB1cmx9mAsByAsB4AsB2BMN&ae=1&num=1&cid=CAASEuRoFIAtnYSsWuSLafrMc6ahOA&sig=AOD64_10-5ABe4cz4mNQsvAOwf6SD0Qqkw&client=ca-pub-7636113250813806&nb=0&adurl=https://motionarray.com/browse%3Fdate_added%3Dlast-6-months%26sort_by%3Dmost-popular%26categories%3Dpremiere-pro-templates%26gclid%3DEAIaIQobChMI-dKLh_rm7AIVyaNoCh19NAkdEAEYASAAEgIMRfD_BwEhttps://www.googleadservices.com/pagead/aclk?sa=L&ai=ChYc4k5qhX7m9FcnHogP96KToAZeIsK5fjKLbueQLlbfv2vYaEAEgkNnHe2DpgoCA5A2gAcm1vuMDyAEBqAMByAPLBKoEgwJP0GsV-vvFKuFjoAg0mvObnitHtTmsjtXptq9e2SybfgeqqQSWJ1s8-qPmreY7HoN6FMi1u8FNTHgXi1HdtWol2qB6ayDz8R4A8up-Llp6vuFfHPzkK8z_2jUGCCiyiGqymvGS1l79hp2r0TeT6ZY20LQrxcguXLcHUx62AkmeasKn4lnj1BJgufRYkxyt3RjUSDWSdiBEklTrY3dWHcMtYrPDLEAE-4g9z0C4Vu2b2Ezq2sVUnguqO6OpEigq4LH8hxpKyRSd_FsF-sN8WuSIO0mPsGHxS4wCtz8NDWm3kKVbcl6B9p6JqC-HMXixtarQFpp7_nHIYM4Tswwfw9TcsA7EwATL2vvCgAOAB5_KwRyoB9XJG6gH8NkbqAfy2RuoB47OG6gHk9gbqAe6BqgH7paxAqgHpr4bqAfs1RuoB_PRG6gH7NUbqAeW2BuoB8LaG9gHAdIIBwiAYRABGB-xCQY22cICMwf1gAoBigqnAWh0dHBzOi8vYWQuYXRkbXQuY29tL3MvZ287YWR2PTExMTQ3MjM4MDYxNzEwO2VjPTExMTQ3MjM4Mzk5MzIxO2MuYT0xMDQzNjUzMzEzMztzLmE9Z29vZ2xlO3AuYT0xMDQzNjUzMzEzMzthcy5hPTEwMzIxOTY1Mzk2MztxcGI9MTs_Ymlka3c9ZGVmYXVsdGtleXdvcmQmZHZjPWMmaD17bHB1cmx9mAsByAsB4AsB2BMN&ae=1&num=1&cid=CAASEuRoFIAtnYSsWuSLafrMc6ahOA&sig=AOD64_10-5ABe4cz4mNQsvAOwf6SD0Qqkw&client=ca-pub-7636113250813806&nb=7&adurl=https://motionarray.com/browse%3Fdate_added%3Dlast-6-months%26sort_by%3Dmost-popular%26categories%3Dpremiere-pro-templates%26gclid%3DEAIaIQobChMI-dKLh_rm7AIVyaNoCh19NAkdEAEYASAAEgIMRfD_BwEhttps://www.googleadservices.com/pagead/aclk?sa=L&ai=ChYc4k5qhX7m9FcnHogP96KToAZeIsK5fjKLbueQLlbfv2vYaEAEgkNnHe2DpgoCA5A2gAcm1vuMDyAEBqAMByAPLBKoEgwJP0GsV-vvFKuFjoAg0mvObnitHtTmsjtXptq9e2SybfgeqqQSWJ1s8-qPmreY7HoN6FMi1u8FNTHgXi1HdtWol2qB6ayDz8R4A8up-Llp6vuFfHPzkK8z_2jUGCCiyiGqymvGS1l79hp2r0TeT6ZY20LQrxcguXLcHUx62AkmeasKn4lnj1BJgufRYkxyt3RjUSDWSdiBEklTrY3dWHcMtYrPDLEAE-4g9z0C4Vu2b2Ezq2sVUnguqO6OpEigq4LH8hxpKyRSd_FsF-sN8WuSIO0mPsGHxS4wCtz8NDWm3kKVbcl6B9p6JqC-HMXixtarQFpp7_nHIYM4Tswwfw9TcsA7EwATL2vvCgAOAB5_KwRyoB9XJG6gH8NkbqAfy2RuoB47OG6gHk9gbqAe6BqgH7paxAqgHpr4bqAfs1RuoB_PRG6gH7NUbqAeW2BuoB8LaG9gHAdIIBwiAYRABGB-xCQY22cICMwf1gAoBigqnAWh0dHBzOi8vYWQuYXRkbXQuY29tL3MvZ287YWR2PTExMTQ3MjM4MDYxNzEwO2VjPTExMTQ3MjM4Mzk5MzIxO2MuYT0xMDQzNjUzMzEzMztzLmE9Z29vZ2xlO3AuYT0xMDQzNjUzMzEzMzthcy5hPTEwMzIxOTY1Mzk2MztxcGI9MTs_Ymlka3c9ZGVmYXVsdGtleXdvcmQmZHZjPWMmaD17bHB1cmx9mAsByAsB4AsB2BMN&ae=1&num=1&cid=CAASEuRoFIAtnYSsWuSLafrMc6ahOA&sig=AOD64_10-5ABe4cz4mNQsvAOwf6SD0Qqkw&client=ca-pub-7636113250813806&nb=1&adurl=https://motionarray.com/browse%3Fdate_added%3Dlast-6-months%26sort_by%3Dmost-popular%26categories%3Dpremiere-pro-templates%26gclid%3DEAIaIQobChMI-dKLh_rm7AIVyaNoCh19NAkdEAEYASAAEgIMRfD_BwEhttps://www.googleadservices.com/pagead/aclk?sa=L&ai=ChYc4k5qhX7m9FcnHogP96KToAZeIsK5fjKLbueQLlbfv2vYaEAEgkNnHe2DpgoCA5A2gAcm1vuMDyAEBqAMByAPLBKoEgwJP0GsV-vvFKuFjoAg0mvObnitHtTmsjtXptq9e2SybfgeqqQSWJ1s8-qPmreY7HoN6FMi1u8FNTHgXi1HdtWol2qB6ayDz8R4A8up-Llp6vuFfHPzkK8z_2jUGCCiyiGqymvGS1l79hp2r0TeT6ZY20LQrxcguXLcHUx62AkmeasKn4lnj1BJgufRYkxyt3RjUSDWSdiBEklTrY3dWHcMtYrPDLEAE-4g9z0C4Vu2b2Ezq2sVUnguqO6OpEigq4LH8hxpKyRSd_FsF-sN8WuSIO0mPsGHxS4wCtz8NDWm3kKVbcl6B9p6JqC-HMXixtarQFpp7_nHIYM4Tswwfw9TcsA7EwATL2vvCgAOAB5_KwRyoB9XJG6gH8NkbqAfy2RuoB47OG6gHk9gbqAe6BqgH7paxAqgHpr4bqAfs1RuoB_PRG6gH7NUbqAeW2BuoB8LaG9gHAdIIBwiAYRABGB-xCQY22cICMwf1gAoBigqnAWh0dHBzOi8vYWQuYXRkbXQuY29tL3MvZ287YWR2PTExMTQ3MjM4MDYxNzEwO2VjPTExMTQ3MjM4Mzk5MzIxO2MuYT0xMDQzNjUzMzEzMztzLmE9Z29vZ2xlO3AuYT0xMDQzNjUzMzEzMzthcy5hPTEwMzIxOTY1Mzk2MztxcGI9MTs_Ymlka3c9ZGVmYXVsdGtleXdvcmQmZHZjPWMmaD17bHB1cmx9mAsByAsB4AsB2BMN&ae=1&num=1&cid=CAASEuRoFIAtnYSsWuSLafrMc6ahOA&sig=AOD64_10-5ABe4cz4mNQsvAOwf6SD0Qqkw&client=ca-pub-7636113250813806&nb=8&adurl=https://motionarray.com/browse%3Fdate_added%3Dlast-6-months%26sort_by%3Dmost-popular%26categories%3Dpremiere-pro-templates%26gclid%3DEAIaIQobChMI-dKLh_rm7AIVyaNoCh19NAkdEAEYASAAEgIMRfD_BwEhttps://www.googleadservices.com/pagead/aclk?sa=L&ai=CzOudlJqhX7T2AZO91Aaz4574D5eIsK5fjKLbueQLlbfv2vYaEAEgkNnHe2DpgoCA5A2gAcm1vuMDyAEJqAMByAPDBKoEhAJP0JtByt10wwH4-Avg55eB6e-cmd0q0n_z3OGyBFXd4RgQynx-35ivHos3chGYLP7aC_8cDI5DXhpJhwvaNUsV70Dnljd8e2J8Oa66V-3s6klwewpc7QZD7tjcXrAjufBQdAm3WSANnlZguFccckNj5Oki_ZU8_W0WJnD1PcU0VfhtHBxHIZrdMQbVDuWlQzdJy3hYC6PGDmVHs4oU0w5XimSyvo5527KFmeOcMsq2ZEKOhErwi93IRPBb4ba8fLw5K7qVWACoVMV7kh9dAOhEMWlrrZELVz4gmsT7iw9tEBckDat3WlXDW_XOl5IRGCL-HOyBmtbhG7o8CKAAk2mXGD9MtcAEy9r7woADoAYugAefysEcqAfVyRuoB_DZG6gH8tkbqAeOzhuoB5PYG6gHugaoB-6WsQKoB6a-G6gH7NUbqAfz0RuoB-zVG6gHltgbqAfC2hvYBwDSCAcIgGEQARgfsQkGNtnCAjMH9YAKAYoKpwFodHRwczovL2FkLmF0ZG10LmNvbS9zL2dvO2Fkdj0xMTE0NzIzODA2MTcxMDtlYz0xMTE0NzIzODM5OTMyMTtjLmE9MTA0MzY1MzMxMzM7cy5hPWdvb2dsZTtwLmE9MTA0MzY1MzMxMzM7YXMuYT0xMDMyMTk2NTM5NjM7cXBiPTE7P2JpZGt3PWRlZmF1bHRrZXl3b3JkJmR2Yz1jJmg9e2xwdXJsfZgLAcgLAeALAYAMAdgTDQ&ae=1&num=1&cid=CAASEuRoGb3V7RU2tvilK9kym-RitA&sig=AOD64_29KS-20CQB36PASrepDP00qVZ0Fg&client=ca-pub-7636113250813806&nb=9&adurl=https://motionarray.com/browse%3Fdate_added%3Dlast-6-months%26sort_by%3Dmost-popular%26categories%3Dpremiere-pro-templates%26gclid%3DEAIaIQobChMItJC1h_rm7AIVkx7VCh2zsQf_EAEYASAAEgJlTvD_BwEhttps://www.googleadservices.com/pagead/aclk?sa=L&ai=CzOudlJqhX7T2AZO91Aaz4574D5eIsK5fjKLbueQLlbfv2vYaEAEgkNnHe2DpgoCA5A2gAcm1vuMDyAEJqAMByAPDBKoEhAJP0JtByt10wwH4-Avg55eB6e-cmd0q0n_z3OGyBFXd4RgQynx-35ivHos3chGYLP7aC_8cDI5DXhpJhwvaNUsV70Dnljd8e2J8Oa66V-3s6klwewpc7QZD7tjcXrAjufBQdAm3WSANnlZguFccckNj5Oki_ZU8_W0WJnD1PcU0VfhtHBxHIZrdMQbVDuWlQzdJy3hYC6PGDmVHs4oU0w5XimSyvo5527KFmeOcMsq2ZEKOhErwi93IRPBb4ba8fLw5K7qVWACoVMV7kh9dAOhEMWlrrZELVz4gmsT7iw9tEBckDat3WlXDW_XOl5IRGCL-HOyBmtbhG7o8CKAAk2mXGD9MtcAEy9r7woADoAYugAefysEcqAfVyRuoB_DZG6gH8tkbqAeOzhuoB5PYG6gHugaoB-6WsQKoB6a-G6gH7NUbqAfz0RuoB-zVG6gHltgbqAfC2hvYBwDSCAcIgGEQARgfsQkGNtnCAjMH9YAKAYoKpwFodHRwczovL2FkLmF0ZG10LmNvbS9zL2dvO2Fkdj0xMTE0NzIzODA2MTcxMDtlYz0xMTE0NzIzODM5OTMyMTtjLmE9MTA0MzY1MzMxMzM7cy5hPWdvb2dsZTtwLmE9MTA0MzY1MzMxMzM7YXMuYT0xMDMyMTk2NTM5NjM7cXBiPTE7P2JpZGt3PWRlZmF1bHRrZXl3b3JkJmR2Yz1jJmg9e2xwdXJsfZgLAcgLAeALAYAMAdgTDQ&ae=1&num=1&cid=CAASEuRoGb3V7RU2tvilK9kym-RitA&sig=AOD64_29KS-20CQB36PASrepDP00qVZ0Fg&client=ca-pub-7636113250813806&nb=19&adurl=https://motionarray.com/browse%3Fdate_added%3Dlast-6-months%26sort_by%3Dmost-popular%26categories%3Dpremiere-pro-templates%26gclid%3DEAIaIQobChMItJC1h_rm7AIVkx7VCh2zsQf_EAEYASAAEgJlTvD_BwEhttps://www.googleadservices.com/pagead/aclk?sa=L&ai=CzOudlJqhX7T2AZO91Aaz4574D5eIsK5fjKLbueQLlbfv2vYaEAEgkNnHe2DpgoCA5A2gAcm1vuMDyAEJqAMByAPDBKoEhAJP0JtByt10wwH4-Avg55eB6e-cmd0q0n_z3OGyBFXd4RgQynx-35ivHos3chGYLP7aC_8cDI5DXhpJhwvaNUsV70Dnljd8e2J8Oa66V-3s6klwewpc7QZD7tjcXrAjufBQdAm3WSANnlZguFccckNj5Oki_ZU8_W0WJnD1PcU0VfhtHBxHIZrdMQbVDuWlQzdJy3hYC6PGDmVHs4oU0w5XimSyvo5527KFmeOcMsq2ZEKOhErwi93IRPBb4ba8fLw5K7qVWACoVMV7kh9dAOhEMWlrrZELVz4gmsT7iw9tEBckDat3WlXDW_XOl5IRGCL-HOyBmtbhG7o8CKAAk2mXGD9MtcAEy9r7woADoAYugAefysEcqAfVyRuoB_DZG6gH8tkbqAeOzhuoB5PYG6gHugaoB-6WsQKoB6a-G6gH7NUbqAfz0RuoB-zVG6gHltgbqAfC2hvYBwDSCAcIgGEQARgfsQkGNtnCAjMH9YAKAYoKpwFodHRwczovL2FkLmF0ZG10LmNvbS9zL2dvO2Fkdj0xMTE0NzIzODA2MTcxMDtlYz0xMTE0NzIzODM5OTMyMTtjLmE9MTA0MzY1MzMxMzM7cy5hPWdvb2dsZTtwLmE9MTA0MzY1MzMxMzM7YXMuYT0xMDMyMTk2NTM5NjM7cXBiPTE7P2JpZGt3PWRlZmF1bHRrZXl3b3JkJmR2Yz1jJmg9e2xwdXJsfZgLAcgLAeALAYAMAdgTDQ&ae=1&num=1&cid=CAASEuRoGb3V7RU2tvilK9kym-RitA&sig=AOD64_29KS-20CQB36PASrepDP00qVZ0Fg&client=ca-pub-7636113250813806&nb=0&adurl=https://motionarray.com/browse%3Fdate_added%3Dlast-6-months%26sort_by%3Dmost-popular%26categories%3Dpremiere-pro-templates%26gclid%3DEAIaIQobChMItJC1h_rm7AIVkx7VCh2zsQf_EAEYASAAEgJlTvD_BwEhttps://www.googleadservices.com/pagead/aclk?sa=L&ai=CzOudlJqhX7T2AZO91Aaz4574D5eIsK5fjKLbueQLlbfv2vYaEAEgkNnHe2DpgoCA5A2gAcm1vuMDyAEJqAMByAPDBKoEhAJP0JtByt10wwH4-Avg55eB6e-cmd0q0n_z3OGyBFXd4RgQynx-35ivHos3chGYLP7aC_8cDI5DXhpJhwvaNUsV70Dnljd8e2J8Oa66V-3s6klwewpc7QZD7tjcXrAjufBQdAm3WSANnlZguFccckNj5Oki_ZU8_W0WJnD1PcU0VfhtHBxHIZrdMQbVDuWlQzdJy3hYC6PGDmVHs4oU0w5XimSyvo5527KFmeOcMsq2ZEKOhErwi93IRPBb4ba8fLw5K7qVWACoVMV7kh9dAOhEMWlrrZELVz4gmsT7iw9tEBckDat3WlXDW_XOl5IRGCL-HOyBmtbhG7o8CKAAk2mXGD9MtcAEy9r7woADoAYugAefysEcqAfVyRuoB_DZG6gH8tkbqAeOzhuoB5PYG6gHugaoB-6WsQKoB6a-G6gH7NUbqAfz0RuoB-zVG6gHltgbqAfC2hvYBwDSCAcIgGEQARgfsQkGNtnCAjMH9YAKAYoKpwFodHRwczovL2FkLmF0ZG10LmNvbS9zL2dvO2Fkdj0xMTE0NzIzODA2MTcxMDtlYz0xMTE0NzIzODM5OTMyMTtjLmE9MTA0MzY1MzMxMzM7cy5hPWdvb2dsZTtwLmE9MTA0MzY1MzMxMzM7YXMuYT0xMDMyMTk2NTM5NjM7cXBiPTE7P2JpZGt3PWRlZmF1bHRrZXl3b3JkJmR2Yz1jJmg9e2xwdXJsfZgLAcgLAeALAYAMAdgTDQ&ae=1&num=1&cid=CAASEuRoGb3V7RU2tvilK9kym-RitA&sig=AOD64_29KS-20CQB36PASrepDP00qVZ0Fg&client=ca-pub-7636113250813806&nb=7&adurl=https://motionarray.com/browse%3Fdate_added%3Dlast-6-months%26sort_by%3Dmost-popular%26categories%3Dpremiere-pro-templates%26gclid%3DEAIaIQobChMItJC1h_rm7AIVkx7VCh2zsQf_EAEYASAAEgJlTvD_BwEhttps://www.googleadservices.com/pagead/aclk?sa=L&ai=CzOudlJqhX7T2AZO91Aaz4574D5eIsK5fjKLbueQLlbfv2vYaEAEgkNnHe2DpgoCA5A2gAcm1vuMDyAEJqAMByAPDBKoEhAJP0JtByt10wwH4-Avg55eB6e-cmd0q0n_z3OGyBFXd4RgQynx-35ivHos3chGYLP7aC_8cDI5DXhpJhwvaNUsV70Dnljd8e2J8Oa66V-3s6klwewpc7QZD7tjcXrAjufBQdAm3WSANnlZguFccckNj5Oki_ZU8_W0WJnD1PcU0VfhtHBxHIZrdMQbVDuWlQzdJy3hYC6PGDmVHs4oU0w5XimSyvo5527KFmeOcMsq2ZEKOhErwi93IRPBb4ba8fLw5K7qVWACoVMV7kh9dAOhEMWlrrZELVz4gmsT7iw9tEBckDat3WlXDW_XOl5IRGCL-HOyBmtbhG7o8CKAAk2mXGD9MtcAEy9r7woADoAYugAefysEcqAfVyRuoB_DZG6gH8tkbqAeOzhuoB5PYG6gHugaoB-6WsQKoB6a-G6gH7NUbqAfz0RuoB-zVG6gHltgbqAfC2hvYBwDSCAcIgGEQARgfsQkGNtnCAjMH9YAKAYoKpwFodHRwczovL2FkLmF0ZG10LmNvbS9zL2dvO2Fkdj0xMTE0NzIzODA2MTcxMDtlYz0xMTE0NzIzODM5OTMyMTtjLmE9MTA0MzY1MzMxMzM7cy5hPWdvb2dsZTtwLmE9MTA0MzY1MzMxMzM7YXMuYT0xMDMyMTk2NTM5NjM7cXBiPTE7P2JpZGt3PWRlZmF1bHRrZXl3b3JkJmR2Yz1jJmg9e2xwdXJsfZgLAcgLAeALAYAMAdgTDQ&ae=1&num=1&cid=CAASEuRoGb3V7RU2tvilK9kym-RitA&sig=AOD64_29KS-20CQB36PASrepDP00qVZ0Fg&client=ca-pub-7636113250813806&nb=8&adurl=https://motionarray.com/browse%3Fdate_added%3Dlast-6-months%26sort_by%3Dmost-popular%26categories%3Dpremiere-pro-templates%26gclid%3DEAIaIQobChMItJC1h_rm7AIVkx7VCh2zsQf_EAEYASAAEgJlTvD_BwEhttps://www.googleadservices.com/pagead/aclk?sa=L&ai=CzOudlJqhX7T2AZO91Aaz4574D5eIsK5fjKLbueQLlbfv2vYaEAEgkNnHe2DpgoCA5A2gAcm1vuMDyAEJqAMByAPDBKoEhAJP0JtByt10wwH4-Avg55eB6e-cmd0q0n_z3OGyBFXd4RgQynx-35ivHos3chGYLP7aC_8cDI5DXhpJhwvaNUsV70Dnljd8e2J8Oa66V-3s6klwewpc7QZD7tjcXrAjufBQdAm3WSANnlZguFccckNj5Oki_ZU8_W0WJnD1PcU0VfhtHBxHIZrdMQbVDuWlQzdJy3hYC6PGDmVHs4oU0w5XimSyvo5527KFmeOcMsq2ZEKOhErwi93IRPBb4ba8fLw5K7qVWACoVMV7kh9dAOhEMWlrrZELVz4gmsT7iw9tEBckDat3WlXDW_XOl5IRGCL-HOyBmtbhG7o8CKAAk2mXGD9MtcAEy9r7woADoAYugAefysEcqAfVyRuoB_DZG6gH8tkbqAeOzhuoB5PYG6gHugaoB-6WsQKoB6a-G6gH7NUbqAfz0RuoB-zVG6gHltgbqAfC2hvYBwDSCAcIgGEQARgfsQkGNtnCAjMH9YAKAYoKpwFodHRwczovL2FkLmF0ZG10LmNvbS9zL2dvO2Fkdj0xMTE0NzIzODA2MTcxMDtlYz0xMTE0NzIzODM5OTMyMTtjLmE9MTA0MzY1MzMxMzM7cy5hPWdvb2dsZTtwLmE9MTA0MzY1MzMxMzM7YXMuYT0xMDMyMTk2NTM5NjM7cXBiPTE7P2JpZGt3PWRlZmF1bHRrZXl3b3JkJmR2Yz1jJmg9e2xwdXJsfZgLAcgLAeALAYAMAdgTDQ&ae=1&num=1&cid=CAASEuRoGb3V7RU2tvilK9kym-RitA&sig=AOD64_29KS-20CQB36PASrepDP00qVZ0Fg&client=ca-pub-7636113250813806&nb=1&adurl=https://motionarray.com/browse%3Fdate_added%3Dlast-6-months%26sort_by%3Dmost-popular%26categories%3Dpremiere-pro-templates%26gclid%3DEAIaIQobChMItJC1h_rm7AIVkx7VCh2zsQf_EAEYASAAEgJlTvD_BwE

  • Quartiles

    The set of journals have been ranked according to their SJR and divided into four equal groups, four quartiles. Q1 (green)comprises the quarter of the journals with the highest values, Q2 (yellow) the second highest values, Q3 (orange) the thirdhighest values and Q4 (red) the lowest values.

    Category Year QuartileComputer Science (miscellaneous) 2011 Q2Computer Science (miscellaneous) 2012 Q3Computer Science (miscellaneous) 2013 Q2Computer Science (miscellaneous) 2014 Q4

    SJR

    The SJR is a size-independent prestige indicator thatranks journals by their 'average prestige per article'. It isbased on the idea that 'all citations are not createdequal'. SJR is a measure of scienti�c in�uence ofjournals that accounts for both the number of citationsreceived by a journal and the importance or prestige ofthe journals where such citations come from Itmeasures the scienti�c in�uence of the average articlein a journal it expresses how central to the global

    Citations per document

    This indicator counts the number of citations received bydocuments from a journal and divides them by the totalnumber of documents published in that journal. Thechart shows the evolution of the average number oftimes documents published in a journal in the past two,three and four years have been cited in the current year.The two years line is equivalent to journal impact factor™ (Thomson Reuters) metric.

    Cites per document Year ValueCites / Doc. (4 years) 2010 0.000Cites / Doc. (4 years) 2011 1.667Cites / Doc. (4 years) 2012 1.424Cites / Doc. (4 years) 2013 0.383Cites / Doc. (4 years) 2014 0.288Cites / Doc. (4 years) 2015 0.231Cites / Doc. (4 years) 2016 0.194Cites / Doc. (4 years) 2017 0.208Cites / Doc. (4 years) 2018 0.215Cites / Doc. (4 years) 2019 0.279

    Total Cites Self-Cites

    Evolution of the total number of citations and journal'sself-citations received by a journal's publisheddocuments during the three previous years.

    Journal Self-citation is de�ned as the number of citationfrom a journal citing article to articles published by thesame journal.

    Cites Year ValueS lf Cit 2010 0

    External Cites per Doc Cites per Doc

    Evolution of the number of total citation per documentand external citation per document (i.e. journal self-citations removed) received by a journal's publisheddocuments during the three previous years. Externalcitations are calculated by subtracting the number ofself-citations from the total number of citations receivedby the journal’s documents.

    Cit Y V l

    % International Collaboration

    International Collaboration accounts for the articles thathave been produced by researchers from severalcountries. The chart shows the ratio of a journal'sdocuments signed by researchers from more than onecountry; that is including more than one country address.

    Year International Collaboration2010 22.582011 10 13

    Citable documents Non-citable documents

    Not every article in a journal is considered primaryresearch and therefore "citable", this chart shows theratio of a journal's articles including substantial research(research articles, conference papers and reviews) inthree year windows vs. those documents other thanresearch articles, reviews and conference papers.

    Documents Year ValueN it bl d t 2010 0

    Cited documents Uncited documents

    Ratio of a journal's items, grouped in three yearswindows, that have been cited at least once vs. thosenot cited during the following year.

    Documents Year ValueUncited documents 2010 0Uncited documents 2011 36Uncited documents 2012 333Uncited documents 2013 2027

    ← Show this widget inyour own website

    Just copy the code belowand paste within your htmlcode:

  • Advanced Science LettersISSN: 1936-6612 (Print): EISSN: 1936-7317 (Online)

    Copyright © 2000-2020 American Scientific Publishers. All Rights Reserved.

    EDITORIAL BOARD

    EDITOR-IN-CHIEFProfessor Ahmad UmarDepartment of Chemistry, College of Science and ArtsPromising Centre for Sensors and Electronic Devices (PCSED)Najran University, P.O. Box: 1988, Najran 11001, Kingdom of Saudi ArabiaPhone: +966-534-574-597Fax: +966-7-5442-135Email: [email protected]

    ASIAN EDITORDr. Katsuhiko Ariga, PhDAdvanced Materials LaboratoryNational Institute for Materials Science1-1 Namiki, Tsukuba, Ibaraki 305-0044, JAPAN

    ASSOCIATE EDITORSDiederik Aerts (Quantum theory, Cognition, Evolution theory)Brussels Free University, Belgium.

    Yakir Aharonov (Physics, Quantum Physics)School of Physics and Astronomy, Israel.

    Peter C. Aichelburg (Gravitation)University of Vienna, Austria.

    Jim Al-Khalili (Foundations of Physics, Nuclear Reaction Theory)University of Surrey, UK.

    Jake Blanchard (Engineering Physics, Nuclear Engineering)University of Wisconsin–Madison, USA.

    Simon Baron-Cohen (Cognitive Neuroscience)University of Cambridge, UK.

    Franz X. Bogner (Cognitive Achievement)University of Bayreuth, Germany.

    John Borneman (Anthropology)Princeton University, USA.

    John Casti (Complexity Science)Internationales Institut für Angewandte Systemanalyse, Austria.

    Masud Chaichian (High Energy Physics, String Theory)University of Helsink, Finland.

    Sergey V. Chervon(Gravitation, Cosmology, Astrophysics)Ulyanovsk State Pedagogical University, Russia

    Kevin Davey (Philosophy of Science)University of Chicago, Chicago, USA.

    Tania Dey (Colloids/Polymers/Nanohybrids)Canada.

    Roland Eils (Bioinformatics)Deutsches Krebsforschungszentrum Heidelberg, Germany.

    Thomas Görnitz (Quantum theory, Cosmology)University of Frankfurt, Germany.

    Bert Gordijn (Nanoethics, Neuroethics, Bioethics)Radboud University Nijmegen, The Netherlands.

    Ji-Huan He (Textile Engineering, Functional Materials)Soochow University, Suzhou, China.

    Nongyue He (Biosensors/Biomaterials)China.

    Irving P. Herman (Materials and Solid State Physics)

  • Columbia University, USA.

    Dipankar Home (Foundations of Quantum Mechanics)Bose Institute, Kolkata, India.

    Jucundus Jacobeit (Climate, Global Change Ecology)University of Augsburg, Germany.

    Yuriy A. Knirel (Bioorganic Chemistry)N. D. Zelinsky Institute of Organic Chemistry, Russia.

    Arthur Konnerth (Neurophysiology, Molecular Mechanisms)University of Munich, Germany.

    G. A. Kourouklis (Physics Solid State Physics)Aristotle University Thessaloniki, Greece.

    Peter Krammer (Genetics)Deutsches Krebsforschungszentrum Heidelberg, Germany.

    Andrew F. Laine (Biomedical Engineering)Columbia University, USA.

    Minbo Lan (Organic Functional Materials)China.

    Martha Lux-Steiner (Physics, Materials Science)Hahn-Meitner-Institut Berlin, Germany.

    Klaus Mainzer (Complex Systems, Computational Mind, Philosophy of Science)University of Augsburg, Germany.

    JoAnn E. Manson (Medicine, Cardiovascular Disease)Harvard University, USA.

    Mark P. Mattson (Neuroscience)National Institute on Aging, Baltimore, USA.

    Lucio Mayer (Astrophysics, Cosmology)ETH Zürich, Switzerland.

    Karl Menten (Radioastromy)Max-Planck-Institut für Radioastromie, Germany.

    Yoshiko Miura (Biomaterials/Biosensors)Japan.

    Fred M. Mueller (Solid State Physics)Los Alamos National Laboratory, USA.

    Garth Nicolson (Illness Research, Cancer Cell Biology)The Institute for Molecular Medicine, Huntington Beach, USA.

    Nina Papavasiliou (DNA Mutators, Microbial Virulence, Antiviral Defence, Adaptive Immunity, Surface Receptor Variation)The Rockefeller University, New York, USA.

    Panos Photinos (Physics)Southern Oregon University, USA.

    Zhiyong Qian (Biomedical Engineering, Biomaterials, Drug Delivery)Sichuan University, CHINA.

    Reinhard Schlickeiser (Astrophysics, Plasma Theory and Space Science)Ruhr-Universität Bochum, Germany.

    Surinder Singh (Sensors/Nanotechnology)USA.

    Suprakas Sinha Ray (Composites/Polymer Science)South Africa.

    Koen Steemers (Architechture, Environmental Building Performance)University of Cambridge, UK.

    Shinsuke Tanabe (Environmental Chemistry and Ecotoxicology)Ehime University, Japan.

    James R. Thompson (Solid State Physics)The University of Tennessee, USA.

    Uwe Ulbrich (Climat, Meteorology)Freie Universität Berlin, Germany.

    Ahmad Umar (Advanced Materials)Najran University, Saudi Arabia.

  • Frans de Waal (Animal Behavior and Cognition)Emory University, USA.

    EDITORIAL BOARDFilippo Aureli, Liverpool John Moores University, UKMarcel Ausloos, Université de Liège, BelgiumMartin Bojowald, Pennsylvania State University, USASougato Bose, University College, London, UKJacopo Buongiorno, MIT, USAPaul Cordopatis, University of Patras, GreeceMaria Luisa Dalla Chiara, University of Firenze, ItalyDionysios Demetriou Dionysiou, University of Cincinnati, USASimon Eidelman, Budker Institute of Nuclear Physics, RussiaNorbert Frischauf, QASAR Technologies, Vienna, AustriaToshi Futamase, Tohoku University, JapanLeonid Gavrilov, University of Chicago, USAVincent G. Harris, Northeastern University, USAMae-Wan Ho, Open University, UKKeith Hutchison, University of Melbourne, AustraliaDavid Jishiashvili, Georgian Technical University, GeorgiaGeorge Khushf, University of South Carolina, USASergei Kulik, M.V.Lomonosov Moscow State University, RussiaHarald Kunstmann, Institute for Meteorology and Climate Research, Forschungszentrum Karlsruhe, GermanyAlexander Lebedev, Laboratory of Semiconductor Devices Physics, RussiaJames Lindesay, Howard University, USAMichael Lipkind, Kimron Veterinary Institute, IsraelNigel Mason, Open University, UKJohnjoe McFadden, University of Surrey, UKB. S. Murty, Indian Institute of Technology Madras, Chennai, IndiaShahab A. A. Nami, Aligarh Muslim University, IndiaHeiko Paeth, Geographisches Institut der Universität Würzburg, GermanyMatteo Paris, Universita' di Milano, ItaliaDavid Posoda, University of Vigo, SpainPaddy H. Regan, University of Surrey, UKLeonidas Resvanis, University of Athens, GreeceWolfgang Rhode, University of Dortmund, GermanyDerek C. Richardson, University of Maryland, USACarlos Romero, Universidade Federal da Paraiba, BrazilAndrea Sella, University College London, London, UKP. Shankar, Indira Gandhi Centre for Atomic Research, Kalpakkam, IndiaSurya Singh, Imperial College London, UKLeonidas Sotiropoulos, University of Patras, GreeceRoger Strand, University of Bergen, NorwayKarl Svozil, Technische Universität Wien, AuastriaKit Tan, University of Copenhagen, DenmarkRoland Triay, Centre de Physique Theorique, CNRS, Marseille, FranceRami Vainio, University of Helsinki, FinlandVictor Voronov, Bogoliubov Laboratory of Theoretical Physics, Dubna, RussiaAndrew Whitaker, Queen's University Belfast, Northern IrelandLijian Xu, Hunan University of Technology, ChinaAlexander Yefremov, Peoples Friendship University of Russia, RussiaAvraam Zelilidis, University of Patras, GreeceAlexander V. Zolotaryuk, Ukrainian Academy of Sciences, Ukraine

    Terms and Conditions Privacy Policy Copyright © 2000-2020 American Scientific Publishers. All Rights Reserved.

  • RESEARCH ARTICLE Adv. Sci. Lett. Vol 23, No.4, 2017

    3695 Adv. Sci. Lett. Vol. 23, No. 4, 2017 doi:10.1166/asl.2017.9031

    Copyright © American Scientific Publishers Advanced Science Letters

    All rights reserved Vol.23, 3695-3699, 2017

    Printed in the United States of America

    CHARACTERIZATION OF L BAND

    ERBIUM DOPED FIBER AMPLIFIER

    Anwar Mujadin ,1, Ary Syahriar ,1, 2 1)2) Department of Electrical Engineering, University Al Azhar Indonesia

    2) Agency for the Assessment and Application of Technology (BPPT) Komplek Masjid Agung Al Azhar Jl. Sisingamangaraja Kebayoran Baru Jakarta Selatan 12110

    1) Corresponding author, e-mail: [email protected] Erbium doped fiber amplifiers (EDFA) have become major key components for dense wavelength division multiplexing (DWDM) in optical fiber communication systems. Recently, an L-band EDFA have gain popularity to extend optical bandwidth level in such a system. It operates in a

    relatively low population inversion that a total positive gain can be achieved in L-band signals level while energy absorption occurs at the conventional band. Therefore, pump power efficiency has become major issues in L band EDFA to obtain high gain and low noise figure (NF). In this research we have developed high stability and accuracy circuits using high end technology components to maximize power pumping level that is used for laser diode pumping and power meter. We used forward pumping scheme by using simple single pump structure with 980 nm pump laser into short length L band EDFA. In this experiment we have used L band EDFA with the length of 13.5 meters, the purpose is to get short length L band with efficient pumping power and to get good gain output at several pumping and signal power. The experimental results then fitted with theoretical analysis to determine performances of overall EDFA system. The performance parameter such as gain, NF and output power was taken at L band ITU wavelength standard with four different laser diode pumping powers of 53.6 mW, 61.1 mW, 64.83 mW and 68.25 mW respectively. An input signal power ranging was of -20 dBm, -15dBm, -10 dBm and -5 dBm respectively.

    Keywords: High stability laser diode pumping circuitry, optical amplifier, noise figure, EDFA L- band.

    1. INTRODUCTION

    Dense wavelength division multiplexing (DWDM) technology is a key technology for the future generation

    of optical network where it is directly connected to high

    performance network routers. One of the main components is EDFA that play an important role to

    enhance optical output in optical network performances.

    Therefore designing of an optical amplifier can directly affect the high performance of an optical system.

    Optical amplification using EDFA is quite common on

    long distance communication systems. Previously long wavelength EDFA i.e. L band EDFA has attracted much

    intention and played a major role in extending optical

    bandwidth from previous C band structure. Similar to those C band structures, L band can also be configured

    using single pump scheme but with more pumping power

    required to get similar gain as that in C band. Therefore, pumping scheme has become major issues in L band

    EDFA to obtain high gain and low NF as well as pump

    power efficiency 1. In this paper we demonstrate a simple

    single pump structure with 980 nm pump laser and short

    L band EDFA.

    2. HARDWARE IMPLEMENTATION

    In general, there are three setup configurations EDFA

    pumping namely: forward pumping, backward pumping

    and bidirectional pumping 2,3

    . System design based EDFA

    optical reinforcement consists of four parts, namely the

    passive optical component, active optical component, system microcontroller and the high regulated power

    supply4.

    Figure 1 shows a configuration lay out of EDFA

    experimental setting.

    Figure 1. Configuration layout of EDFA experimental

    setting.

    Figure 2 shows a complete set of L band EDFA with

    electronics control systems.

  • Adv. Sci. Lett. RESEARCH ARTICLE

    3696

    Figure 2. A complate set of L band EDFA with

    electronics control systems.

    For characterization of L band EDFA, we used of single

    stage forward pumping is shown in schematic diagram in Figure 3 below.

    Signal

    In

    Signal

    OutFC

    FCWDM

    Laser Diode Pumping

    EDF

    Isolator99%

    1%

    95%

    5%

    CONTROLLER

    Cheked

    Cheked

    Isolator

    Figure 3. Single stage forward pumping Schematic diagram.

    Experiments were conducted without the use of a

    microcontroller. Controller block in Figure 3 is represent active electronic components (integrated circuit) consists

    of diode laser pumping and power meter. ADN2830 and

    AD8304 are high performance active components (integrated circuit) from Analog Device as laser diode

    pumping and power meter to occupy the controller block.

    Two ADN2830 Used in parallel current boosting mode to achieve 400 mA current pumping as shown in figure 4

    below 5.

    Figure 4. Two ADN2830 in parallel 400 mA

    current boosting mode 5.

    Figure 4 shows pin out of RPSET as current adjustment

    laser diode pimping using linear potentiometer.

    Experimental setup for characterization of L band with L

    band EDFA of 13.5 meters long at forward pumping is shown in Figure 5.

    Cheked

    Signal Out

    FC1WDM

    Isolator 1

    EDF

    Isolator 295%

    5%

    ADN2830

    Laser

    Driver

    Adjust

    Heat Sink Current

    Injeksi (mA)

    Source ( TLS AQ4321) Power meter (OSA AQ6317)

    SplacingVOUT

    Power Out (mV)

    FC299%

    1 %

    Cheked

    VOUTPower In (mV)

    voltmeter

    voltmeter

    Amperemeter

    AD8304

    power meter

    AD8304

    power meter

    LDP

    980 nm

    FC = Fused Coupler

    Figure 5. Experiment setup for characterization of Lband

    EDFA with forward pumping.

    Experimental setup in Figure 5 consists of:

    a. Isolator 1 and isolator 2 as rectifier signal. b. One uncooled LDP (LU980) with specifications

    of 980 nm wavelength and 180 mW output

    power6 .

    c. WDM coupler with specifications of 980 nm and 1550 nm channel input distribution

    7.

    d. L band EDF 13.5 m long with specification: mode field diameter of 5.5 ± 0.5 µm, @ 1550 nm wavelength, peak absorption 25 ± 2 dB/m near

    1530 nm and ≥ 7.0 dB/m near 980 nm, loss of ≤

    15.0 dB/km @ 1200 nm, mode cut-off at 960 ± 50 nm and core numerical aperture is 0.21

    e. Tap coupler 1 (FC1) with specification 95% and 5% channel output splitter.

    f. Tap coupler 2 (FC2) with specification 99 % and 1% channel output splitter.

    FC1 at 5% channel output splitter is selected for minimum limit input signal to power meter AD8304 at

    the smallest input signal TLS about -30 dBm. FC2 at 1%

    channel output splitter is selected for maximum of power meter AD8304 at 0 dBM the most output signal EDFA

    which can still be read.

    3. RESEARCH METHODOLOGY

    TLS swept in the work area at international

    telecommunication union (ITU) grid in the wavelength range of L band (1570 nm-1620 nm), then the output

    signal recorded by OSA in the form of numeric data.

  • RESEARCH ARTICLE Adv. Sci. Lett.

    3697

    Observation Characterization performance of L band EDFA including:

    a. Characterization of the uncooled laser diode pumping (LDP) 980 nm. Observations measurement current injection to LDP toward LDP power.

    b. Observation amplified spontaneous emission (ASE) measurement. Observation measurement LDP power toward ASE issued without signal input TLS.

    c. Calculated Gain and noise figure (NF). Observation amplification output signal toward variations input signal at LDP power constantly.

    d. Characterization EDFA L band for variation input signal toward gain at LDP power constantly.

    4. EXPERIMENTAL RESULTS

    Graph performance of LDP 980 nm, current injection

    toward LDP power is shown in figure 6. To avoid LDP

    damage, RPSET must be tuning slowly using wire wound potentiometer to tuning current injection LDP gradually,

    especially at lasing point (0 mA to 26 mA current

    injection).

    LD

    P P

    ow

    er (

    mW

    )

    Current Injection to LDP (mA)

    50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

    10

    20

    30

    40

    50

    60

    70

    80

    90

    0

    Figure 6. Graph performance of LDP 980 nm, current

    injection toward LDP power

    Figure 7 shows ASE spectrum pattern of L band EDFA with

    LDP power 53.6 mW (150 mA current injection), resulting

    in population inversion with ASE average of -37.66 dBm.

    Figure 7. ASE spectrum pattern L band EDFA with

    pump power 53.6 mW (17.3 dBm) with 150mA current

    injection

    Figure 8 shows the measurement and calculation of the gain

    and NF at 53.6 mW (17.3 dBm) LDP power for -20dBm

    input signal with wavelength constant of 1589.52 nm.

    Pnoise-out = PASE

    Δλ

    λ1 λ2

    Psignal-out-Pnoise-out

    Power output

    λ input

    Figure 8. Measurement and calculation of the gain and NF

    at 53.6 mW (17.3 dBm) LDP power for -20dBm input signal

    with wavelength constant of 1589.52 nm.

    From Figure 8 with input signal of 1589.52 nm

    and power input signal of (-20 dBm) can be amplified up

    to -2.65 dBm. Gain and NF can be calculated by using following Equations

    8:

    G = signal out noise out noise out

    signal in

    P P P

    P

    Figure 9 shows chart of ASE at 53.6 mW (17.3 dBm) LDP

    power constant with ITU grid L band wavelength without

    input signal.

    AS

    E (

    dB

    )

    L Band Wavelength Input Signal (nm)

    -36.268

    -36.341

    -36.414

    -36.487

    -36.560

    -36.633

    1570

    1574

    1578

    1582

    1586

    1590

    1594

    1598

    1602

    1606

    1610

    1611

    1610

    1608

    1606

    1604

    1603

    1601

    1599

    1598

    1596

    1594

    1592

    1618

    1614

    Figure 9. Chart of the Gain and NF at 53.6 mW (17.3 dBm)

    LDP power constant with ITU grid L band wavelength

    without input signal.

    Figure 10 shows calculation of Gain and NF at 53.6 mW (17.3 dBm) LDP power constant and -20dBm input signal

    with ITU grid L band wavelength.

  • Adv. Sci. Lett. RESEARCH ARTICLE

    3698

    AS

    E (

    dB

    )

    L Band Wavelength Input Signal (nm)

    -16.00

    -14.00

    12.00

    6.00

    2.00

    0.00

    15

    70

    15

    74

    15

    78

    15

    82

    15

    86

    15

    90

    15

    94

    15

    98

    16

    02

    16

    06

    16

    10

    16

    11

    16

    10

    16

    08

    16

    06

    16

    04

    16

    03

    16

    01

    15

    99

    15

    98

    15

    96

    15

    94

    15

    92

    16

    18

    16

    14

    10.00

    8.00

    4.00

    Gain

    NF

    Figure 10.Chart of the Gain and NF at 53.6 mW (17.3 dBm)

    LDP power constant for -20dBm input signal with ITU L

    band wavelength.

    Figure 10 indicates that the noise figure (NF) is always greater than one, it prove the amplifier always give

    extra noise during the process of amplification.

    Figure 11 (a), (b), (c) and (d) shows chart Gain and output

    power was taken at L band ITU grid wavelength with four

    different laser diode pumping powers of 53.6 mW (150 mA), 61.1 mW (160 mA), 64.83 mW (170 mA) and 68.25

    mW (180 mA) respectively, toward A input signal power

    ranging was of -20 dBm (0.01 mW), -15 dBm (0.032 mW), -10 dBm (0.1 mW) and -5 dBm (0.32 mW)

    respectively.

    Ga

    in (

    dB

    )

    L Band Wavelength Input Signal (nm)

    22.00

    20.00

    18.00

    12.00

    8.00

    6.00

    15

    70

    15

    74

    15

    78

    15

    82

    15

    86

    15

    90

    15

    94

    15

    98

    16

    02

    16

    06

    16

    10

    16

    11

    16

    10

    16

    08

    16

    06

    16

    04

    16

    03

    16

    01

    15

    99

    15

    98

    15

    96

    15

    94

    15

    92

    16

    18

    16

    14

    16.00

    14.00

    10.00

    LDP Power Constant

    53.60 mW(150 mA)61.14 mW(160 mA)64.83 mW(170 mA)68.25 mW(180 mA)

    Input Signal Power Constant

    -20 dBm (0.01 mW)

    a)

    Ga

    in (

    dB

    )

    L Band Wavelength Input Signal (nm)

    22.00

    20.00

    18.00

    12.00

    8.00

    6.00

    15

    70

    15

    74

    15

    78

    15

    82

    15

    86

    15

    90

    15

    94

    15

    98

    16

    02

    16

    06

    16

    10

    16

    11

    16

    10

    16

    08

    16

    06

    16

    04

    16

    03

    16

    01

    15

    99

    15

    98

    15

    96

    15

    94

    15

    92

    16

    18

    16

    14

    16.00

    14.00

    10.00

    LDP Power Constant

    53.60 mW(150 mA)61.14 mW(160 mA)64.83 mW(170 mA)68.25 mW(180 mA)

    Input Signal Power Constant

    -15 dBm (0.032 mW)

    b)

    Ga

    in (

    dB

    )

    L Band Wavelength Input Signal (nm)

    22.00

    20.00

    18.00

    12.00

    8.00

    6.00

    15

    70

    15

    74

    15

    78

    15

    82

    15

    86

    15

    90

    15

    94

    15

    98

    16

    02

    16

    06

    16

    10

    16

    11

    16

    10

    16

    08

    16

    06

    16

    04

    16

    03

    16

    01

    15

    99

    15

    98

    15

    96

    15

    94

    15

    92

    16

    18

    16

    14

    16.00

    14.00

    10.00

    LDP Power Constant

    53.60 mW(150 mA)61.14 mW(160 mA)64.83 mW(170 mA)68.25 mW(180 mA)

    Input Signal Power Constant

    -10 dBm (0.1 mW)

    c)

    Ga

    in (

    dB

    )L Band Wavelength Input Signal (nm)

    22.00

    20.00

    18.00

    12.00

    8.00

    6.00

    15

    70

    15

    74

    15

    78

    15

    82

    15

    86

    15

    90

    15

    94

    15

    98

    16

    02

    16

    06

    16

    10

    16

    11

    16

    10

    16

    08

    16

    06

    16

    04

    16

    03

    16

    01

    15

    99

    15

    98

    15

    96

    15

    94

    15

    92

    16

    18

    16

    14

    16.00

    14.00

    10.00

    LDP Power Constant

    53.60 mW(150 mA)61.14 mW(160 mA)64.83 mW(170 mA)68.25 mW(180 mA)

    Input Signal Power Constant

    -5 dBm (0.32 mW)

    d)

    Figure 11. Gain and output power was taken at L band

    ITU wavelength with four different laser diode pumping

    powers of a) 53.6 mW (150mA), b) 61.1 mW (160 mA), c) 64.83 mW (170 mA) and d) 68.25 mW (180mA)

    respectively toward A input signal power constant ranging

    was of -20 dBm (0.01 mW), -15 dBm (0.032 mW), -10 dBm (0.1mW) and -5 dBm (0.32 mW) respectively.

    5. CONCLUSIONS L band EDFAs spectral gain and noise figure

    characteristics were analysed through experiments and

    simulation. By using optimized 13.5 m fibre length at 1580.45 nm and 53.6 mW (150 mA current) pump power

    to get amplified spontaneous emission (ASE) average of -

    36.45 dBm. The performance of gain at L band ITU grid wavelength

    with four different laser diode pumping powers of 53.6

    mW, 61.1 mW, 64.83 mW and 68.25 mW respectively with variation range of different input signal power

    ranging was used of -20 dBm, -15dBm, -10 dBm and -5

    dBm respectively. From the analysis result that increasing

    current injection LDP every 10 mA, the input signal amplified by 1.76dB .Otherwise the amplification (gain)

    will be decrease 1.43 dB if increasing input signal power

    by +5 dBm. As a result, a high gain 20.64 dB and a moderate noise

    figure 3.9 dB values were obtained in the small signal

    regime. In general, with its relatively high NF values, this type of L-EDFA can be used as an optical booster

    amplifier not requiring very low noise figures.

    Future work, in this research needs further developed with bidirectional LDP for increasing the amplification

    EDFA with the same length of L band EDF.

  • RESEARCH ARTICLE Adv. Sci. Lett.

    3699

    ACKNOWLEDGMENTS

    This prototype was supported by Agency for the Assessment and Application of Technology (BPPT) and

    Institutions of research and community service (LPPM)

    Al Azhar University Indonesia funding research grant 2013.

    REFERENCES

    [1] B.Allen, J.Rouse.”Optical networking and WDM

    Lightwave”Cambrian System Corp. pp.47-52, August 1998. [2] S.Y.Park, et al., “Doped fiber length and pump power of

    gain- flattened EDFAs”, Elect. Lett. 32, 2161, 1996 [3] Beker, P.c., Olsson, N.A., & Simpson, J.R. (1999). Erbium-

    doped fiber amplifiers fundamentals and technology. USA: Academic Press

    [4] M. Karasek, “The design of L-band EDFA for multiwavelength applications,” J. Opt. A., vol.3, pp. 96-102, 2001

    [5] Analog Device.(2000). ADN2830 datasheet. July 23, 2014. http://www.alldatasheet.com

    [6] Technologies, Bookham .(2000). LU980L Mini DIL Uncooled Laser. Maret 21, 2014. http://www.alldatasheet.com.

    [7] Jeff, H. (2002). Wavelenght Division Multiplexing. USA: Prentice Hall.

    [8] Beker, P.c., Olsson, N.A., & Simpson, J.R. (1999). Erbium-doped fiber amplifiers fundamentals and technology. USA: Academic Press

    http://www.alldatasheet.com/