2542x_appa

14
799 Appendix A Properties of a Plane Area Because of their importance in connection with the analysis of bending and torsion, certain relations for the second-area moments, commonly referred to as moments of inertia, are indicated in the following paragraphs. The equations given are in reference to Fig. A.1, and the notation is as follows: A area of the section X ; Y rectangular axes in the plane of the section at arbitrary point O x; y rectangular axes in the plane of the section parallel to X ; Y ; respectively with origin at the centroid, C, of the section Figure A.1 Plane area.

Transcript of 2542x_appa

  • 799

    Appendix

    AProperties of a Plane Area

    Because of their importance in connection with the analysis of bending

    and torsion, certain relations for the second-area moments, commonly

    referred to as moments of inertia, are indicated in the following

    paragraphs. The equations given are in reference to Fig. A.1, and

    the notation is as follows:

    A area of the section

    X ;Y rectangular axes in the plane of the section at arbitrary pointO

    x; y rectangular axes in the plane of the section parallel to X ;Y ;respectively with origin at the centroid, C, of the section

    Figure A.1 Plane area.

  • z polar axis through C

    x0; y0 rectangular axes in the plane of the section, with origin at C,inclined at a counterclockwise angle y from x; y

    1, 2 principal axes at C inclined at a counterclockwise angle ypfrom x; y

    r the distance from C to the dA element, r x2 y2

    pBy definition,

    Moments of inertia: Ix A

    y2 dA; Iy A

    x2 dA

    Polar moment of inertia:

    Iz J A

    r2 dA Ix Iy Ix0 Iy0 I1 I2Product of inertia: Ixy

    A

    xy dA

    Radii of gyration: kx Ix=A

    p; ky

    Iy=A

    pParallel axis theorem:

    IX Ix Ay2c ; IY Iy Ax2c ; IXY Ixy AxcycTransformation equations:

    Ix0 Ix cos2 y Iy sin2 y Ixy sin 2yIy0 Ix sin2 y Iy cos2 y Ixy sin 2yIx0y0 12 Ix Iy sin 2y Ixy cos 2y

    Principal moments of inertia and directions:

    I1;2 12 Ix Iy Iy Ix2 4I2xy

    q ; I12 0;

    yp 12 tan12Ixy

    Iy Ix

    !

    Upon the determination of the two principal moments of inertia, I1and I2, two angles, 90

    apart, can be solved for from the equation for yp.It may be obvious which angle corresponds to which principal moment

    of inertia. If not, one of the angles must be substituted into the

    equations Ix0 and Iy0 which will again yield the principal moments of

    inertia but also their orientation.

    Note, if either one of the xy axes is an axis of symmetry, Ixy 0; withIx and Iy being the principal moments of inertia of the section.

    If I1 I2 for a set of principal axes through a point, it follows thatthe moments of inertia for all x0y0 axes through that point, in the sameplane, are equal and Ix0y0 0 regardless of y: Thus the moment ofinertia of a square, an equilateral triangle, or any section having

    800 Formulas for Stress and Strain [APP. A

  • two or more axes of identical symmetry is the same for any central

    axis.

    The moment of inertia and radius of gyration of a section with

    respect to a centroidal axis are less than for any other axis parallel

    thereto.

    The moment of inertia of a composite section (one regarded as made

    up of rectangles, triangles, circular segments, etc.) about an axis is

    equal to the sum of the moments of inertia of each component part

    about that axis. Voids are taken into account by subtracting the

    moment of inertia of the void area.

    Expressions for the area, distances of centroids from edges,

    moments of inertia, and radii of gyration are given in Table A.1 for a

    number of representative sections. The moments of products of inertia

    for composite areas can be found by addition; the centroids of compo-

    site areas can be found by using the relation that the statical moment

    about any line of the entire area is equal to the sum of the statical

    moments of its component parts.

    Although properties of structural sectionswide-flange beams,

    channels, angles, etc.are given in structural handbooks, formulas

    are included in Table A.1 for similar sections. These are applicable to

    sections having a wider range of web and flange thicknesses than

    normally found in the rolled or extruded sections included in the

    handbooks.

    Plastic or ultimate strength design is discussed in Secs. 8.15 and

    8.16, and the use of this technique requires the value of the fully

    plastic bending momentthe product of the yield strength of a ductile

    material and the plastic section modulus Z. The last column in Table

    A.1 gives for many of the sections the value or an expression for Z and

    the location of the neutral axis under fully plastic pure bending. This

    neutral axis does not, in general, pass through the centroid,

    but instead divides the section into equal areas in tension and

    compression.

    APP. A ] Properties of a Plane Area 801

  • TABLE A.1 Properties of sectionsNOTATION: A area length2; y distance to extreme fiber (length); I moment of inertia length4; r radius of gyration (length); Z plastic section modulus length3; SF shape factor. SeeSec. 8.15 for applications of Z and SF

    Form of section

    Area and distances from

    centroid to extremities

    Moments and products of inertia

    and radii of gyration about central axes

    Plastic section moduli,

    shape factors, and locations

    of plastic neutral axes

    1. Square A a2

    yc xc a

    2

    y0c 0:707a cosp4 a

    Ix Iy I 0x 112 a4

    rx ry r0x 0:2887aZx Zy 0:25a3

    SFx SFy 1:5

    2. Rectangle A bd

    yc d

    2

    xc b

    2

    Ix 112 bd3

    Iy 112 db3

    Ix > Iy if d > b

    rx 0:2887dry 0:2887b

    Zx 0:25bd2

    Zy 0:25db2

    SFx SFy 1:5

    3. Hollow rectangle A bd bidi

    yc d

    2

    xc b

    2

    Ix bd3 bid3i

    12

    Iy db3 dib3i

    12

    rx IxA

    1=2

    ry Iy

    A

    1=2

    Zx bd2 bid2i

    4

    SFx Zxd

    2Ix

    Zx db2 dib2i

    4

    SFy Zyb

    2Iy

    802

    Form

    ulasforStre

    ssandStra

    in[A

    PP.A

  • 4. Tee section A tb twd

    yc bt2 twd2t d

    2tb twd

    xc b

    2

    Ix b

    3d t3 d

    3

    3b tw Ad t yc2

    Iy tb3

    12 dt

    3w

    12

    rx IxA

    1=2

    ry Iy

    A

    1=2

    If twd5 bt, then

    Zx d2tw

    4 b

    2t2

    4tw btd t

    2

    Neutral axis x is located a distance bt=tw d=2from the bottom.

    If twd4 bt, then

    Zx t2b

    4 twdt d twd=2b

    2

    Neutral axis x is located a distance twd=b t=2from the top.

    SFx Zxd t yc

    I1

    Zy b2t t2wd

    4

    SFy Zyb

    2Iy

    5. Channel section A tb 2twd

    yc bt2 2twd2t d

    2tb 2twd

    xc b

    2

    Ix b

    3d t3 d

    3

    3b 2tw Ad t yc2

    Iy d tb3

    12 db 2tw

    3

    12

    rx IxA

    1=2

    ry Iy

    A

    1=2

    If 2twd5 bt, then

    Zx d2tw

    2 b

    2t2

    8tw btd t

    2

    Neutral axis x is located a distance

    bt=2tw d=2 from the bottom.If 2twd4 bt, then

    Zx t2b

    4 twd t d

    twd

    b

    Neutral axis x is located a distance twd=b t=2from the top.

    SFx Zxd t yc

    Ix

    Zy b2t

    4 twdb tw

    SFy Zyb

    2Iy

    APP.A]

    Propertie

    sofaPlaneArea

    803

    TABLE A.1 Properties of sections (Continued)

  • TABLE A.1 Properties of sections (Continued)

    Form of section

    Area and distances from

    centroid to extremities

    Moments and products of inertia

    and radii of gyration about central axes

    Plastic section moduli,

    shape factors, and locations

    of plastic neutral axes

    6. Wide-flange beam with

    equal flanges

    A 2bt twd

    yc d

    2 t

    xc b

    2

    Ix bd 2t3

    12 b twd

    3

    12

    Iy b3t

    6 t

    3wd

    12

    rx IxA

    1=2

    ry Iy

    A

    1=2

    Zx twd

    2

    4 btd t

    SFx Zx yc

    Ix

    Zy b2t

    2 t

    2wd

    4

    SFy Zyxc

    Iy

    7. Equal-legged angle A t2a t

    yc1 0:7071a2 at t2

    2a t

    yc2 0:7071a2

    2a txc 0:7071a

    Ix a4 b4

    12 0:5ta

    2b2

    a b

    Iy a4 b4

    12where b a t

    rx IxA

    1=2

    ry Iy

    A

    1=2

    Let yp be the vertical distance from the top corner to

    the plastic neutral axis. If t=a5 0:40, then

    yp at

    a t=a

    2

    2

    " #1=2

    Zx Ayc1 0:6667ypIf t=a4 0:4, then

    yp 0:3536a 1:5tZx Ayc1 2:8284y2pt 1:8856t3

    8. Unequal-legged angle A tb d t

    xc b2 dt t22b d t

    yc d2 bt t22b d t

    Ix 13 bd3 b td t3 Ad yc2

    Iy 13 db3 d tb t3 Ab xc2

    Ixy 14 b2d2 b t2d t2 Ab xcd yc

    rx IxA

    1=2

    ry Iy

    A

    1=2

    804

    Form

    ulasforStre

    ssandStra

    in[A

    PP.A

  • 9. Equilateral triangle A 0:4330a2

    yc 0:5774axc 0:5000ay0c 0:5774a cos a

    Ix Iy Ix0 0:01804a4

    rx ry rx0 0:2041aZx 0:0732a3; Zy 0:0722a3

    SFx 2:343; SFy 2:000Neutral axis x is 0:2537a from the base.

    10. Isosceles triangle A bd2

    yc 23 d

    xc b

    2

    Ix 136 bd3

    Iy 148 db3

    Ix > Iy if d > 0:866b

    rx 0:2357dry 0:2041b

    Zx 0:097bd2; Zy 0:0833db2

    SFx 2:343; SFy 2:000Neutral axis x is 0:2929d from the base.

    11. Triangle A bd2

    yc 23 dxc 23 b 13 a

    Ix 136 bd3

    Iy 136 bdb2 ab a2Ixy 172 bd2b 2a

    yx 1

    2tan1

    db 2ab2 ab a2 d2

    rx 0:2357d

    ry 0:2357b2 ab a2

    p

    12. Parallelogram A bd

    yc d

    2

    xc 12 b a

    Ix 112 bd3

    Iy 112 bdb2 a2Ixy 112 abd2

    yx 1

    2tan1

    2adb2 a2 d2

    rx 0:2887d

    ry 0:2887b2 a2

    p

    APP.A]

    Propertie

    sofaPlaneArea

    805

    TABLE A.1 Properties of sections (Continued)

  • TABLE A.1 Properties of sections (Continued)

    Form of section

    Area and distances from

    centroid to extremities

    Moments and products of inertia

    and radii of gyration about central axes

    Plastic section moduli,

    shape factors, and locations

    of plastic neutral axes

    13. Diamond A bd2

    yc d

    2

    xc b

    2

    Ix 148 bd3

    Iy 148 db3

    rx 0:2041dry 0:2041b

    Zx 0:0833bd2; Zy 0:0833db2

    SFx SFy 2:000

    14. Trapezoid A d2b c

    yc d

    3

    2b cb c

    xc 2b2 2bc ab 2ac c2

    3b c

    Ix d3

    36

    b2 4bc c2b c

    Iy d

    36b c b4 c4 2bcb2 c2

    ab3 3b2c 3bc2 c3 a2b2 4bc c2

    Ixy d2

    72b c c3b2 3bc c2

    b3 a2b2 8bc 2c2

    15. Solid circle A pR2

    yc RIx Iy

    p4

    R4

    rx ry R

    2

    Zx Zy 1:333R3

    SFx 1:698

    806

    Form

    ulasforStre

    ssandStra

    in[A

    PP.A

  • 16. Hollow circle A pR2 R2i yc R

    Ix Iy p4R4 R4i

    rx ry 12R2 R2i

    qZx Zy 1:333R3 R3i

    SFx 1:698R4 R3i RR4 R4i

    17. Very thin annulus A 2pRtyc R

    Ix Iy pR3trx ry 0:707R

    Zx Zy 4R2t

    SFx SFy 4

    p

    18. Sector of solid circle A aR2

    yc1 R 1 2 sin a

    3a

    yc2 2R sin a

    3a

    xc R sin a

    Ix R4

    4a sin a cos a 16 sin

    2 a9a

    !

    Iy R4

    4a sin a cos a

    Note: If a is small; a sin a cos a 23a3 2

    15a5

    rx R

    2

    1 sin a cos a

    a 16 sin

    2 a9a2

    s

    ry R

    2

    1 sin a cos a

    a

    r

    If a4 54:3, then

    Zx 0:6667R3 sin aa3

    2 tan a

    1=2" #

    Neutral axis x is located a distance

    R0:5a= tan a1=2 from the vertex.If a5 54:3, then

    Zx 0:6667R32 sin3 a1 sin a where theexpression 2a1 sin 2a1 a is solved for the valueof a1.Neutral axis x is located a distance R cos a1 fromthe vertex.

    If a4 73:09, then SFx Zxyc2

    Ix

    If 73:094a4 90, then SFx Zxyc1

    Ix

    Zy 0:6667R31 cos aIf a4 90 , then

    SFy 2:6667 sin a1 cos a

    a sin a cos aIf a5 90 , then

    SFy 2:66671 cos a

    a sin a cos a

    APP.A]

    Propertie

    sofaPlaneArea

    807

    TABLE A.1 Properties of sections (Continued)

  • TABLE A.1 Properties of sections (Continued)

    Form of section

    Area and distances from

    centroid to extremities

    Moments and products of inertia

    and radii of gyration about central axes

    Plastic section moduli,

    shape factors, and locations

    of plastic neutral axes

    19. Segment of solid circle

    (Note: If a4p=4, useexpressions from case 20)

    A R2a sin a cos a

    yc1 R 1 2 sin

    3 a3a sin a cos a

    " #

    yc2 R2 sin

    3 a3a sin a cos a cos a" #

    xc R sin a

    Ix R4

    4a sin a cos a 2 sin3 a cos a 16 sin

    6 a9a sin a cos a

    " #

    Iy R4

    123a 3 sin a cos a 2 sin3 a cos a

    rx R

    2

    1 2 sin

    3 a cos aa sin a cos a

    16 sin6 a

    9a sin a cos a2

    s

    ry R

    2

    1 2 sin

    3 a cos a3a sin a cos a

    s

    20. Segment of solid circle

    (Note: Do not use if

    a > p=4

    A 23R2a31 0:2a2 0:019a4

    yc1 0:3Ra21 0:0976a2 0:0028a4yc2 0:2Ra21 0:0619a2 0:0027a4xc Ra1 0:1667a2 0:0083a4

    Ix 0:01143R4a71 0:3491a2 0:0450a4Iy 0:1333R4a51 0:4762a2 0:1111a4rx 0:1309Ra21 0:0745a2ry 0:4472Ra1 0:1381a2 0:0184a4

    21. Sector of hollow circle A at2R t

    yc1 R 1 2 sin a

    3a1 t

    R 1

    2 t=R

    yc2 R2 sin a

    3a2 t=R 1 t

    R

    2 sin a 3a cos a

    3a

    xc R sin a

    Ix R3t 1 3t

    2R t

    2

    R2 t

    3

    4R3

    a sin a cos a 2 sin2 a

    a

    !

    t2 sin

    2 a3R2a2 t=R 1

    t

    R t

    2

    6R2

    #

    Iy R3t 1 3t

    2R t

    2

    R2 t

    3

    4R3

    a sin a cos a

    rx IxA

    r; ry

    Iy

    A

    r(Note: If t=R is small, a canexceed p to form anoverlapped annulus)

    808

    Form

    ulasforStre

    ssandStra

    in[A

    PP.A

  • Note: If a is small:sin aa

    1 a2

    6 a

    4

    120; a sin a cos a 2

    3a3 1 a

    2

    5 2a

    4

    105

    ;

    sin2 aa

    a 1 a2

    3 2a

    4

    45

    cos 1 a2

    2 a

    4

    24; a sin a cos a 2 sin

    2 aa

    2a5

    451 a

    2

    7 a

    4

    105

    22. Solid semicircle A p2

    R2

    yc1 0:5756Ryc2 0:4244Rxc R

    Ix 0:1098R4

    Iy p8

    R4

    rx 0:2643R

    ry R

    2

    Zx 0:3540R3; Zy 0:6667R3

    SFx 1:856; SFy 1:698Plastic neutral axis x is located a distance 0:4040R

    from the base.

    23. Hollow semicircle

    Note: b R Ri2

    t R Ri

    A p2R2 R2i

    yc2 4

    3pR3 R2iR2 R2i

    or

    yc2 2b

    p1 t=b

    2

    12

    " #

    yc1 R yc2xc R

    Ix p8R4 R4i

    8

    9pR3 R3i 2

    R2 R2ior

    Ix 0:2976tb3 0:1805bt3 0:00884t5

    b

    Iy p8R4 R4i

    or

    Iy 1:5708b3t 0:3927bt3

    Let yp be the vertical distance from the bottom to the

    plastic neutral axis.

    yp 0:7071 0:2716C 0:4299C2 0:3983C3RZx 0:8284 0:9140C 0:7245C2

    0:2850C3R2twhere C t=RZy 0:6667R3 R3i

    24. Solid ellipse A pabyc axc b

    Ix p4

    ba3

    Iy p4

    ab3

    rx a

    2

    ry b

    2

    Zx 1:333a2b; Zy 1:333b2aSFx SFy 1:698

    APP.A]

    Propertie

    sofaPlaneArea

    809

    TABLE A.1 Properties of sections (Continued)

  • TABLE A.1 Properties of sections (Continued)

    Form of section

    Area and distances from

    centroid to extremities

    Moments and products of inertia

    and radii of gyration about central axes

    Plastic section moduli,

    shape factors, and locations

    of plastic neutral axes

    25. Hollow ellipse A pab aibiyc axc b

    Ix p4ba3 bia3i

    Iy p4ab3 aib3i

    rx 1

    2

    ba3 bia3iab aibi

    s

    ry 1

    2

    ab3 aib3iab aibi

    s

    Zx 1:333a2b a2i biZy 1:333b2a b2i ai

    SFx 1:698a3b a2i biaa3b a3i bi

    SFy 1:698b3a b2i aibb3a b3i ai

    Note: For this case the inner and outer perimeters are both ellipses and the wall

    thickness is not constant. For a cross section with a constant wall thickness see

    case 26.

    26. Hollow ellipse with

    constant wall thickness t.

    The midthickness

    perimeter is an ellipse

    (shown dashed).

    0:2 < a=b < 5

    A pta b 1 K1a ba b 2" #

    where

    K1 0:2464 0:002222a

    b b

    a

    yc a t

    2

    xc b t

    2

    Ix p4

    ta2a 3b 1 K2a ba b 2" #

    p16

    t33a b 1 K3a ba b 2" #

    where

    K2 0:1349 0:1279a

    b 0:01284 a

    b

    2

    K3 0:1349 0:1279b

    a 0:01284 b

    a

    2For Iy interchange a and b in the expressions

    for Ix;K2, and K3

    Zx 1:3333taa 2b 1 K4a ba b 2" #

    t3

    3

    where

    K4 0:1835 0:895a

    b 0:00978 a

    b

    2For Zy interchange a and b in the expression for Zxand K4.

    See the note on maximum

    wall thickness in case 27.

    810

    Form

    ulasforStre

    ssandStra

    in[A

    PP.A

  • 27. Hollow semiellipse with

    constant wall thickness t.

    The midthickness

    perimeter is an ellipse

    (shown dashed).

    0:2 < a=b < 5

    Note: There is a limit on the

    maximum wall thickness

    allowed in this case. Cusps

    will form in the perimeter at

    the ends of the major axis

    if this maximum is exceeded.

    Ifa

    b4 1; then tmax

    2a2

    b

    Ifa

    b5 1; then tmax

    2b2

    a

    A p2

    ta b 1 K1a ba b 2" #

    where

    K1 0:2464 0:002222a

    b b

    a

    yc2 2a

    pK2

    t2

    6paK3

    where

    K2 1 0:3314C 0:0136C2 0:1097C3

    K3 1 0:9929C 0:2287C2 0:2193C3

    Using C a ba b

    yc1 a t

    2 yc2

    xc b t

    2

    IX p8

    ta2a 3b 1 K4a ba b 2" #

    p32

    t33a b 1 K5a ba b 2" #

    where

    K4 0:1349 0:1279a

    b 0:01284 a

    b

    2

    K5 0:1349 0:1279b

    a 0:01284 b

    a

    2

    Ix IX Ay2c2

    For Iy use one-half the value for Iy in case 26.

    Let yp be the vertical distance from the bottom to the

    plastic neutral axis.

    yp C1 C2a=b

    C3a=b2 C4

    a=b3

    a

    where if 0:25 < a=b4 1, then

    C1 0:5067 0:5588D 1:3820D2

    C2 0:3731 0:1938D 1:4078D2

    C3 0:1400 0:0179D 0:4885D2

    C4 0:0170 0:0079D 0:0565D2or if 14a=b < 4, then

    C1 0:4829 0:0725D 0:1815D2

    C2 0:1957 0:6608D 1:4222D2

    C3 0:0203 1:8999D 3:4356D2

    C4 0:0578 1:6666D 2:6012D2where D t=tmax and where 0:2 < D4 1

    Zx C5 C6a=b

    C7a=b2 C8

    a=b3

    4a2t

    where if 0:25 < a=b4 1, then

    C5 0:0292 0:3749D1=2 0:0578DC6 0:3674 0:8531D1=2 0:3882DC7 0:1218 0:3563D1=2 0:1803DC8 0:0154 0:0448D1=2 0:0233D

    or if 14a=b < 4, thenC5 0:2241 0:3922D1=2 0:2960DC6 0:6637 2:7357D1=2 2:0482DC7 1:5211 5:3864D1=2 3:9286DC8 0:8498 2:8763D1=2 1:8874D

    For Zy use one-half the value for Zy in case 26.

    APP.A]

    Propertie

    sofaPlaneArea

    811

    TABLE A.1 Properties of sections (Continued)

  • TABLE A.1 Properties of sections Continued)

    Form of section

    Area and distances from

    centroid to extremities

    Moments and products of inertia

    and radii of gyration about central axes

    Plastic section moduli,

    shape factors, and locations

    of plastic neutral axes

    28. Regular polygon with n

    sidesA a

    2n

    4 tan a

    r1 a

    2 sin a

    r2 a

    2 tan a

    If n is odd

    y1 y2 r1 cos an 1

    2

    p

    2

    If n=2 is odd

    y1 r1; y2 r2If n=2 is even

    y1 r2; y2 r1

    I1 I2 124 A6r21 a2

    r1 r2 1246r21 a2

    q For n 3, see case 9. For n 4, see cases 1 and 13.For n 5, Z1 Z2 0:8825r31. For an axis perpen-dicular to axis 1, Z 0:8838r31. The location of this

    axis is 0.7007a from that side which is perpendicular

    to axis 1. For n56, use the following expression for aneutral axis of any inclination:

    Z r31 1:333 13:9081

    n

    2 12:528 1

    n

    3" #

    29. Hollow regular polygon

    with n sidesA nat 1 t tan a

    a

    r1 a

    2 sin a

    r2 a

    2 tan a

    If n is odd

    y1 y2 r1 cos an 1

    2 p

    2

    If n=2 is odd

    y1 r1; y2 r2If n=2 is even

    y1 r2; y2 r1

    I1 I2 na3t

    8

    1

    3 1

    tan2 a

    1 3 t tan aa

    4 t tan aa

    22 t tan a

    a

    3" #

    r1 r2 a8

    p

    1

    3

    1

    tan2 a1 2 t tan a

    a 2 t tan a

    a

    2" #vuut

    812

    Form

    ulasforStre

    ssandStra

    in[A

    PP.A

    Table of ContentsAppendix A: Properties of a Plane AreaAppendix B:Glossary: DefinationsAppendix C: Composite Materials