25284_mws_gen_sle_ppt_seidel2

download 25284_mws_gen_sle_ppt_seidel2

of 16

Transcript of 25284_mws_gen_sle_ppt_seidel2

  • 8/8/2019 25284_mws_gen_sle_ppt_seidel2

    1/16

    1

    Gauss-Siedel Method

  • 8/8/2019 25284_mws_gen_sle_ppt_seidel2

    2/16

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel MethodAn iterative method.

    Basic Procedure:

    -Algebraically solveeach linearequation for xi

    -Assumean initial guesssolution array

    -Solve foreach xi and repeat

    -Useabsolute relativeapproximateerroraftereachiterationtocheckiferroris within apre-specifiedtolerance.

  • 8/8/2019 25284_mws_gen_sle_ppt_seidel2

    3/16

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel MethodWhy?

    The Gauss-Seidel Methodallowstheusertocontrol round-offerror.

    Elimination methodssuchas Gaussian Elimination and LU

    Decomposition arepronetoproneto round-offerror.

    Also: Ifthephysicsoftheproblemareunderstood,acloseinitialguesscan bemade,decreasing the numberofiterations needed.

  • 8/8/2019 25284_mws_gen_sle_ppt_seidel2

    4/16

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel MethodAlgorithm

    A setofn equationsandn unknowns:

    11313212111... bxaxaxaxa nn !

    2323222121... bxaxaxaxa n2n !

    nnnnnnn bxaxaxaxa ! ...332211

    . .

    . .

    . .

    If: thediagonal elementsare

    non-zero

    Rewrite eachequation solvingforthecorresponding unknown

    ex:

    Firstequation,solve for x1

    Secondequation,solve for x2

  • 8/8/2019 25284_mws_gen_sle_ppt_seidel2

    5/16

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel MethodAlgorithm

    Rewriting eachequation

    11

    13132121

    1

    a

    xaxaxacx nn

    !

    --

    nn

    nnnnnn

    n

    nn

    nnnnnnnnnn

    nn

    a

    xaxaxacx

    a

    xaxaxaxacx

    a

    xaxaxacx

    11,2211

    1,1

    ,122,122,111,111

    22

    23231212

    2

    !

    !

    !

    --

    --

    ///

    --

    FromEquation 1

    Fromequation 2

    Fromequation n-1

    Fromequation n

  • 8/8/2019 25284_mws_gen_sle_ppt_seidel2

    6/16

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel MethodAlgorithm

    General Formofeachequation

    11

    11

    11

    1a

    xac

    x

    n

    jj

    jj

    {!

    !

    22

    21

    22

    2a

    xac

    x

    j

    n

    jj

    j

    {!

    !

    1,1

    11

    ,11

    1

    {!

    !

    nn

    n

    njj

    jjnn

    na

    xac

    x

    nn

    n

    njj jnjn

    na

    xac

    x{!

    !

    1

  • 8/8/2019 25284_mws_gen_sle_ppt_seidel2

    7/16

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel MethodAlgorithm

    General Form forany row i

    .,,2,1,

    1

    nia

    xac

    xii

    n

    ijj

    jiji

    i -!

    !

    {!

    How or wherecan thisequation beused?

  • 8/8/2019 25284_mws_gen_sle_ppt_seidel2

    8/16

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel MethodSolve fortheunknowns

    Assumean initial guess for [X]

    -

    n

    -n

    2

    x

    x

    x

    x

    1

    1

    /

    Use rewritten equationstosolve for

    each valueof xi.

    Important:Remembertousethe

    most recent valueof xi.Which

    meanstoapply valuescalculatedto

    thecalculations remaining in the

    current iteration.

  • 8/8/2019 25284_mws_gen_sle_ppt_seidel2

    9/16

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel MethodCalculatethe AbsoluteRelative ApproximateError

    100x

    xxnew

    i

    old

    i

    new

    i

    ia v

    !I

    So when hastheanswerbeen found?

    Theiterationsarestopped when theabsolute relative

    approximateerroris lessthan aprespecifiedtolerance forall

    unknowns.

  • 8/8/2019 25284_mws_gen_sle_ppt_seidel2

    10/16

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel Method: Example 2Given thesystemofequations

    15x-3x12x321!

    283x5xx321

    !

    7613x7x3x321 !

    -

    !

    -

    1

    0

    1

    3

    2

    1

    x

    x

    x

    Withan initial guessof

    Thecoefficientmatrix is:

    ? A

    -

    !

    1373

    351

    5312

    A

    Will thesolution convergeusing the

    Gauss-Siedel method?

  • 8/8/2019 25284_mws_gen_sle_ppt_seidel2

    11/16

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel Method: Example 2

    ? A

    -

    !

    1373

    351

    5312

    A

    Checking ifthecoefficientmatrix isdiagonally dominant

    43155232122

    !!u!! aaa

    10731313 323133 !!u!! aaa

    8531212 131211 !!u!! aaa

    Theinequalitiesareall trueandat leastone row isstrictlygreaterthan:

    Therefore: Thesolution shouldconvergeusing the Gauss-Siedel Method

  • 8/8/2019 25284_mws_gen_sle_ppt_seidel2

    12/16

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel Method: Example 2

    -

    !

    -

    -

    7628

    1

    1373351

    5312

    3

    2

    1

    aa

    a

    Rewriting eachequation

    12

    531 321

    xxx

    !

    5

    328 312

    xxx

    !

    13

    7376 213

    xxx

    !

    Withan initial guessof

    -

    !

    -

    1

    0

    1

    3

    2

    1

    xx

    x

    50000.0

    12

    150311

    !

    !x

    9000.

    45

    135.028

    2!

    !

    x

    0923.3

    13

    9000.4750000.03763 !

    !x

  • 8/8/2019 25284_mws_gen_sle_ppt_seidel2

    13/16

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel Method: Example 2Theabsolute relativeapproximateerror

    %662.6710050000.0

    0000.150000.01a

    !v

    !

    %00.1001009000.4

    09000.42a

    !v

    !

    %662.671000923.3

    0000.10923.33a

    !v!

    Themaximumabsolute relativeerrorafterthe firstiteration is 100%

  • 8/8/2019 25284_mws_gen_sle_ppt_seidel2

    14/16

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel Method: Example 2

    -

    !

    -

    8118.3

    7153.3

    14679.0

    3

    2

    1

    x

    x

    x

    After Iteration #1

    14679.0

    12

    0923.359000.4311

    !

    !x

    7153.35

    0923.3314679.0282 !

    !x

    8118.3

    13

    900.4714679.03763

    !

    !x

    Substituting the x valuesintotheequations After Iteration #2

    -

    !

    -

    0923.3

    9000.4

    5000.0

    3

    2

    1

    x

    x

    x

  • 8/8/2019 25284_mws_gen_sle_ppt_seidel2

    15/16

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel Method: Example 2Iteration #2 absolute relativeapproximateerror

    %62.24010014679.0

    50000.014679.01

    !v

    !a

    %887.311007153.3

    9000.47153.32

    !v

    !a

    %876.18100

    8118.3

    0923.38118.33

    !v

    !a

    Themaximumabsolute relativeerrorafterthe firstiteration is 240.62%

    Thisismuch largerthan themaximumabsolute relativeerrorobtainedin

    iteration #1. Isthisaproblem?

  • 8/8/2019 25284_mws_gen_sle_ppt_seidel2

    16/16

    http://numericalmethods.eng.usf.edu

    Gauss-Seidel Method: Example 2Repeating moreiterations,the following valuesareobtained

    1aI

    2aI

    3aI

    Iteration a1 a2 a3

    1

    2

    3

    4

    5

    6

    0.50000

    0.14679

    0.74275

    0.94675

    0.99177

    0.99919

    67.662

    240.62

    80.23

    21.547

    4.5394

    0.74260

    4.900

    3.7153

    3.1644

    3.0281

    3.0034

    3.0001

    100.00

    31.887

    17.409

    4.5012

    0.82240

    0.11000

    3.0923

    3.8118

    3.9708

    3.9971

    4.0001

    4.0001

    67.662

    18.876

    4.0042

    0.65798

    0.07499

    0.00000

    -

    !

    -

    4

    3

    1

    3

    2

    1

    x

    x

    x

    -

    !

    -

    0001.4

    0001.3

    99919.0

    3

    2

    1

    x

    x

    xThesolution obtained

    isclosetotheexactsolution of