2132-1 Winter College on Optics and...

47
2132-1 Winter College on Optics and Energy J. Nelson 8 - 19 February 2010 Imperial College London U.K. Third generation photovoltaics

Transcript of 2132-1 Winter College on Optics and...

Page 1: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

2132-1

Winter College on Optics and Energy

J. Nelson

8 - 19 February 2010

Imperial CollegeLondon

U.K.

Third generation photovoltaics

Page 2: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

ICTP Winter College on Optics and Energy8 – 19 February 2010

Jenny NelsonDepartment of PhysicsImperial College London

([email protected])

Third generation photovoltaics

Page 3: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

THE FUTURE FOR PV

Page 4: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Strategies to cost reduction

Use lessphotovoltaic

material?

Use cheaperphotovoltaic

material?

More workper photon?

1995 2000 2005 2010 2015 2020 2025 2030 2035

1

10 ~ 30 c / kWh

system module

Cos

t / U

SD

Wp-1

Year

~ 3 c / kWh

Barrier to implementation is the capital cost of the module

Dominated by the cost of silicon

Rep

ort I

EA

-PVP

S T

1-16

:200

7

Page 5: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Outline

1. Future directions for PV

2. Using cheaper photovoltaic materials

3. Limiting efficiency of solar cells

4. Routes to more work per photon

5. More efficient light harvesting

Page 6: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Cheaper photovoltaic materialsCheaper photovoltaic materials

To be treated in detail in future lectures

Page 7: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Device structures

• Donor‐acceptor bulk heterojunction devices

Al cathode

Donor-Acceptor blend: e.g. polymer / fullerene, polymer / nanocrystal, polymer / polymer

ITO anode

Glass substrate

h+e-

• Both components deposited from same solution

Page 8: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

contacts active layer

Current and voltage output

flexible substratebarrier coating

Light

Generic device structure

• Active layer ~100 nm thick

• Low temperature processing enables use of flexible substrates

Page 9: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Outline

1. Future directions for PV

2. Using cheaper photovoltaic materials

3. Limiting efficiency of solar cells

4. Routes to more work per photon

5. More efficient light harvesting

Page 10: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

National Renewable Energy Laboratory

Page 11: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Detailed balance limit

(i) One electron hole pair per photon with hν > Eg, 

(ii)  Carriers  relax  to  form  separate  Fermi  distributions  at  lattice  temperature Tambient with quasi Fermi levels separated by Δμ.

(iii) All electrons extracted with same electrochemical potential Δμ = eV

(iv) Only loss process is spontaneous emission

Band gap

Page 12: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Limiting power conversion efficiency

Ta

Ta, μ

Ts

Ta

θs

Work

A fraction Xβ of the “sky” emits solar radiation at a black body temperature of Tsun

A fraction (1 ‐ Xβ) of the “sky”emits ambient radiation at a black body temperature of 

Tambient

The photovoltaic energy converter emits ambient radiation at a black body 

temperature of Tambient and a chemical potential of Δμ

The remaining charge pairs provide a current of electrons with chemical potential of Δμ

Page 13: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Calculation of limiting efficiency

( ) ∫ −=Δ Δ−

max

min1

2,,, /)(

2

23maxmin

E

ETkE dE

eE

chTEEN

πμ

( ) ∫ −=Δ Δ−

max

min1

2,,, /)(

3

23maxmin

E

ETkE dE

eE

chTEEL

πμ

( ) ( ) ( ) ( ){ }qVTENTENXfTENXfqVJ agagssgs ,,,0,,,10,,,)( ∞−∞−+∞=

)0,,,0( sss TLXfP ∞=sP

VVJ )(=η

Photon flux density from sun (T = Tsun) or ambient (T = Tambient)

Irradiance from sun (T = Tsun) 

Balance fluxes to obtain current

Power conversion efficiency 

Page 14: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Ts, ΔμTs, 0

Δμ N

Tsun,0

Ts, 0

1 - Xβ

N

Particle flux

( ) ( ) ( ) ( )dEEbedEEbXdEEbXeJ

ggg Eambient

kT

Eambient

Esun ∫∫∫

∞Δ

∞∞

−−+= /1 μββ

( )1/0 −−= kTeV

sc eJJJ

Page 15: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Pho

ton

flux

dens

ity /

s-1 m

-2 e

V-1

Photon Energy / eV

sun ambient

Eg

Page 16: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Pho

ton

flux

dens

ity /

s-1 m

-2 e

V-1

Photon Energy / eV

sun ambient

Eg

Jsc

J0

Page 17: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Pho

ton

flux

dens

ity /

s-1 m

-2 e

V-1

Photon Energy / eV

sun ambient

Eg

Page 18: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Pho

ton

flux

dens

ity /

s-1 m

-2 e

V-1

Photon Energy / eV

sun ambient

Eg

Jsc

J0

Page 19: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

0.0 0.5 1.0 1.5 2.0

0

200

400

600

800

Eg = 2.0 eV

Eg = 0.7 eV

Cur

rent

den

sity

/ A

m-2

Voltage / V

0.0 0.5 1.0 1.5 2.0 2.5 3.00

100

200

300

400

500

600

700

800

0

2

4

Voc

Jsc

Phot

ocur

rent

den

sity

/ A

m-2

Band gap / eV

Ope

n ci

rcui

t Vol

tage

/ V

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.1

0.2

0.3

0.4

0.5

0.6

X = 1

Effic

ienc

y

Band gap / eV

Page 20: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Limiting efficiency of single band gap cell

0

200

400

600

800

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

Photon Energy (eV)

Irrad

ianc

e (W

m-2

eV-1

)

Optimum cell converts 31% of power

Power spectrum from black body sun at 5760K

Lost by thermalisation

Lost by transmission

Band gap

Page 21: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Actual versus ideal PV performance

0.00

0.10

0.20

0.30

0.40

0.50 1.00 1.50 2.00 2.50

Band Gap / eV

Effic

ienc

y

Molecular

amorphous SiCdTe

GaAsc-Si

poly-SiCIGS

Page 22: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Actual versus ideal PV performance

0

10

20

30

40

50

60

70

80

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Voc /V

Jsc

/ mA

cm

-2

GaAs

a-Si

CdTe

poly-Si

c-Si

CIGS

theoretical limit

Page 23: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Limiting efficiency under full concentration

( ) ∫ −=Δ Δ−

max

min1

2,,, /)(

2

23maxmin

E

ETkE dE

eE

chTEEN

πμ

( ) ∫ −=Δ Δ−

max

min1

2,,, /)(

3

23maxmin

E

ETkE dE

eE

chTEEL

πμ

)0,,,0( sss TLXfP ∞=sP

VVJ )(=η

( ) ( ){ }qVTENTENqVJ agsg ,,,0,,,)( ∞−∞=

Photon flux density from sun (T = Tsun) or ambient (T = Tambient)

Irradiance from sun (T = Tsun) 

Balance fluxes to obtain current

At full concentration

Power conversion efficiency 

Page 24: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Limiting efficiency under full concentration

Ta

Ta, μ

Ts

Ta

θs

Work

Ta

Ta, μ

Ts

θs

Work

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2 2.5 3

Band gap / eVEf

ficie

ncy

1 sun

full concentration

Si GaAs

Page 25: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Outline

1. Future directions for PV

2. Using cheaper photovoltaic materials

3. Limiting efficiency of solar cells

4. Routes to more work per photon

5. More efficient light harvesting

Page 26: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

How to get more ...

• More work per photon with:

– more band gaps

• tandems and intermediate bands

– more work per photon

• prevent carrier thermalisation in “hot carrier” solar cells

– more electrons per photon

• Impact ionisation and up‐or down‐conversion of light

Page 27: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Route 1: Multiple band gaps

IR IR

red

red blue blue

Single band gap Two band gaps

0

200

400

600

800

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

Photon Energy (eV)

Irrad

ianc

e (W

m-2

eV-1

) Black body sunOne band gapTwo band gapsThree band gaps

• Approaches using tandem cells, spectral splitting and quantum semiconductor structures

Page 28: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Triple junction cell

GaInP GaAs Ge

AlInP GaInP

GaInP

AlGaInP

GaInP

GaAs

GaAs

GaAs

GaInP

GRID

n+

n

n

n

p

p

n

p

p

Ge substrate p doped

TOP CELL

GaAs GaAs n++

p++ TUNNEL JUNCTION

MIDDLE CELL

CONTACTING LAYER

GaAs GaAs n++

p++ TUNNEL JUNCTION

(Al)GaAs n

Ge n BOTTOM CELL

Highest efficiency for a 3 junction tandem: 40.7 % under concentration(Spectrolab, Dec 2006)

Page 29: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Quantum well structures in solar cells

• Additional low energy photons absorbed in QWs in active region

• Charge carriers escape from QWs ‐ less energy lost by thermalisation than in homojunction

• Voc intermediate between values expected for QW and barrier material. Higher efficiency possible.

Page 30: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Single Junction Quantum Well Solar Cell

June 2009 world record:28.3% at 535 suns

1µm

>1µm

Page 31: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Route 2: Slowed cooling

generation equilibriation cooling recombination

3/2 kT h 3/2 kT a

• Use quantum nanostructures or molecular systems to harvest photogenerated charges before cooling?

Page 32: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Hot carrier solar cells

Photogenerated electrons scatter with each other but not with lattice⇒ Fermi Dirac distribution at temperature TH (>Ta) and μH

Electrons extracted isoentropicallythrough narrow bandwidth contact

EoutEgμout = qV

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2

Band gap / eVEf

ficie

ncy

1 sun

full concentration

Efficiency of hot carrier solar cell:

Maximum efficiency same as thermodynamic limit

Page 33: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Route 3: Utilising high and low energy photons by up‐ and down‐conversion

• Up‐conversion: low energy photons converted into high energy photon (~ Eg)and absorbed by device. E.g. rare earth doped ceramics

• Down‐conversion: high energy photons generate multiple lower energy photons (~ Eg)

Solar cellInsulator

up-converter

mirrorE~Eg

Page 34: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Multiple electrons per photon

c.b.

v.b.

k k

E c0

0

E

E g

k + k 0

• Generate multiple electrons per photon by impact ionisation (or Auger generation)

• Observed experimentally in Si and Ge, and now in PbSequantum dots 

• Analysis equivalent to hot electron solar cell with μH = 00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2

Band gap / eV

Effic

ienc

y

Auger full

Auger 1 sun

Ellingson et al, SPIE, 2006

Page 35: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Outline

1. Future directions for PV

2. Using cheaper photovoltaic materials

3. Limiting efficiency of solar cells

4. Routes to more work per photon

5. More efficient light harvesting

Page 36: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

More More photogenerationphotogeneration per unit volumeper unit volumeb s

b s

Anti-reflection coatings

X b s

Concentration

b s

Light trapping

b s

Reabsorbing luminescence

Page 37: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Concentration

• Parabolic concentrators, Fresnel lenses

• Need for direct sunlight

• Use with high efficiency (III‐V) photovoltaic materials

• Use with optical fibre technology?

0.00

0.10

0.20

0.30

0.40

0.00 0.50 1.00 1.50 2.00 2.50

Band Gap (eV)

Effic

ienc

y

1 sun

1000 suns

Parabolic concentrator

Fresnel lens

SolarSystems

FISE, Ioffe Inst.

Page 38: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Light trapping

• Light trapping structures: increase optical path length, reduce reflection

• Aim to reduce silicon cell thickness from ~300 μm to ~10 μm

More in Prof Bagnall’s lecture …

Page 39: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Better light harvesting with optical design: planar structures

• Device structures ~ wavelength of light

• Interference critically important

• Design device structures to maximise absorption in active layer and at donor‐acceptor interface

• Can afford to lose absorption at short λ to gain at long λ

e.g., Pettersson et al, J.Appl.Phys. 86, 487 (1999)

Page 40: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Type 1 Type 2 Type 3

Light trapping in grating structures

• Larger absorption enhancements available with 1D or 2D grating structures.

• Rigorous Coupled Wave Analysis to predict absorptance of patterned device

• Soft embossing to imprint grating on polymer

Felix Braun

Page 41: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Luminescent concentrator

Page 42: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Luminescent concentrator

• Luminescent dyes or quantum dots dispersed in refractive material

• Cheaper than imaging concentrators

• Harvests diffuse light

• Able to concentrate photon energies near band gap of cell

+-

Page 43: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Stacked luminescent concentrators 

• Stacked luminescent concentrators to split the solar spectrum

• Selective band gap cells for higher efficiency (more work per photon)

• Research at Imperial on use of II‐VI quantum dots as luminescent species, (A. J. Chatten et al.)

Small band gap cell

Intermediate band gap cell

Large band gap cell

Page 44: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Summary

• The cost per Watt of PV electricity can be increased by:

• Reducing the cost of PV material

– By use of inorganic thin film materials

– E.g. by use of molecular PV materials

• Increasing the amount of work per photon

– with multijunction “tandem” structures or other (quantum) heterostructures

– Exploiting hot carrier effects or multiple electrons per photon 

• Reducing the amount of PV material per photon harvested 

– Concentration of light (including luminescent concentrators)

– Light trapping

Page 45: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Key challenges

VoltageC

urre

nt d

ensi

ty J

Silicon

Voc limited by:interfacial recombinationinterfacial energy levels

Jsc limited by: absorption of red light,interface morphologycharge transport

Fill factor limited by: low mobilityseries resistanceshort-circuits

Best η 25%

Organic solar cellBest η ~6%

400 500 6 00 70 0 80 0 900 10 00 110 0 120 0 1 3000

1

Irrad

ianc

e /W

m-2nm

-1

W a v e le n g th / nm

Page 46: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

Exploiting Plasmonic Effects in Solar Cells

Internal Scattering  Field EnhancementSurface Plasmon 

Polariton Propagation

Page 47: 2132-1 Winter College on Optics and Energyindico.ictp.it/event/a09136/session/10/contribution/7/material/0/0.pdf · Optics & Solar Energy : Nelson : Lec. 3 ICTP Winter College on

Optics & Solar Energy : Nelson : Lec. 3

0.0 0.5 1.0 1.5 2.0

0

200

400

600

800

Eg = 2.0 eV

Eg = 0.7 eV

Cur

rent

den

sity

/ A

m-2

Voltage / V

0.0 0.5 1.0 1.5 2.0 2.5 3.00

100

200

300

400

500

600

700

800

0

2

4

Voc

Jsc

Phot

ocur

rent

den

sity

/ A

m-2

Band gap / eV

Ope

n ci

rcui

t Vol

tage

/ V

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.1

0.2

0.3

0.4

0.5

0.6

X = 1

Full concentration

Effic

ienc

y

Band gap / eV