21-Cheng-Mag pole oxid activ energy eval › wp-content › ... › Magnetic...Evaluation.pdf ·...

16
Biography Yuhang Cheng got his PhD degree from the department of Materials Science and Engineering, Huazhong University of Science and Technology, China, in 1997. AGer that, he worked in the fields of thin film, metallurgy, process development, failure analysis, and reliability. Currently, he is working at Seagate Technology as a Development Staff Engineer in the group of Reliability and Thermal Mechanical Design, division of Advanced Transducer Development (ATD). His work is focused on the reliability test metrology development, failure mode and failure mechanism invesPgaPon, reliability improvement, and new material development for next generaPon magnePc recording heads.

Transcript of 21-Cheng-Mag pole oxid activ energy eval › wp-content › ... › Magnetic...Evaluation.pdf ·...

Page 1: 21-Cheng-Mag pole oxid activ energy eval › wp-content › ... › Magnetic...Evaluation.pdf · 21-Cheng-Mag pole oxid activ energy eval.pptx Author: Les Warrington Created Date:

Biography  Yuhang   Cheng   got   his   PhD   degree   from   the   department   of  Materials   Science   and   Engineering,   Huazhong   University   of  Science  and  Technology,  China,  in  1997.  AGer  that,  he  worked  in  the  fields   of   thin   film,  metallurgy,   process   development,   failure  analysis,  and  reliability.    Currently,  he  is  working  at  Seagate  Technology  as  a  Development  Staff  Engineer  in  the  group  of  Reliability  and  Thermal  Mechanical  Design,  division  of  Advanced  Transducer  Development  (ATD).  His  work   is   focused   on   the   reliability   test   metrology   development,  failure   mode   and   failure   mechanism   invesPgaPon,   reliability  improvement,   and   new   material   development   for   next  generaPon  magnePc  recording  heads.  

Page 2: 21-Cheng-Mag pole oxid activ energy eval › wp-content › ... › Magnetic...Evaluation.pdf · 21-Cheng-Mag pole oxid activ energy eval.pptx Author: Les Warrington Created Date:

MagnePc  pole  oxidaPon  acPvaPon  energy  evaluaPon  

Yuhang  Cheng,  ScoR  Franzen,  Mike  Seigler    

Seagate  Technology  7801  Computer  Ave  S.  Bloomington,  MN  55439  

 

ASTR  2014,  Sep  10  -­‐  12,  St.  Paul,  MN  September  5,  2014   2  

Page 3: 21-Cheng-Mag pole oxid activ energy eval › wp-content › ... › Magnetic...Evaluation.pdf · 21-Cheng-Mag pole oxid activ energy eval.pptx Author: Les Warrington Created Date:

Area  density  needs  for  Hard  Disk  Drive  

Area  density  predicPon  for  hard  disk  drive  

Y.  Shiroishi,  et  al.,  IEEE  Tran.  of  Mag.,  45(10)(2009)3816  

𝐾↓𝑢 𝑉/𝑘↓𝐵 𝑇 >70  Ku: anisotropy energy density. V: grain volume. kB: Bozeman constant. T: temperature

Signal  to  noise  ra-o  (SNR):  

Page 4: 21-Cheng-Mag pole oxid activ energy eval › wp-content › ... › Magnetic...Evaluation.pdf · 21-Cheng-Mag pole oxid activ energy eval.pptx Author: Les Warrington Created Date:

What  is  Heat  Assisted  MagnePc  Recording  (HAMR)?  

Ø  GMR:  Giant  magnetoresistance.  

Page 5: 21-Cheng-Mag pole oxid activ energy eval › wp-content › ... › Magnetic...Evaluation.pdf · 21-Cheng-Mag pole oxid activ energy eval.pptx Author: Les Warrington Created Date:

Challenge  for  HAMR:  Pole  oxidaPon  

Ø  Light  absorpPon  à  High  temperature  at  the  pole  Pp.  

Ø  High  temperature  àPole  oxidaPon.  Ø  WG:  waveguide.  

Mark  H.  Kryder,  et  al.,  Procedings  of  the  IEEE,  96(11)(2008)1810  Challener  et  al.,  Nat.  Photonics,  220  (2009)  

Pole  temperature  

Page 6: 21-Cheng-Mag pole oxid activ energy eval › wp-content › ... › Magnetic...Evaluation.pdf · 21-Cheng-Mag pole oxid activ energy eval.pptx Author: Les Warrington Created Date:

Ø Mo-va-on:  •  Development  of    pole  oxidaPon  acPvaPon  energy  evaluaPon  for  HAMR  

heads.  •  Compare  pole  oxidaPon  acPvaPon  energy  of  two  Head  Over  Coats  (HOC).  

Ø  Experimental  details  •  Equipment:      

o  Carbolite  air  oven  (RT-­‐500  °C)  with  high  temperature  uniformity.  

•   Head  over  coat  (HOC):    §  1)  HOC1  §  2)  HOC2  

•  Scanning  Electron  Microscipe  (SEM)                used  to  evaluate  pole  corrosion.

Page 7: 21-Cheng-Mag pole oxid activ energy eval › wp-content › ... › Magnetic...Evaluation.pdf · 21-Cheng-Mag pole oxid activ energy eval.pptx Author: Les Warrington Created Date:

AcPvaPon  calculaPon  

K: rate constant or lifetime.

A: Arrhenius constant;

Ea: activation energy (eV) of the failure model;

T: testing temperature (° K);

KB: Boltzmann’s constant (8.6173x10-5 eV/°K)

Arrhenius equation:

𝑘=𝐴∙ 𝑒↑− 𝐸↓𝑎 ⁄𝐾↓𝐵 𝑇     ln (𝑘) = ln (𝐴) + 𝐸↓𝑎 /𝐾↓𝐵  ∙ 1/𝑇   

Page 8: 21-Cheng-Mag pole oxid activ energy eval › wp-content › ... › Magnetic...Evaluation.pdf · 21-Cheng-Mag pole oxid activ energy eval.pptx Author: Les Warrington Created Date:

Design  of  accelerated  life  Pme  test  Ø  Pole  temperature  during  operaPon:  

o  Difficult  to  measure  pole  temperature  during  operaPon  due  to  small  size  of  the  pole  Pp  and  interacPon  with  laser  light.  

o  Modeling  show  pole  temperature  during  operaPon  is  about  250-­‐300  °C.  

Ø  Preliminary  results  of  pole  oxidaPon:  o  At  temperature  >350  °C/10min,  pole  oxidized  completely.  o  Need  to  select  temperature  <350  °C.  

Ø  Sample  size:  58  heads.  Ø  Thermal  annealing  parameters:  

o  250  °C/0.5,  1.5,  3,  5,  9h.  o  280  °C/10min,  0.5,  1,  2,  4h.  o  310  °C/10min,  0.5,  1h.  

Page 9: 21-Cheng-Mag pole oxid activ energy eval › wp-content › ... › Magnetic...Evaluation.pdf · 21-Cheng-Mag pole oxid activ energy eval.pptx Author: Les Warrington Created Date:

Ø  OxidaPon  started  at  the  pole  edge,  and  then  extended  to  the  side  wall.  Ø  HOC1  has  beRer  pole  oxidaPon  resistance  than  HOC2.  

3h   5h   9h   16h  

Heads  annealed  at  250°C  

0.5h   3h   9h  1.5h  

Page 10: 21-Cheng-Mag pole oxid activ energy eval › wp-content › ... › Magnetic...Evaluation.pdf · 21-Cheng-Mag pole oxid activ energy eval.pptx Author: Les Warrington Created Date:

Ø  OxidaPon  started  at  the  pole  edge,  and  then  extended  to  the  side  wall.  Ø  HOC1  has  beRer  pole  oxidaPon  resistance  than  HOC2.  

0.5h   1h   2h   4h  

Heads  annealed  at  280°C  

10min   1h   2h  0.5h  

Page 11: 21-Cheng-Mag pole oxid activ energy eval › wp-content › ... › Magnetic...Evaluation.pdf · 21-Cheng-Mag pole oxid activ energy eval.pptx Author: Les Warrington Created Date:

Ø  OxidaPon  started  at  the  pole  edge,  and  then  extended  to  the  side  wall.  Ø  HOC1  has  beRer  pole  oxidaPon  resistance  than  HOC2.  

10min   0.5h   1h  

Heads  annealed  at  310°C  

10min   0.5h   1h  

Page 12: 21-Cheng-Mag pole oxid activ energy eval › wp-content › ... › Magnetic...Evaluation.pdf · 21-Cheng-Mag pole oxid activ energy eval.pptx Author: Les Warrington Created Date:

Failure  rate  at  different  Pme  and  temperature  

Ø  As  compared  with  HOC2,  HOC1  has  much  beRer  gas  barrier  property.  

HOC  recipeAnnealing  

temperature,  °CFailure  rate

Failure  mode

Failure  rate

Failure  mode

Failure  rate

Failure  mode

Failure  rate

Failure  mode

Failure  rate

Failure  mode

Time,  h 0.5 1.5 3 5 9HOC1 250 0 0 13.79 Edge 39.66 EdgeHOC2 250 0.00 6.90 Edge 63.79 Edge 100.00 Edge 100 Entire  poleTime,  h 0.17 0.5 1 2.00 4.00HOC1 280 0 7.02 Edge 29.82 Edge 80.70 Edge 100.00 EdgeHOC2 280 1.75 Edge 52.63 Edge 87.72 Edge 100.00 Edge EdgeTime,  h 0.1667 0.5 1HOC1 310 16.07 Edge 83.93 Edge 96.43 EdgeHOC2 310 65.52 Edge 100.00 Edge

Page 13: 21-Cheng-Mag pole oxid activ energy eval › wp-content › ... › Magnetic...Evaluation.pdf · 21-Cheng-Mag pole oxid activ energy eval.pptx Author: Les Warrington Created Date:

How  to  calculate  acPvaPon  energy?  

Ø  Life  Pme  distribuPon  analysis.  o  Using  Weibull  distribuPon  to  fit  the  lifePme  data  at  different  

temperature.  o  Find  the  mean  Pme  to  failure  for  the  heads  with  different  HOC  at  

different  temperature.  

Ø  Calculate  acPvaPon  energy  Ea  using  Arrhenius  equaPon.  

Arrhenius equation: ln (𝑘) = ln (𝐴) + 𝐸↓𝑎 /𝐾↓𝐵  ∙ 1/𝑇   

Page 14: 21-Cheng-Mag pole oxid activ energy eval › wp-content › ... › Magnetic...Evaluation.pdf · 21-Cheng-Mag pole oxid activ energy eval.pptx Author: Les Warrington Created Date:

Comparison  of  HOC1  and  HOC2  

HOC1  

Ø  Heads  with  HOC1  and  HOC2  have  similar  pole  corrosion  acPvaPon  energy.  Ø  HOC1  show  much  beRer  gas  barrier  property  than  HOC2.  

HOC2  

HOC   Beta   B   C   Ea  

HOC1   2.28   16400   2.46E-­‐13   1.41  

HOC2   2.54   14578   2.34E-­‐12   1.26  

Life  of  P

ole  

Page 15: 21-Cheng-Mag pole oxid activ energy eval › wp-content › ... › Magnetic...Evaluation.pdf · 21-Cheng-Mag pole oxid activ energy eval.pptx Author: Les Warrington Created Date:

Pole  oxidaPon  acPvaPon  energy  applicaPon  

t1 and t2 : lifetime at temperature T1 and T2 AT: acceleration factor; Ea: activation energy (eV) of the failure model; KB: Boltzmann’s constant (8.6173x10-5 eV/°K) T1: acceleration testing temperature (°K); T2: pole temperature during operation (°K).

Ø  Predict  pole  oxidaPon  lifePme  using  acceleraPon  tested  data.  

Ø  Save  tesPng  Pme.  Ø  Compare  different  head  over  coat  material.  

Page 16: 21-Cheng-Mag pole oxid activ energy eval › wp-content › ... › Magnetic...Evaluation.pdf · 21-Cheng-Mag pole oxid activ energy eval.pptx Author: Les Warrington Created Date:

Summary  Ø  A  method  for  measuring  magnePc  Pole  oxidaPon  

acPvaPon  energy  for  HAMR  heads  was  successfully  developed.  

Ø  The  pole  oxidaPon  energy  of  HAMR  head  with  HOC1  and  HOC2  was  measured  to  be  1.41  eV  and  1.26eV.  

Ø  Heads  with  HOC1  shows  much  beRer  gas  barrier  property  than  HOC2.  

Ø  Pole  oxidaPon  acPvaPon  energy  could  be  used  to  esPmate  pole  lifePme  and  to  screen  new  HOC.