2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

download 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

of 99

Transcript of 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    1/99

    EE438/538

    OptoelectronicDevices&Applications

    Part1:FundamentalsofOpticalWaves

    (5) Waves at interfaces

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    2/99

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    3/99

    WavesatInterfaces

    Sofar,wehavestudied

    wavespropagatinginvacuum

    wavespropagatinginuniformdielectricmaterial

    shortenedwavelength

    slowerphasevelocity highlossatsomefrequencies

    Whathappensattheinterfacebetweentwodielectricmedia?

    Usefultoolsfordealingwiththeproblem

    Phasefront(=Wavefront)

    Ray

    Phasematching

    Two rays next to each otherTheir phasefronts must be in precise alignment.Otherwise there will be destructive interference andthey will gradually kill each other.

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    4/99

    Reflection:TheFirstExampleofPhaseMatching

    Ray View

    nt

    ni

    i

    r

    Whatwillberelationbetweenthetwoangles?

    Wecannotanswerthatinthisrayview

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    5/99

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    6/99

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    7/99

    Reflection:TheFirstExampleofPhaseMatching

    Since #1 and #2 are originally one, thephase fronts must be in-phase up to AC

    In phase

    Ray#2

    nt

    ni

    Ray#1

    i

    A

    C

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    8/99

    Reflection:TheFirstExampleofPhaseMatching

    So this is the right picture!

    In phase

    Ray#2

    nt

    ni

    Ray#1

    i

    A

    C

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    9/99

    Reflection:TheFirstExampleofPhaseMatching

    Thereflectedlightcanbedescribedinthesameway

    Ray#2

    Ray#1

    Two rays+wavefront view

    i

    nt

    ni

    r

    Ray#1

    Ray#2

    I deliberately set i r

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    10/99

    Reflection:TheFirstExampleofPhaseMatching

    Ray#2Ray#1

    i

    r

    Ray#1

    Ray#2

    After reflection, along DB, will they stay in phase or not?

    A

    C

    D

    B

    In phase Not in phase

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    11/99

    Reflection:TheFirstExampleofPhaseMatching

    Ray#2Ray#1

    i

    r

    Ray#1

    Ray#2

    After reflection, along DB, will they stay in phase or not?

    A

    C

    D

    B

    They must stay in-phase

    Otherwise, they will cancel each other to a certain amount

    There are an infinite number of this two-ray pairs Even a slight phase mismatch can cause near-total destruction of the reflection

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    12/99

    Reflection:TheFirstExampleofPhaseMatching

    Ray#2Ray#1

    i

    r

    Ray#1

    Ray#2

    A

    C

    D

    B

    To form a reflection, the two must stay in phase

    Requirement for Phase Matching

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    13/99

    Reflection:TheFirstExampleofPhaseMatching

    Ray#2Ray#1

    i

    r

    Ray#1

    Ray#2

    A

    C

    D

    B

    To form a reflection, the two must stay in phase

    In this setup, phase matching

    requires |AB| = |CD|

    Requirement for Phase Matching

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    14/99

    Reflection:TheFirstExampleofPhaseMatching

    i

    r

    To form a reflection, the two must stay in phase

    In this setup, phase matching

    requires |AB| = |CD| which, in

    turn, requires i = r

    Requirement for Phase Matching

    Snells Law of

    Reflection

    i= r

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    15/99

    Reflection:TheFirstExampleofPhaseMatching

    i

    r

    Snells Law of

    Reflection

    So far, ntand ni did not play any role

    nt

    ni

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    16/99

    ApplyingPhaseMatchingtoRefraction

    reflection

    refraction

    Ray View

    nt

    ni

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    17/99

    ApplyingPhaseMatchingtoRefraction

    reflection

    refraction

    ni nt

    Two rays + wavefront view

    Ray View

    i

    Ray#2Ray#1

    A

    C

    D

    B

    t

    nt

    ni

    nt

    ni

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    18/99

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    19/99

    ApplyingPhaseMatchingtoRefraction

    A

    C

    D

    B

    nt

    niIn-phase up to AC

    In-phase from BD

    Then, can we just use |AB| = |CD|

    as the requirement?

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    20/99

    ApplyingPhaseMatchingtoRefraction

    A

    C

    D

    B

    nt

    ni

    Or equivalently, can we just use

    sin i = sin t as the requirement?

    t

    i

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    21/99

    ApplyingPhaseMatchingtoRefraction

    No, because we have to deal with waves

    propagating in different media this time

    Waves propagate different media withdifferent phase velocities and wavelengths

    Different phase change even for the same

    distance !

    A

    C

    D

    B

    nt

    ni

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    22/99

    ApplyingPhaseMatchingtoRefraction

    No, because we have to deal with waves propagating in

    different media this time

    Waves propagate different media with different phase

    velocities and wavelengths

    Different phase change even for the same distance

    n = 1

    n = 1.5

    A

    C

    D

    B

    nt

    ni

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    23/99

    ApplyingPhaseMatchingtoRefraction

    No, because we have to deal with waves propagating in

    different media this time

    Waves propagate different media with different phase

    velocities and wavelengths

    Different phase change even for the same distance

    n = 1

    n = 1.5

    A

    C

    D

    B

    nt

    ni

    phase change = k distance (2/) distance (2/o) n distance

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    24/99

    ApplyingPhaseMatchingtoRefraction

    Along path |AB|: becomes o/nt

    Effectively longerfor phase

    calculation by a factor of nt

    Similarly, for path |CD|, becomes o/ni

    |CD| becomes effectively ni*|CD|

    A

    C

    D

    B

    nt

    ni

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    25/99

    ApplyingPhaseMatchingtoRefraction

    Along path |AB|: becomes o/nt

    Effectively longerfor phase calculation

    by a factor of nt

    Similarly, for path |CD|, becomes o/ni

    |CD| becomes effectively ni*|CD|

    A

    C

    D

    B

    nt

    ni

    Another important concept Optical Pathlength (OPL)

    OPL = refractive index actual length

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    26/99

    ApplyingPhaseMatchingtoRefraction

    A

    C

    D

    B

    nt

    ni

    In this setup,

    OPL(AB) = OPL(CD)

    only if

    ni sin i = nt sin t

    i

    t

    Snells Law for Refraction

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    27/99

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    28/99

    TotalInternalReflection

    In any case,as i increases,

    t will also increase

    nt > ni

    i

    nt < ni

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    29/99

    TotalInternalReflection

    i

    nt < ni

    nt < ni

    Lets focus on

    case

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    30/99

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    31/99

    TotalInternalReflection

    i

    nt < ni

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    32/99

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    33/99

    TotalInternalReflection

    Thenwhatwillhappenifi >c Thetransmissionangletbecomescomplex Thelightwillget100%reflected

    Total Internal Reflection (TIR)

    i

    nt < ni

    r

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    34/99

    TotalInternalReflection

    Thenwhatwillhappenifi>c Thetransmissionangletbecomescomplex Thelightwillget100%reflected

    Butonthelowindexside,therewillbeasmalltailcalledtheevanescentwave

    Total Internal Reflection (TIR)

    i

    nt < ni

    r

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    35/99

    WithSnellslaw,wecanpredictinwhatdirectionsthereflectionandrefractionwilloccur

    Whataboutthesplittingratio ofpowerbetweenthetwo?

    Letsgetbacktotheplanewaveview

    FresnelFormula:QuantifyingReflection&Transmission

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    36/99

    FresnelFormula:QuantifyingReflection&Transmission

    Ourgoalistoderiveexpressionsfor

    Whatkindofinformationdowealreadyhave?

    AdditionalinformationcomesfromBoundaryConditions

    Thecontinuityofthetangentialcomponentofelectricfieldacrosstheboundary

    Thecontinuityofthetangentialcomponentofmagneticfieldacrosstheboundary

    Toapplytheseconditions,wemustseparatethefollowingtwowaveconfigurations

    Snells Law

    Reflection coefficient: =

    Transmission coefficient: =

    io

    ro

    E

    E

    io

    to

    E

    E

    sin sin

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    37/99

    StateofPolarizationofEMWaves

    Note:thispolarizationisdifferentfrom

    butrelated

    Thestateofpolarizationrepresentstheoscillationdirectionoftheelectricfieldportion

    ofEMwaves(sometimesthedirectionvariesovertime).

    E

    test charge

    E

    induceddipole

    And this is important because thedipole radiation pattern is notsymmetric

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    38/99

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    39/99

    TE:TransverseElectric

    FresnelFormula:QuantifyingReflection&Transmission

    field Skims the interface

    The direction ofoscillation of fieldis orthogonal to theplane of incidence

    a.k.a. S polarization

    nt

    niH

    E

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    40/99

    TM:TransverseMagnetic

    FresnelFormula:QuantifyingReflection&Transmission

    The direction ofoscillation of fieldis parallel to the

    plane of incidence

    nt

    niE

    H

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    41/99

    TM:TransverseMagnetic

    FresnelFormula:QuantifyingReflection&Transmission

    field Pokes the interface

    The direction ofoscillation of fieldis parallel to the

    plane of incidence

    a.k.a. P polarization

    nt

    niE

    H

    F l F l Q if i R fl i & T i i

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    42/99

    TE:TransverseElectric

    TM:TransverseMagnetic

    Anyarbitrarystateofpolarizationcanbesynthesizedbycombiningthesetwo

    Ofcourse,fornormalincidence,thedistinctionbetweenTEandTMvanishes

    So,weneedtoderive4quantities:rTE,rTM,tTE,tTMor r,r//,t,t//

    FresnelFormula:QuantifyingReflection&Transmission

    field Skims the interface

    field Pokes the interface

    The direction ofoscillation of fieldis orthogonal to theplane of incidence

    a.k.a. S polarization

    The direction ofoscillation of fieldis parallel to theplane of incidence

    a.k.a. P polarization

    nt

    niH

    E

    nt

    niE

    H

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    43/99

    F l F l Q tif i R fl ti & T i i

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    44/99

    Quitecomplicated.Butthesecanbemuchsimplifiedbydefininganewparameter

    FresnelFormula:QuantifyingReflection&Transmission

    Pnn iit 22 sin

    PPr

    i

    i

    coscos

    Pt

    i

    i

    cos

    cos2

    iit

    iit

    nnPnnPr

    cos)/(cos)/(

    2

    2

    //

    iit

    iit

    nnP

    nnt

    cos)/(

    cos)/(22//

    Fresnel Formula: Quantifying Reflection & Transmission

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    45/99

    Quitecomplicated.Butthesecanbemuchsimplifiedbydefininganewparameter

    ItisimportanttoseethatPcanbeimaginary!

    Therecanbephaseshiftsassociatedwithreflectionandrefraction!

    Pbecomesimaginarywhentheincidenceanglereaches:

    i.e.,thecriticalangle,theonsetofTIR

    FresnelFormula:QuantifyingReflection&Transmission

    Pnn iit 22 sin

    P

    Pr

    i

    i

    cos

    cos

    Pt

    i

    i

    cos

    cos2

    iit

    iit

    nnPnnPr

    cos)/(cos)/( 2

    2

    //

    iit

    iit

    nnP

    nnt

    cos)/(

    cos)/(22//

    sin

    Practical Example: Glass/Air Interface

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    46/99

    Letshavealookatthereflectioncoefficientsofglass/airinterface

    PracticalExample:Glass/AirInterface

    TE

    1cos

    costan2

    2

    21

    i

    cic

    amplitude response

    1.0

    i

    -

    c

    |r| phase response

    iglass ( = 1.44) air ( = 1)

    High-to-LowInternal reflection

    Practical Example: Glass/Air Interface

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    47/99

    PracticalExample:Glass/AirInterface Letshavealookatthereflectioncoefficientsofglass/airinterface

    TM

    1

    cos

    cos

    sin

    1tan2

    1

    2

    2

    2

    1

    //c

    c

    iglass ( = 1.44) air ( = 1)

    amplitude response |r//| phase response //

    ic

    1.0

    starting point:same as TE

    p

    cpi

    High-to-LowInternal reflection

    HowaboutAir/GlassInterface?

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    48/99

    /

    Whatwillhappenifwereversethedirectionofpropagation?

    Willitbethesame?NO.Letshavealookatthereflectioncoefficients

    rTE

    iglass ( = 1.44) air ( = 1)

    i

    1

    0

    -1

    rTM

    /2

    p

    Low-to-HighExternal reflection

    HowaboutAir/GlassInterface?

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    49/99

    /

    Whatwillhappenifwereversethedirectionofpropagation?

    Willitbethesame?NO.Letshavealookatthereflectioncoefficients

    iglass ( = 1.44) air ( = 1)

    Start from aNEGATIVE valueA built-in phase shift

    rTE

    i

    1

    0

    -1

    rTM

    /2

    p

    Low-to-HighExternal reflection

    HowaboutAir/GlassInterface?

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    50/99

    /

    Whatwillhappenifwereversethedirectionofpropagation?

    Willitbethesame?NO.Letshavealookatthereflectioncoefficients

    iglass ( = 1.44) air ( = 1)

    No TIR

    No incidence angle-dependent,

    smooth change in phase

    One abrupt phase change for TM No phase change for TE at all!

    rTE

    i

    1

    0

    -1

    rTM

    /2

    p

    Low-to-HighExternal reflection

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    51/99

    Onethingincommon?

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    52/99

    Onethingthatscommontobothinternalandexternalreflections?

    Incidenceangle,reflectedlight

    Hmm, the floor isnot shiny.

    Hey, it is shiny!

    ic

    1.0

    ic

    1.0

    p

    rTE

    i

    1

    0

    -1

    rTM

    /2

    p

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    53/99

    HowaboutTransmission?

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    54/99

    Changesintransmissioncoefficientsasfunctionsofincidenceanglewillbesimplerthan

    thoseofreflectioncoefficients

    Unliker,wecanseethattwillalwaysbereal!

    Ofcourse,Pcanstillbeimaginary

    Butbythetime,therewillbenotransmission,duetoTIR

    So,twillalwaysbearealnumber

    Itwillalwaysbeapositivenumberaswell Nophasechangeatall

    Justamplitudechangesinaccordancewithreflectioncoefficientchanges

    P

    P

    ri

    i

    cos

    cos

    Pt

    i

    i

    cos

    cos2

    iit

    iit

    nnP

    nnPr

    cos)/( cos)/( 2

    2

    //

    iit

    iit

    nnP

    nnt

    cos)/(

    cos)/(22//

    HowaboutPowerSplittingRatio?

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    55/99

    Sofar,wehavedealtwiththeamplitudesoftheelectricfieldcomponent

    Whenenergyandpowerareconcerned,theintensityisamorerelevant

    quantity

    Intensityisproportionalto|E|2/ andhasaunitof[W/m2] =(/)

    ItisarealnumberwithNOphaseinformationincluded

    A complex number possesses phase information

    HowaboutPowerSplittingRatio?

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    56/99

    Forreflection,

    Reflectance

    R

    |I

    r|/|I

    i|

    =

    |r|

    2

    HowaboutPowerSplittingRatio?

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    57/99

    Fortransmission,weneedtoconsiderthefactthatthe

    twowavesareindifferentmaterials!

    TransmittanceT |It|/|I

    i|=(n

    i/n

    t)|t|2

    HowaboutPowerSplittingRatio?

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    58/99

    Remeber: r+t 1

    |r|

    2

    +

    (ni/nt)|t|2

    =

    1

    Reflectance (R) Transmittance (T)

    PeculiaritiesinReflection:(1) P

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    59/99

    Whatisit?RecaptheTMreflection

    Glass/Air Air/Glass

    There is one point in the incidence angle at which the TM reflection becomes zero!

    Brewster Angle or Polarizing Angle

    ic

    1.0

    p

    i

    1

    0

    -1

    rTM

    /2

    p

    TM,TE

    TM,TE

    TEp

    PeculiaritiesinReflection:(1)BrewsterAngle

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    60/99

    Whatisit?RecaptheTMreflection

    Glass/Air Air/Glass

    There is one point in the incidence angle at which the TM reflection becomes zero!

    The point can be easily found from the Fresnel formula

    ic

    1.0

    p

    i

    1

    0

    -1

    rTM

    /2

    p

    i

    tPn

    n1tan iitiit

    iitiit

    io

    ro

    nnnn

    nnnn

    E

    Er

    cossin

    cossin

    222

    222

    //,

    //,//

    PeculiaritiesinReflection:(1)BrewsterAngle

    i f l (i f iki di )

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    61/99

    Sometimesuseful(imagefromwikipedia)

    TM,TE

    TM,TE

    TEp

    PeculiaritiesinReflection:(1)BrewsterAngle

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    62/99

    Also

    useful

    for

    making

    Sunglasses

    Makingsunglasseswithdarkenedglassissimple.BUT

    Nobodywantstowearapairofsunglasseswhichisalwaysdark.

    When

    do

    people

    need

    sunglasses

    most?

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    63/99

    PeculiaritiesinReflection:(1)BrewsterAngle

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    64/99

    Also

    useful

    for

    making

    Sunglasses

    Makingsunglasseswithdarkenedglassissimple.BUT

    Nobodywantstowearapairofsunglasseswhichisalwaysdark.

    Whendopeopleneedsunglassesmost?

    Nowweknowthatduringsunset:

    PeculiaritiesinReflection:(1)BrewsterAngle

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    65/99

    Also

    useful

    for

    making

    Sunglasses

    Applycoating tothelensessothatonlytheTEportioncanbeblocked

    YoucanstillseewiththetinyTMportion

    Duringdaytime,whensunishighaboveyourhead,TE:TM~50:50

    Youhavenoproblemwatchingaround

    Price for non-polarized sunglasses (i.e., darkened glass) < Price for polarizing ones.

    But it can cause safety problems. So reserve non-polarizing ones for ski trips only

    PeculiaritiesinReflection:(1)BrewsterAngle

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    66/99

    Whydoesthispolarizingreflectionhappen?WhyonlytoTM?

    Toanswerthat,letsgetoutofthistypicalview

    TME

    PeculiaritiesinReflection:(1)BrewsterAngle

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    67/99

    Letsmagnifytheareaneartheimpingingpoint

    http://pixabay.com/en/magnifying-glass-magnifier-glass-189254/

    TME

    PeculiaritiesinReflection:(1)BrewsterAngle

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    68/99

    YouwillseealotofdipolesinducedbytheelectricfieldcomponentEwhich

    pokestheinterface

    TME

    h d f h d l h fl d !

    PeculiaritiesinReflection:(1)BrewsterAngle

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    69/99

    Thereradiationfromthedipolesconstitutethereflectionandtransmission!

    Th di ti f th di l tit t th fl ti d t i i !

    PeculiaritiesinReflection:(1)BrewsterAngle

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    70/99

    Thereradiationfromthedipolesconstitutethereflectionandtransmission!

    Dipoles along the interface are aligned with their dipole axis along Et, not Ei

    PeculiaritiesinReflection:(1)BrewsterAngle

    R Di l di ti tt NOT h i ll t i !

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    71/99

    Recap:DipoleradiationpatternwasNOTsphericallysymmetric!

    Now it will make a real problem (or fun stuff)

    PeculiaritiesinReflection:(1)BrewsterAngle

    These reflection and transmission directions are determined by the phase matching

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    72/99

    These reflection and transmission directions are determined by the phase-matching

    condition There is nothing the dipoles can do about it

    So this type of awkward situation is possible!

    PeculiaritiesinReflection:(1)BrewsterAngle

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    73/99

    So,thistypeofawkwardsituationispossible!

    The dipole axis coincides with the direction of reflection? Of course, there will be no reflection!

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    74/99

    When = the angle between the reflection and transmission becomes 90

    PeculiaritiesinReflection:(1)BrewsterAngle

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    75/99

    Wheni=p,theanglebetweenthereflectionandtransmissionbecomes90

    p r= p

    t

    90 p

    90 t

    (90 p) + (90 t) = 90 p = 90 t

    When i = the angle between the reflection and transmission becomes 90

    PeculiaritiesinReflection:(1)BrewsterAngle

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    76/99

    Wheni p,theanglebetweenthereflectionandtransmissionbecomes90

    (90 p) + (90 t) = 90 p = 90 tBrewster

    condition

    Plugging the relation into Snells law

    ni sin i = nt sin t

    ni sin p = nt sin (90 p)

    p = tan-1(nt /ni)

    Exactly the same Brewster angle that

    we obtained from Fresnel formula!

    PeculiaritiesinReflection:(1)BrewsterAngle

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    77/99

    Maxwells Eq. Wave Eq.

    EM Potential Dipole Radiation Pattern

    Wave solution Boundary Conditions Fresnel Formula

    Two totally separate routes Same results!

    PeculiaritiesinReflection:(1)BrewsterAngle

    WhyonlytoTM?WhynoBrewstereffecttoTE?

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    78/99

    y y y

    TEE

    Dipole axis orthogonal to the plane of incidence Radiation pattern is perfectly symmetricAll angles available for re-radiation!

    Lets have a more quantitative look

    PeculiaritiesinReflection:(2)EvanescentWave

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    79/99

    Let shaveamorequantitativelook

    Transmitted wave

    PeculiaritiesinReflection:(2)EvanescentWave

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    80/99

    This vector determinesthe spatial properties ofthe wave including:

    - propagation direction- transversal extent

    Transmitted wave

    PeculiaritiesinReflection:(2)EvanescentWave

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    81/99

    Totally determined by the material

    Just the position vector

    2

    PeculiaritiesinReflection:(2)EvanescentWave

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    82/99

    one -dependent term one -dependent term

    PeculiaritiesinReflection:(2)EvanescentWave

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    83/99

    Note: When sin 1 !

    > 1 for internalreflection

    between 0 and 1

    sin sin

    sin

    sin

    Whensin 1,whatwillhappentocos ?

    PeculiaritiesinReflection:(2)EvanescentWave

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    84/99

    , pp

    Itcontrolshowthebehavesinthedirection

    cos s in

    Whensin 1,whatwillhappentocos ?

    PeculiaritiesinReflection:(2)EvanescentWave

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    85/99

    Itwillbeimaginarybecausecos 1 sin

    cos s in

    Inotherwords

    PeculiaritiesinReflection:(2)EvanescentWave

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    86/99

    When

    real

    imaginary

    PeculiaritiesinReflection:(2)EvanescentWave

    Beyondthecriticalangle,thefieldacrosstheinterfacecanbewrittenas

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    87/99

    PeculiaritiesinReflection:(2)EvanescentWave

    Beyondthecriticalangle,thefieldacrosstheinterfacecanbewrittenas

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    88/99

    c

    The amplitude and phase front of the transmitted wave will look like these:

    PeculiaritiesinReflection:(2)EvanescentWave

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    89/99

    c

    whilepropagatingin z-direction

    decays in y-direction

    Basically, on the transmission side, there will be a wave which

    PeculiaritiesinReflection:(2)EvanescentWave

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    90/99

    c

    Along the transversal direction:

    The waves amplitude will decay exponentially: e-y

    1/ gives the 1/e point of the amplitude penetration depth 1sin

    2 22

    t

    o

    n

    PeculiaritiesinReflection:(2)EvanescentWave

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    91/99

    Along the direction of propagation:

    Since sin t > 1, the waves phase velocity will be lower than co/nt

    The node-to-node distance will get shorter than o/nt

    c

    PeculiaritiesinReflection:(2)EvanescentWave

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    92/99

    Of course, this propagation wont last long!

    c

    PeculiaritiesinReflection:(2)EvanescentWave

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    93/99

    As you can see, the phase is not matched across the interface

    The propagation wont be sustained

    The energy cannot flow either in or direction It has to return to the only phase-matched path:

    Someofyoumayhavewonderedwhenyousawthese

    PeculiaritiesinReflection:(3)GoosHanschenShift

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    94/99

    //

    cpi

    1

    coscos

    sin1tan2

    1

    2

    2

    2

    1

    //c

    c

    1coscostan2

    2

    2

    1

    i

    c

    i

    -

    c

    Someofyoumayhavewonderedwhenyousawthese

    PeculiaritiesinReflection:(3)GoosHanschenShift

    //

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    95/99

    What

    causes

    these

    phase

    shift

    during

    TIR?

    //

    cpi

    1

    coscos

    sin1tan2

    1

    2

    2

    2

    1

    //c

    c

    1coscostan2

    2

    2

    1

    i

    c

    i

    -

    c

    Thequantitativesolutionalreadyshowedthat

    PeculiaritiesinReflection:(3)GoosHanschenShift

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    96/99

    There will be penetration of

    the light into the other sideeven under TIR!

    Thequantitativesolutionalreadyshowedthat

    PeculiaritiesinReflection:(3)GoosHanschenShift

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    97/99

    Sothecorrectphysicalpictureis:

    PeculiaritiesinReflection:(3)GoosHanschenShift

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    98/99

    Thisroundtriptakestime Thatsthecauseofthephasedelay

    ThiseffectiscalledGoosHanschenShift

    Ingeneral:Astheincidenceangle,theGHshiftaswell.

    PeculiaritiesinReflection:(4)FrustratedTIR

    Thepenetrationisveryshallowingeneral

    e.g. ni = 1.46, nt = 1.43, o = 850 nm

  • 7/25/2019 2016 EE438538 Part 1 Optical Waves 5 Waves at Interfaces(2)

    99/99

    e.g. ni 1.46,nt 1.43,o 850nm

    y~500nm

    Butnotanimpossibledistanceformechanicalcontrol

    Whatifwebroughtanotherpieceofhighindexmaterialwithinthepenetrationdepth?

    WewillbeabletogetsomeleakagefromTIR

    FrustratedTIR

    Application: Tap coupler