2016 04 13 Usfos · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have...

68
USFOS Joint Capacity Theory Description of use Verification

Transcript of 2016 04 13 Usfos · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have...

Page 1: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

USFOS

Joint Capacity

Theory Description of use

Verification

Page 2: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

2 ________________________________________________________________________

Joint Capacity 2014-02-16

Table of Contents 1.   INTRODUCTION ...................................................................................................... 4  

1.1   General ................................................................................................................ 4  1.2   MSL variants ....................................................................................................... 4  1.3   Code variants ...................................................................................................... 4  

2.   THEORY .................................................................................................................... 6  2.1   Joint capacity formulas ....................................................................................... 6  

2.1.1   General ............................................................................................................ 6  2.1.2   Basic resistance, MSL ..................................................................................... 7  

2.1.2.1   Strength factor Qu ................................................................................... 7  2.1.2.2   Chord action factor Qf ............................................................................. 9  2.1.2.3   Strength check ....................................................................................... 10  2.1.2.4   Design axial resistance for X and Y joints with joint cans ................... 11  

2.1.3   Basic resistance, NORSOK N-004, Revision 2 ............................................ 12  2.1.3.1   Strength factor Qu ................................................................................. 12  2.1.3.2   Chord action factor Qf ........................................................................... 13  2.1.3.3   Strength check ....................................................................................... 14  2.1.3.4   Design axial resistance for X and Y joints with joint cans ................... 14  

2.1.4   Basic resistance, NORSOK N-004 Revision 3 2013 .................................... 16  2.1.4.1   Strength factor Qu ................................................................................. 16  2.1.4.2   Chord action factor Qf ........................................................................... 17  2.1.4.3   Strength check ....................................................................................... 18  2.1.4.4   Design axial resistance for X and Y joints with joint cans ................... 18  

2.1.5   Basic resistance, ISO 19902:2007 ................................................................ 19  2.1.5.1   Strength factor Qu ................................................................................. 20  2.1.5.2   Chord action factor Qf ........................................................................... 20  2.1.5.3   Strength check ....................................................................................... 21  2.1.5.4   Design axial resistance for X and Y joints with joint cans ................... 22  

2.1.6   Basic resistance, API RP 2A-WSD, ES3 Oct. 2007 ..................................... 22  2.1.6.1   Strength factor Qu ................................................................................. 23  2.1.6.2   Chord action factor Qf ........................................................................... 24  2.1.6.3   Strength check ....................................................................................... 25  2.1.6.4   Design axial resistance for X and Y joints with joint cans ................... 25  

2.2   Joint classification ............................................................................................. 26  2.3   Joint behaviour and ductility limits ................................................................... 26  

2.3.1   Joint P-D curves ............................................................................................ 26  2.3.2   MSL Ductility limits ..................................................................................... 27  2.3.3   USFOS Specific adjustments ........................................................................ 28  

3.   DESCRIPTION OF USE .......................................................................................... 29  3.1   General .............................................................................................................. 29  3.2   Input description ............................................................................................... 31  

4.   VERIFICATION ....................................................................................................... 36  4.1   K-Joints ............................................................................................................. 36  

4.1.1   Gamma = 10, Beta =0.8, gap/T=2.5 ............................................................. 37  

Page 3: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

3 ________________________________________________________________________

Joint Capacity 2014-02-16

4.1.2   Gamma = 10, Beta = 0.8, gap/T = -0.5 ......................................................... 40  4.1.3   Gamma = 10, Beta = 0.8, gap/T = -2.5 ......................................................... 43  4.1.4   Gamma = 25, Beta = 0.8, gap/T = 6.25 ........................................................ 46  

4.2   T/Y-Joints ......................................................................................................... 49  4.2.1   Gamma = 25, Beta =0.8 ................................................................................ 50  4.2.2   Gamma = 10, Beta =0.8 ................................................................................ 53  

4.3   X-Joints ............................................................................................................. 56  4.3.1   Gamma = 25, Beta =0.8 ................................................................................ 57  4.3.2   Gamma = 10, Beta =0.8 ................................................................................ 60  4.3.3   Gamma = 10, Beta =1.0 ................................................................................ 65  

5.   REFERENCES ......................................................................................................... 68  

Page 4: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

4 ________________________________________________________________________

Joint Capacity 2014-02-16

1. INTRODUCTION

1.1 General The current joint capacity check included in USFOS covers simple tubular joint and is based on capacity formulas and description of the joint behaviour developed during the MSL Joint Industry Projects as described in /1/, /2/. In addition to the original MSL formulations, code variants from Norsok/3/and /6/, ISO 19902 /4/ and API RP 2A WSD /5/ are also implemented.

1.2 MSL variants The MSL Joint Industry Projects developed several sets of capacity formulas based on a large database of laboratory test results.

The original MSL versions you find in USFOS includes:

• Mean Ultimate

• Characteristic Ultimate

• Characteristic First Crack

Mean Ultimate represents the statistical mean failure of the joints tested (top of the force-displacement curve, "the most probable failure load").

Characteristic Ultimate is based on the same data, but the as the title say, the capacity is reduced in order to account for the spreading in the test results.

Characteristic First Crack is in most cases equal to "Characteristic Ultimate" but is further reduced in some cases in order to avoid degradation of the joint for repeated loading. This version is recommended for structures subjected to repeated load actions, e.g. wave loading.

1.3 Code variants Note that the first crack characteristic capacity equations in the code variants are implemented in USFOS excluding the safety factors given in the codes. The additional safety level required by the code for the various limit states analysed must in USFOS be included on the load side (by increasing the applied loads).

Norsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO. The code variants are based on the MSL First Crack capacity formulas. The (Qu) expressions are nearly identical, but the correction factor for chord utilisation differs from MSL. Also the interaction between axial force, in-

Page 5: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

5 ________________________________________________________________________

Joint Capacity 2014-02-16

plane and out-of-plane bending differs, the code variants put more weight on the out-of plane bending component.

API RP 2A: The formulas are also based on the MSL database, however, the database used to develop the latest joint capacity equations for API RP2A are extended using results from FE analyses. API RP2A (21’st edition) is currently (2009) the most updated code with respect to joint capacity.

Norsok N-004 Revision 3: The code is aligned with APIRP2A (2009) with some exceptions: -The basic capacity for X –joints in axial tension follows OMAE2008-57650 /7/. In addition the expressions for chord utilisation factors are adjusted for X-joints.

Page 6: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

6 ________________________________________________________________________

Joint Capacity 2014-02-16

2. THEORY

2.1 Joint capacity formulas

2.1.1 General The validity range for capacity equations given in Chapter 2 and implemented in USFOS are as follows:

0.2 ≤ β ≤ 1.0 10 ≤ γ ≤ 50 30° ≤ θ ≤ 90° fy ≤ 500 MPa

joints)K (for 6.0Dg

−≥

The above geometry parameters are defined as

Ddβ = ,

2TDγ = ,

Ttτ =

Where d = brace diameter, D = Chord diameter, t = brace wall thickness, T = Chord thickness and g = gap between the two braces (for K-joints).

saddleD

T

crown crown

L

t

d

Θ

T

t

d

D

Θ

Page 7: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

7 ________________________________________________________________________

Joint Capacity 2014-02-16

T

BRACE A

D

g

d

BRACE B

A

t A

Bt

dB

AΘΘB

AB

T

t

d

B

A t

BC

D

B

t

C

d

d

B

B

C

CA

A

A C

ΘΘ Θ

g g

Figure 2-1 Definition of joint geometry parameters

2.1.2 Basic resistance, MSL The resistances for simple tubular joints are defined as follows:

fu

2y

Rd QQsinTf

=

fu

2y

Rd QQsin

dTfM

θ=

Where

NRd = the joint axial resistance MRd = the joint bending moment resistance fy = the yield strength of the chord member at the joint

For braces with axial forces with a classification that is a mixture of K, Y and X joints, a weighted average of NRd based on the portion of each in the total action is used to calculate the resistance.

2.1.2.1 Strength factor Qu Qu varies with the joint and action type, as given in Table 2-1 to Table 2-3.

Page 8: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

8 ________________________________________________________________________

Joint Capacity 2014-02-16

Table 2-1 Values for Qu, MSL Mean Ultimate Brace action Joint Classification

Axial Tension Axial Compression In-plane Bending

Out-of-plane bending

K ( ) yyg0.5 QQQ199.13.1 ββ+ ( ) yyg

0.5 QQQ199.13.1 ββ+ 5.05.5 γβ 25.02.4 βγ

Y 6.173.42 +β ( ) 0.5Q199.127.1 ββ+ 5.05.5 γβ 25.02.4 βγ

X

( )( ) 0.9for 3646.370.9-400.9for 6.63.37

>−+

≤+

βγβ

ββ

( ) ββ Q148.216.1 + 5.05.5 γβ 25.02.4 βγ

Mean Ultimate represents the statistical mean failure of the joints tested (top of the force-displacement curve, "the most probable failure load").

Table 2-2 Values for Qu, MSL Characteristic Ultimate Brace action Joint Classification

Axial Tension Axial Compression

In-plane Bending

Out-of-plane bending

K ( ) yyg0.5 QQQ199.1 ββ+ ( ) yyg

0.5 QQQ199.1 ββ+

5.05.4 γβ 25.02.3 βγ

Y 1.442 −β ( ) 0.5Q199.1 ββ+ 5.05.4 γβ 25.02.3 βγ

X

( )( ) 0.9for 285320.9-350.9for 2.241

>−+

≤−

βγβ

ββ ( ) ββ Q148.2 + 5.05.4 γβ 25.02.3 βγ

Characteristic Ultimate is based on the same data as for Mean Ultimate, the capacity is reduced in order to account for the spreading in the test results.

Table 2-3 Values for Qu, MSL Characteristic First Crack Brace action Joint Classification

Axial Tension Axial Compression

In-plane Bending

Out-of-plane bending

K ( ) yyg0.5 QQQ199.1 ββ+ ( ) yyg

0.5 QQQ199.1 ββ+

5.05.4 γβ 25.02.3 βγ

Y β30 ( ) 0.5Q199.1 ββ+ 5.05.4 γβ 25.02.3 βγ

X

( )( ) 0.9for 220170.9-210.9for 23

>−+

βγβ

ββ ( ) ββ Q148.2 + 5.05.4 γβ 25.02.3 βγ

Characteristic First Crack is in most cases equal to "Characteristic Ultimate" but is further reduced in some cases in order to avoid degradation of the joint for repeated loading. This version is recommended for structures subjected to repeated load actions, e.g. wave loading.

Qβ is a geometric factor defined by:

Page 9: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

9 ________________________________________________________________________

Joint Capacity 2014-02-16

( )βββ 833.013.0Q

−= 0.6for >β

0.1Q =β 0.6for ≤β

Qg is a gap factor defined by: 5.0

g Dg9.1Q ⎟⎠

⎞⎜⎝

⎛−= 0.1Qbut ,0.2Tgfor g ≥≥

5.0g 65.013.0Q φγ+= 0.2

Tgfor −≤

cy,

by,

fTft

where =φ

fy,b = yield strength of brace (or brace stub if present)

fy,c = yield strength of chord (or chord can if present)

Qg = linear interpolated value between the limiting values of the above expressions for

0.2Tg0.2 ≤≤−

Qyy is an angle correction factor defined by:

0.1Qyy = °−≤ 904when ct θθ

200

4110Q tc

yy °

−+°=

θθ °−> 904when ct θθ

where θc and θt is the angle between the compression / tension brace and the chord respectively.

2.1.2.2 Chord action factor Qf Qf is a factor to account for the presence of factored actions in the chord.

2f U0.1Q λ−=

where:

λ = 0.030 for brace axial tension or compression = 0.045 for brace in-plane bending moment = 0.021 for brace out-of-plane bending moment

Page 10: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

10 ________________________________________________________________________

Joint Capacity 2014-02-16

The parameter U is defined as follows: 5.02

P2

2

P2

2

P1 MMN

1⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

Γ=

opbipbq

MCMCPCU

where:

P = axial load in chord M = bending moment in chord, (ipb and opb) NP = axial capacity of chord MP = bending capacity of chord C1, C2 = coefficients depending on joint and load type Γq = assessment factor of safety, not to be taken greater than unity

Table 2-4 Values for C1 and C2, MSL Joint Classification C1 C2 T/Y joints under brace axial loading 25 11 DT/X joints under brace axial loading 25 43 K joints under balanced loading 14 43 All joints under brace moment loading 25 43 The chord thickness at the joint should be used in the above calculations. The highest value of U for the chord on either side of the brace intersection should be used. Apart from X joints with β > 0.9, Qf may be set to unity if the magnitude of the chord axial tension stress is greater than the maximum combined stress due to chord moments.

2.1.2.3 Strength check Joint resistance shall satisfy the following interaction equation for axial force and/or bending moments in the brace:

1MM

MM

NN

2

Rdz,

Sdz,

2

Rdy,

Sdy,

Rd

Sd ≤⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟

⎟⎠

⎞⎜⎜⎝

⎛+

Where:

NSd = axial force in the brace member NRd = the joint axial resistance My,Sd = in-plane bending moment in the brace member Mz,Sd = out-of-plane bending moment in the brace member My,Rd = in-plane bending resistance Mz,Rd = out-of-plane bending resistance

Page 11: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

11 ________________________________________________________________________

Joint Capacity 2014-02-16

2.1.2.4 Design axial resistance for X and Y joints with joint cans For Y and X joints with axial force and where a joint can is specified, the joint design resistance should be calculated as follows:

( ) Rdcan,

2

c

nRd N

TTr-1rN

⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+=

Where

Ncan,Rd = NRd based on chord can geometric and material properties Tn = nominal chord member thickness Tc = chord can thickness DT/X Joints: r = Lc/(2.5D) for joints with β ≤ 0.9 = ( )[ ]DLc 5.1/)34( −β for joints with β > 0.9 Y/T Joints: r = Lc/(2.0D) for joints with β ≤ 0.9 = [ ]DLc /)13/5( −β for joints with β > 0.9 Lc = effective total length of chord can, excluding taper, see Figure 2-2

In no case shall r be taken as greater than unity.

Figure 2-2 Calculation of Lc

The reduction for short can sections is currently not implemented in USFOS, and should be accounted for when selecting effective can section thickness.

Page 12: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

12 ________________________________________________________________________

Joint Capacity 2014-02-16

2.1.3 Basic resistance, NORSOK N-004, Revision 2 The resistances for simple tubular joints are defined as follows:

fu

2y

Rd QQsinTf

=

fu

2y

Rd QQsin

dTfM

θ=

Where

NRd = the joint axial resistance MRd = the joint bending moment resistance fy = the yield strength of the chord member at the joint

For braces with axial forces with a classification that is a mixture of K, Y and X joints, a weighted average of NRd based on the portion of each in the total action is used to calculate the resistance.

2.1.3.1 Strength factor Qu Qu varies with the joint and action type, as given in Table 2-3.

Table 2-5 Values for Qu Brace action Joint Classification

Axial Tension Axial Compression

In-plane Bending

Out-of-plane bending

K ( ) g0.5QQ199.1 ββ+ ( ) g

0.5QQ199.1 ββ+ 5.05.4 γβ 25.02.3 βγ

Y β30 ( ) 0.5Q199.1 ββ+ 5.05.4 γβ 25.02.3 βγ

X

( )( ) 0.9for 220170.9-210.9for 23

>−+

βγβ

ββ ( ) ββ Q148.2 + 5.05.4 γβ 25.02.3 βγ

Qβ is a geometric factor defined by:

( )βββ 833.013.0Q

−= 0.6for >β

0.1Q =β 0.6for ≤β

Qg is a gap factor defined by: 5.0

g Dg9.1Q ⎟⎠

⎞⎜⎝

⎛−= 0.1Qbut ,0.2Tgfor g ≥≥

Page 13: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

13 ________________________________________________________________________

Joint Capacity 2014-02-16

5.0g 65.013.0Q φγ+= 0.2

Tgfor −≤

cy,

by,

fTft

where =φ

fy,b = yield strength of brace (or brace stub if present)

fy,c = yield strength of chord (or chord can if present)

Qg = linear interpolated value between the limiting values of the above expressions for

0.2Tg0.2 ≤≤−

2.1.3.2 Chord action factor Qf Qf is a factor to account for the presence of factored actions in the chord.

2f U0.1Q λ−=

Where:

λ = 0.030 for brace axial tension or compression = 0.045 for brace in-plane bending moment = 0.021 for brace out-of-plane bending moment

The parameter U is defined as follows: 5.02

P2

2

P2

2

P1 MMN ⎥

⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=

opbipb

MCMCPCU

where:

P = axial load in chord M = bending moment in chord, (ipb and opb) NP = axial capacity of chord MP = bending capacity of chord C1, C2 = coefficients depending on joint and load type

Table 2-6 Values for C1 and C2, NORSOK N-004 r2 Joint Classification C1 C2 T/Y joints under brace axial loading 25 11 DT/X joints under brace axial loading 20 22 K joints under balanced loading 20 22 All joints under brace moment loading 25 30

Page 14: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

14 ________________________________________________________________________

Joint Capacity 2014-02-16

The chord thickness at the joint should be used in the above calculations. The highest value of U for the chord on either side of the brace intersection should be used.

2.1.3.3 Strength check Joint resistance shall satisfy the following interaction equation for axial force and/or bending moments in the brace:

1MM

MM

NN

Rdz,

Sdz,

2

Rdy,

Sdy,

Rd

Sd ≤+⎟⎟⎠

⎞⎜⎜⎝

⎛+

where:

NSd = axial force in the brace member NRd = the joint axial resistance My,Sd = in-plane bending moment in the brace member Mz,Sd = out-of-plane bending moment in the brace member My,Rd = in-plane bending resistance Mz,Rd = out-of-plane bending resistance

2.1.3.4 Design axial resistance for X and Y joints with joint cans For Y and X joints with axial force and where a joint can is specified, the joint design resistance should be calculated as follows:

( ) Rdcan,

2

c

nRd N

TTr-1rN

⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+=

Where

Ncan,Rd = NRd based on chord can geometric and material properties Tn = nominal chord member thickness Tc = chord can thickness r = Lc/(2.5D) for joints with β ≤ 0.9 = ( )[ ]DLc 5.1/)34( −β for joints with β > 0.9 Lc = effective total length of chord can, excluding taper, see Figure 2-3.

In no case shall r be taken as greater than unity.

Page 15: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

15 ________________________________________________________________________

Joint Capacity 2014-02-16

Figure 2-3 Calculation of Lc

The reduction for short can sections is currently not implemented in USFOS, and should be accounted for when selecting effective can section thickness.

Page 16: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

16 ________________________________________________________________________

Joint Capacity 2014-02-16

2.1.4 Basic resistance, NORSOK N-004 Revision 3 2013 The resistances for simple tubular joints are defined as follows:

fu

2y

Rd QQsinTf

=

fu

2y

Rd QQsin

dTfM

θ=

Where

NRd = the joint axial resistance MRd = the joint bending moment resistance fy = the yield strength of the chord member at the joint (or 0.8 of the tensile

strength, if less) For braces with axial forces with a classification that is a mixture of K, Y and X joints, a weighted average of NRd based on the portion of each in the total action is used to calculate the resistance.

2.1.4.1 Strength factor Qu Qu varies with the joint and action type, as given in Table 2-11.

Table 2-7 Values for Qu Brace action Joint Classification

Axial Tension Axial Compression In-plane Bending

Out-of-plane bending

K g1.2Qβ)γ2.116( +

but g

1.2Qβ40≤ g

1.2Qβ)γ2.116( +

but g

1.2Qβ40≤

1.2γ)β0.7(5+ 6.2β)γ2.05.4(5.2 ++

Y β30 1.6β)γ8.020(8.2 ++ but 1.6β368.2 +≤

1.2γ)β0.7(5+ 6.2β)γ2.05.4(5.2 ++

X )6.0( 2

4.6 βγ [ ] ββγ Q)1.012(8.2 ++ 1.2γ)β0.7(5+ 6.2β)γ2.05.4(5.2 ++

Qβ is a geometric factor defined by:

( )βββ 833.013.0Q

−= 0.6for >β

0.1Q =β 0.6for ≤β

Qg is a gap factor defined by:

0.1Qbut ,05.0for]8.21[2.01Q g3

g ≥≥−+= DgDg

Page 17: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

17 ________________________________________________________________________

Joint Capacity 2014-02-16

-0.05Dgfor65.013.0Q 5.0g ≤+= φγ

cy,

by,

fTft

where =φ

fy,b = yield strength of brace (or brace stub if present)

fy,c = yield strength of chord (or chord can if present)

Qg = linear interpolated value between the limiting values of the above expressions for 05.005.0 ≤≤− Dg

2.1.4.2 Chord action factor Qf Qf is a factor to account for the presence of factored actions in the chord.

2321f 0.1Q AC

MM

CNP

Cp

ipb

p

−⎟⎟⎠

⎞⎜⎜⎝

⎛−⎟⎟⎠

⎞⎜⎜⎝

⎛+=

The parameter A is defined as follows:

5.02

P

2

P

2

P MMN ⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛= opbipb MMPA

and:

P = axial load in chord Mipb = inplane bending moment in chord Mopb = out of plane bending moment in chord NP = axial capacity of chord MP = bending capacity of chord C1 = coefficient depending on joint and load type, see Table 2-12 C2 = coefficient depending on joint and load type, see Table 2-12 C3 = coefficient depending on joint and load type, see Table 2-12

Page 18: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

18 ________________________________________________________________________

Joint Capacity 2014-02-16

Table 2-8 Values for C1 C2 and C3 Joint Classification C1 C2 C3 T/Y joints under brace axial loading 0.3 0 0.8 DT/X joints under brace axial loading, compression b≤0.9*

0.2

0

0.5

b=1* -0.2 0 0.2 DT/X joints under brace axial loading, tension b≤0.9*

0.0

0

0.4

b=1* 0.2 0 0.2 K joints under balanced loading 0.2 0.2 0.3 All joints under brace moment loading 0.2 0.0 0.4 *) Linear interpolation for 0.9 ≤b≤ 1.0

The chord thickness at the joint should be used in the above calculations. The average of the chord loads and bending moments on either side of the brace intersection should be used. Chord axial load is positive in tension, chord in-plane bending moment is positive when it produces compression on the joint footprint.

2.1.4.3 Strength check Joint resistance shall satisfy the following interaction equation for axial force and/or bending moments in the brace:

1MM

MM

NN

Rdz,

Sdz,

2

Rdy,

Sdy,

Rd

Sd ≤+⎟⎟⎠

⎞⎜⎜⎝

⎛+

where:

NSd = axial force in the brace member NRd = the joint axial resistance My,Sd = in-plane bending moment in the brace member Mz,Sd = out-of-plane bending moment in the brace member My,Rd = in-plane bending resistance Mz,Rd = out-of-plane bending resistance

2.1.4.4 Design axial resistance for X and Y joints with joint cans For Y and X joints with axial force and where a joint can is specified, the joint design resistance should be calculated as follows:

( ) Rdcan,

2

c

nRd N

TTr-1rN

⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+=

Page 19: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

19 ________________________________________________________________________

Joint Capacity 2014-02-16

where

Ncan,Rd = NRd based on chord can geometric and material properties Tn = nominal chord member thickness Tc = chord can thickness r = Lc/(2.5D) for joints with β ≤ 0.9 = ( )[ ]DLc 5.1/)34( −β for joints with β > 0.9 Lc = effective total length of chord can, excluding taper, see Figure 2-5.

In no case shall r be taken as greater than unity.

Figure 2-4 Calculation of Lc

The reduction for short can sections is currently not implemented in USFOS, and should be accounted for when selecting effective can section thickness.

2.1.5 Basic resistance, ISO 19902:2007 The resistances for simple tubular joints are defined as follows:

fu

2y

Rd QQsinTf

=

fu

2y

Rd QQsin

dTfM

θ=

Where

NRd = the joint axial resistance MRd = the joint bending moment resistance fy = the yield strength of the chord member at the joint

Page 20: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

20 ________________________________________________________________________

Joint Capacity 2014-02-16

For braces with axial forces with a classification that is a mixture of K, Y and X joints, a weighted average of NRd based on the portion of each in the total action is used to calculate the resistance.

2.1.5.1 Strength factor Qu Qu varies with the joint and action type, as given in Table 2-5.

Table 2-9 Values for Qu Brace action Joint Classification

Axial Tension Axial Compression

In-plane Bending

Out-of-plane bending

K ( ) g0.5QQ199.1 ββ+ ( ) g

0.5QQ199.1 ββ+ 5.05.4 γβ 25.02.3 βγ

Y β30 ( ) 0.5Q199.1 ββ+ 5.05.4 γβ 25.02.3 βγ

X

( )( ) 0.9for 220170.9-20.70.9for 23

>−+

βγβ

ββ ( ) ββγ Q)1.012(8.2 ++

5.05.4 γβ 25.02.3 βγ

Qβ is a geometric factor defined by:

( )βββ 833.013.0Q

−= 0.6for >β

0.1Q =β 0.6for ≤β

Qg is a gap factor defined by: 5.0

5.0g T

g7.09.1Q ⎟⎠

⎞⎜⎝

⎛−= −γ 0.1Qbut ,0.2Tgfor g ≥≥

5.0g 65.013.0Q φγ+= 0.2

Tgfor −≤

cy,

by,

fTft

where =φ

fy,b = yield strength of brace (or brace stub if present)

fy,c = yield strength of chord (or chord can if present)

Qg = linear interpolated value between the limiting values of the above expressions for

0.2Tg0.2 ≤≤−

2.1.5.2 Chord action factor Qf Qf is a factor to account for the presence of factored actions in the chord.

Page 21: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

21 ________________________________________________________________________

Joint Capacity 2014-02-16

2f U0.1Q λ−=

Where:

λ = 0.030 for brace axial tension or compression = 0.045 for brace in-plane bending moment = 0.021 for brace out-of-plane bending moment

The parameter U is defined as follows: 5.02

P2

2

P2

2

P1, MMN ⎥

⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=

opbipbqR

MCMCPCU γ

where:

P = axial load in chord M = bending moment in chord, (ipb and opb) NP = axial capacity of chord MP = bending capacity of chord C1, C2 = coefficients depending on joint and load type γRq = is the partial resistance factor for yield ( set to 1.0 in USFOS)

Table 2-10 Values for C1 and C2, ISO 19902:2007 Joint Classification C1 C2 T/Y joints under brace axial loading 25 11 DT/X joints under brace axial loading 20 22 K joints under balanced loading 14 43 All joints under brace moment loading 25 43

The chord thickness at the joint should be used in the above calculations. The highest value of U for the chord on either side of the brace intersection should be used.

2.1.5.3 Strength check Joint resistance shall satisfy the following interaction equation for axial force and/or bending moments in the brace:

1MM

MM

NN

Rdz,

Sdz,

2

Rdy,

Sdy,

Rd

Sd ≤+⎟⎟⎠

⎞⎜⎜⎝

⎛+

where:

NSd = axial force in the brace member NRd = the joint axial resistance My,Sd = in-plane bending moment in the brace member Mz,Sd = out-of-plane bending moment in the brace member

Page 22: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

22 ________________________________________________________________________

Joint Capacity 2014-02-16

My,Rd = in-plane bending resistance Mz,Rd = out-of-plane bending resistance

2.1.5.4 Design axial resistance for X and Y joints with joint cans For Y and X joints with axial force and where a joint can is specified, the joint design resistance should be calculated as follows:

( ) Rdcan,

2

c

nRd N

TTr-1rN

⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+=

where

Ncan,Rd = NRd based on chord can geometric and material properties Tn = nominal chord member thickness Tc = chord can thickness r = Lc/(2.5D) for joints with β ≤ 0.9 = ( )[ ]DLc 5.1/)34( −β for joints with β > 0.9 Lc = effective total length of chord can, excluding taper, see Figure 2-5.

In no case shall r be taken as greater than unity.

Figure 2-5 Calculation of Lc

The reduction for short can sections is currently not implemented in USFOS, and should be accounted for when selecting effective can section thickness.

2.1.6 Basic resistance, API RP 2A-WSD, ES3 Oct. 2007 The resistances for simple tubular joints are defined as follows:

Page 23: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

23 ________________________________________________________________________

Joint Capacity 2014-02-16

fu

2y

Rd QQsinTf

NθFS

=

fu

2y

Rd QQsindTf

MθFS

=

Where

NRd = the joint axial resistance MRd = the joint bending moment resistance fy = the yield strength of the chord member at the joint (or 0.8 of the tensile

strength, if less) FS = is the safety factor (Default set to 1.0 in USFOS for characteristic

capacity) For braces with axial forces with a classification that is a mixture of K, Y and X joints, a weighted average of NRd based on the portion of each in the total action is used to calculate the resistance.

2.1.6.1 Strength factor Qu Qu varies with the joint and action type, as given in Table 2-11.

Table 2-11 Values for Qu Brace action Joint Classification

Axial Tension Axial Compression In-plane Bending

Out-of-plane bending

K g1.2Qβ)γ2.116( +

but g

1.2Qβ40≤ g

1.2Qβ)γ2.116( +

but g

1.2Qβ40≤

1.2γ)β0.7(5+ 6.2β)γ2.05.4(5.2 ++

Y β30 1.6β)γ8.020(8.2 ++

but 1.6β368.2 +≤ 1.2γ)β0.7(5+ 6.2β)γ2.05.4(5.2 ++

X

( )( ) 0.9for 220170.9-20.70.9for 23

>−+

βγβ

ββ

[ ] ββγ Q)1.012(8.2 ++ 1.2γ)β0.7(5+ 6.2β)γ2.05.4(5.2 ++

Qβ is a geometric factor defined by:

( )βββ 833.013.0Q

−= 0.6for >β

0.1Q =β 0.6for ≤β

Qg is a gap factor defined by:

0.1Qbut ,05.0for]8.21[2.01Q g3

g ≥≥−+= DgDg

-0.05Dgfor65.013.0Q 5.0g ≤+= φγ

Page 24: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

24 ________________________________________________________________________

Joint Capacity 2014-02-16

cy,

by,

fTft

where =φ

fy,b = yield strength of brace (or brace stub if present)

fy,c = yield strength of chord (or chord can if present)

Qg = linear interpolated value between the limiting values of the above expressions for 05.005.0 ≤≤− Dg

2.1.6.2 Chord action factor Qf Qf is a factor to account for the presence of factored actions in the chord.

2321f 0.1Q AC

MMFS

CNPFS

Cp

ipb

p

−⎟⎟⎠

⎞⎜⎜⎝

⎛−⎟⎟⎠

⎞⎜⎜⎝

⎛+=

The parameter A is defined as follows:

5.02

P

2

P

2

P MMN ⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛= opbipb MFSMFSPFSA

and:

P = axial load in chord Mipb = inplane bending moment in chord Mopb = out of plane bending moment in chord NP = axial capacity of chord MP = bending capacity of chord C1 = coefficient depending on joint and load type, see Table 2-12 C2 = coefficient depending on joint and load type, see Table 2-12 C3 = coefficient depending on joint and load type, see Table 2-12 FS = is the safety factor (Default set to 1.0 in USFOS for characteristic

capacity)

Table 2-12 Values for C1 C2 and C3 Joint Classification C1 C2 C3 T/Y joints under brace axial loading 0.3 0 0.8 DT/X joints under brace axial loading b≤0.9* 0.2 0 0.5 b=1* -0.2 0 0.2 K joints under balanced loading 0.2 0.2 0.3 All joints under brace moment loading 0.2 0.0 0.4 *) Linear interpolation for 0.9 ≤b≤ 1.0

Page 25: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

25 ________________________________________________________________________

Joint Capacity 2014-02-16

The chord thickness at the joint should be used in the above calculations. The average of the chord loads and bending moments on either side of the brace intersection should be used. Chord axial load is positive in tension, chord in-plane bending moment is positive when it produces compression on the joint footprint.

2.1.6.3 Strength check Joint resistance shall satisfy the following interaction equation for axial force and/or bending moments in the brace:

1MM

MM

NN

Rdz,

Sdz,

2

Rdy,

Sdy,

Rd

Sd ≤+⎟⎟⎠

⎞⎜⎜⎝

⎛+

where:

NSd = axial force in the brace member NRd = the joint axial resistance My,Sd = in-plane bending moment in the brace member Mz,Sd = out-of-plane bending moment in the brace member My,Rd = in-plane bending resistance Mz,Rd = out-of-plane bending resistance

2.1.6.4 Design axial resistance for X and Y joints with joint cans For Y and X joints with axial force and where a joint can is specified, the joint design resistance should be calculated as follows:

( ) Rdcan,

2

c

nRd N

TTr-1rN

⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+=

where

Ncan,Rd = NRd based on chord can geometric and material properties Tn = nominal chord member thickness Tc = chord can thickness r = Lc/(2.5D) for joints with β ≤ 0.9 = ( )[ ]DLc 5.1/)34( −β for joints with β > 0.9 Lc = effective total length of chord can, excluding taper, see Figure 2-5.

In no case shall r be taken as greater than unity.

Page 26: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

26 ________________________________________________________________________

Joint Capacity 2014-02-16

Figure 2-6 Calculation of Lc

The reduction for short can sections is currently not implemented in USFOS, and should be accounted for when selecting effective can section thickness.

2.2 Joint classification The joints are classified based on the axial force flow in the joint. This means that a brace in a joint with a K-joint topology can be classified as a T-joint if only one of the braces carry axial loads. Typically braces in complex joints will be classified as partly K, X and T joints. The ultimate capacity of each individual brace is based on the classification. The joint classification may change during an analysis if the axial force flow changes.

2.3 Joint behaviour and ductility limits

2.3.1 Joint P-D curves The following expressions show the original MSL proposed relationship between the joint force/moments and joint displacements/rotations as described in /2/.

⎟⎟⎟

⎜⎜⎜

⎥⎥⎦

⎢⎢⎣

⎟⎟⎠

⎞⎜⎜⎝

⎛−⎟

⎞⎜⎝

⎛+−−=

2

exp1111DFQ

BA

APPyf

u φδ

φ

⎟⎟⎟

⎜⎜⎜

⎥⎥⎦

⎢⎢⎣

⎟⎟⎠

⎞⎜⎜⎝

⎛−⎟⎟

⎞⎜⎜⎝

⎛+−−=

2

exp1111yf

u FQB

AAMM

φθ

φ

Page 27: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

27 ________________________________________________________________________

Joint Capacity 2014-02-16

Table 2-13 Coefficients A and B

Joint Type

Load Type Coefficient A B

T/Y Compression 62/)sin)4(( 3θγ − 13500600 +β

Tension 0.001 120012000 +β

IPB 0.001 67009700 +β

OPB 0.001 12008600 +β

DT/X Compression 100/)10( +γ 4.090000 −βγ

Tension 0.001

0.19.0

800006000000)9.0(8510

9.050003900

≤<

⎟⎟⎠

⎞⎜⎜⎝

⎛−−+

≤+

β

γβ

ββ

for

for

IPB 0.001 67009700 +β

OPB 0.001 12008600 +β

K Balanced axial

25.0025.01.0

18/)7(

<<

−=

ϕ

ζϕ

γϕ

butwhere

320170450320

)413(

≤≤

−=

+

ψ

ζψ

γψ

butwhere

IPB 0.001 67009700 +β

OPB 0.001 12008600 +β

P, M = brace load at joint

Pu, Mu = mean strength

φ = strength scaling factor (Pchar/Pu)

δ = joint deformation (pr brace)

θ = joint rotation (radians, pr brace)

D = chord diameter

A = constant for given joint geometry and load type

B = dimensional constant in units of MPa for given joint geometry and load type

γ = D/(2T) chord diameter / (2 chord wall thickness)

ζ = (g/D) gap between brace toes / chord diameter

2.3.2 MSL Ductility limits

Page 28: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

28 ________________________________________________________________________

Joint Capacity 2014-02-16

Table 2-14 show the MSL proposed ductility limits as described in /2/.

Table 2-14 Ductility limits for axial deflection

Joint Type Mean Characteristic X

βδ 11.013.0 −=D

βδ 075.0089.0 −=D

T/Y 076.0=

044.0=Dδ

K 026.0=

015.0=Dδ

In USFOS, the ductility limit is implemented by reducing the axial joint capacity to a small number for deformations larger than the ductility limit.

No formulations are identified for mean and characteristic fracture criteria related to other degrees of freedom.

2.3.3 USFOS Specific adjustments The Joint load-deformation curves described in 2.3.1 are developed with the mean capacity in mind. The scaling factor φ is intended to scale the curve when characteristic capacities are used, in a way that preserves the initial joint stiffness. However in some cases the produced curves are much softer near the characteristic capacity and the ductility limit is reached before the characteristic capacity. In order to avoid this, the B factors are increased for axial tension for the Norsok, API and ISO variants. B’ = B 1.5 is used.

Page 29: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

29 ________________________________________________________________________

Joint Capacity 2014-02-16

3. DESCRIPTION OF USE

3.1 General When using the USFOS CHJOINT record, additional elements are inserted in the FE- model, see Figure 3-1 The elements have properties representing both the stiffness and capacity of the tubular joint braces according to the selected rule.

Two extra nodes

Beam

Beam

Two extra elements

Beam

Beam

Conventional joint model Joint with capacity check included Figure 3-1 Tubular joint representation

A sample input for the joint given in Figure 3-2 is shown in

Table 3-1.

Section 3.2 describes the most relevant input records in order to include joint check in an USFOS analysis.

Page 30: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

30 ________________________________________________________________________

Joint Capacity 2014-02-16

Figure 3-2 Tubular Joint

Table 3-1 Joint check input

' nodex chord1 chord2 geono CapRule CapLevel

CHJOINT 12 14 15 0 MSL FCrack

'

JNTCLASS 1 ! 0=OFF 1=ON

Page 31: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

31 ________________________________________________________________________

Joint Capacity 2014-02-16

3.2 Input description Below is given a selection of the most relevant input records in order to include joint check in an USFOS analysis.

CHJOINT nodex elnox1 elnox2 geono irule

Parameter Description Default

nodex External node number referring to the joint where shell effects should be considered

elnox1 External element number defining one of the two elements connected to the node

elnox2 External element number defining the second CHORD element

geono irule

Geometry reference number defining the diameter and thickness of the chord at the joint (canned joint). If omitted or equal to 0, the data for elnox1 is used. Capacity rule switch: irule = MSL : MSL non-linear joint characteristics, (see next pages). irule = NORSOK : Norsok N-004, rev 2 non-linear joint characteristics. irule = NOR_R3 : Norsok N-004, rev 3 non-linear joint characteristics irule = ISO: ISO 19902:2007 non-linear joint characteristics. irule = API-WSD: API RP 2A WSD ES3 (non-linear joint characteristics. Historic, not recommended: irule = -1 : API-LRFD (no more data required) irule = -2 : DoE (no more data required) irule = -3 : User defined capacity and surface definition, more data

required, (see next pages). Irule = -101 : User defined Joint Springs, more data required, (see next

pages).

0

Norsok

With this record, the capacity of each brace/chord connection at the tubular joint will be checked according to a selected joint capacity formulation. This check will impose restrictions on the load transfer through each brace/chord connection at the specified joint. The generated capacities are printed in the '.jnt' or the ‘.out’ – file (Historic options), and the peak capacities will be printed using the Verify/Element/Information option in Xact.

Page 32: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

32 ________________________________________________________________________

Joint Capacity 2014-02-16

Two extra nodes

Beam

Beam

Two extra elements

Beam

Beam

Conventional joint model Joint with capacity check included

Page 33: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

33 ________________________________________________________________________

Joint Capacity 2014-02-16

CHJOINT nodex elnox1 elnox2 geono CapRule CapLevel Qf_SafetyCoeff

Parameter Description Default

nodex External node number referring to the joint where joint capacity and non-linear joint behaviour should be considered

elnox1 External element number defining one of the two CHORD elements connected to the node

elnox2 External element number defining the second CHORD element

geono Geometry reference number defining the diameter and thickness of the chord at the joint (canned joint). If omitted or equal to 0, the data for elnox1 is used.

CapRule Capacity rule:

MSL : MSL non-linear joint characteristics

CapLevel Capacity level or capacity multiplier. mean : use mean ultimate joint capacities char : use characteristic ultimate joint capacities fcrack : use characteristic first crack joint capacities

scalfact : joint capacities are set to mean value capacities multiplied by scalfact, (where “scalfact“ is a positive real number).

This option is only available with the MSL joint formulation.

mean

Qf_Safety Coeff

The Qf factor for joint capacities includes a safety factor (or partial safety coefficient) in the chord stress utilization factor.

1.0

With this record, the capacity of each brace/chord connection at the tubular joint will be checked according to a selected joint capacity equation This check will impose restrictions on the load transfer through each brace/chord connection at the specified joint, and the non-linear joint characteristics will be included in the USFOS analysis. Extra elements will be introduced in the FE model, and the behavior of these elements assigned according to the selected joint capacity rule or specified joint capacity, and the FE formulation selected for the “joint elements”. The joint capacity rule or joint capacity is specified by the CHJOINT record(s). The FE formulation for the “joint elements” is selected automatically. (JNT_FORM record is not needed to specify).

-

Page 34: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

34 ________________________________________________________________________

Joint Capacity 2014-02-16

JOINTGAP Gap NodeID Brace1 Brace2 ……

Parameter Description Default

Gap Actual Gap specified in current length unit

NodeID Actual Joint, (CHJOINT must be specified for this joint) Brace_i . .

The actual gap should be applied to the Braces (Elem ID’s) specified. NOTE 1: If no node is specified, all joints defined get the actual gap. NOTE 2: If no braces are specified, all braces get the actual gap.

With this record the user may override the gaps between braces, which are computed based on the structural model, (member coordinates and offsets). This is a useful option if the structural model does not describe correct gaps (f ex a model without member eccentricities/offsets). This record may be repeated. ‘ Gap (NodID) Example 1: JOINTGAP 0.050 This will force a gap = 0.050 to be used in all relevant capacity calculations for all joints with CHJOINT applied (does not influence T/Y capacities). ‘ Gap NodID Example 2: JOINTGAP 0.050 JOINTGAP 0.070 1010 JOINTGAP 0.070 2010 JOINTGAP 0.070 3010 This will force a gap = 0.050 to be used in all relevant capacity calculations for all joints except for joints 1010, 2010 and 3010, which will use a gap of 0.070. ‘ Gap NodID Brace1 Brace2 Brace3 Example 3: JOINTGAP 0.050 JOINTGAP 0.070 1010 20100 20101 20102 This will force a gap = 0.050 to be used in all relevant capacity calculations for all joints except for joint 1010, where the braces 20100, 20101 and 20102, which will use a gap of 0.070. The other braces connected to joint 1010 will use a gap of 0.050. ‘ Gap NodID Brace1 Brace2 Brace3 Example 4: JOINTGAP 0.070 1010 20100 20101 20102 This will force a gap=0.070 to be used for joint 1010, braces 20100, 20101 and 20102. The other braces connected to joint 1010 as well as all other joints with ChJoint specified will use the gap computed on basis on the structural model (coordinates and eventual offsets).

Page 35: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

35 ________________________________________________________________________

Joint Capacity 2014-02-16

JNTCLASS interval

Parameter Description Default

interval Joints will be (re)classified according to geometry and force state at specified intervals during the analysis. The joint capacities will be updated according to the revised classification, P-δ curves for each joint degree of freedom and the Qf factor will be updated.

1

0 : No joint classification. 1 : Continuous joint (re)classification. Joint capacities, non-

linear joint characteristics and the Qf factor will be updated at every step in the USFOS analysis.

n >1 : Joints will be (re)classified at every n’th step. Joint capacities, non-linear joint characteristics and the Qf factor will be updated at every n’th step in the USFOS analysis.

If the record is not given, the default value of one (classified every step) is used for the MSL, Norsok, ISO and API-WSD variants. This record is given once

Page 36: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

36 ________________________________________________________________________

Joint Capacity 2014-02-16

4. VERIFICATION

4.1 K-Joints

PP

Axgap

PP

Axgap

Figure 4-1 Simple K-Joint with gap

Page 37: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

37 ________________________________________________________________________

Joint Capacity 2014-02-16

4.1.1 Gamma = 10, Beta =0.8, gap/T=2.5

Table 4-1 Joint data

Input Value Joint type K

Geometry [mm] db 320 tb 20 Dc 400 Tc 20 theta 90 gap 50 Material [MPa] fyb 350 fy 350 Chord loads [N] -Axial -1.30E+06 Chord Capacity Np 8.357E+06 Mp 1.012E+09 Table 4-2 Expected capacities [N, mm]

Results for Joint Type:

K

MSL Mean MSL Char MSL

Fcrack NORSOK

R2 ISO API NORSOK

R3

Nrd.c 5.103E+06 3.925E+06 3.925E+06 3.925E+06 3.934E+06 3.164E+06 3.164E+06 Qf 0.98 0.98 0.98 0.98 0.98 0.95 0.95 Nrd.c*Qf 5.017E+06 3.859E+06 3.859E+06 3.831E+06 3.868E+06 2.999E+06 2.999E+06

Nrd.t 5.103E+06 3.925E+06 3.925E+06 3.925E+06 3.934E+06 3.164E+06 3.164E+06 Qf 0.98 0.98 0.98 0.98 0.98 0.95 0.95 Nrd.t*Qf 5.017E+06 3.859E+06 3.859E+06 3.831E+06 3.868E+06 2.999E+06 2.999E+06

Mipb 6.233E+08 5.100E+08 5.100E+08 5.100E+08 5.100E+08 4.113E+08 4.113E+08 Qf 0.96 0.96 0.96 0.96 0.96 0.94 0.94 Mipb*Qf 5.953E+08 4.871E+08 4.871E+08 4.871E+08 4.871E+08 3.883E+08 3.883E+08

Mopb 3.931E+08 2.995E+08 2.995E+08 2.995E+08 2.995E+08 2.750E+08 2.750E+08 Qf 0.98 0.98 0.98 0.98 0.98 0.94 0.94 Mopb*Qf 3.849E+08 2.932E+08 2.932E+08 2.932E+08 2.932E+08 2.596E+08 2.596E+08

Page 38: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

38 ________________________________________________________________________

Joint Capacity 2014-02-16

Table 4-3 USFOS results [N, m]

NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL mean 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 0.050 5.103E+06 6.233E+05 3.931E+05 29% T 3.224E+06 6.233E+05 3.931E+05 100% => 4.552E+06 6.233E+05 3.931E+05 0.99 0.97 0.99 12 45 K 11 0.050 7.113E+06 8.815E+05 5.560E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL characteristic 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 0.050 3.925E+06 5.100E+05 2.995E+05 29% T 2.538E+06 5.100E+05 2.995E+05 100% => 3.519E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 12 45 K 11 0.050 4.720E+06 7.213E+05 4.236E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL first crack 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 0.050 3.925E+06 5.100E+05 2.995E+05 29% T 2.538E+06 5.100E+05 2.995E+05 100% => 3.519E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 12 45 K 11 0.050 4.720E+06 7.213E+05 4.236E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 Rev2 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 0.050 3.925E+06 5.100E+05 2.995E+05 29% T 2.538E+06 5.100E+05 2.995E+05 100% => 3.519E+06 5.100E+05 2.995E+05 0.98 0.97 0.99 12 45 K 11 0.050 5.263E+06 7.213E+05 4.236E+05 0.98 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 ISO 19902 2007-12-01 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 0.050 3.925E+06 5.100E+05 2.995E+05 29% T 2.538E+06 5.100E+05 2.995E+05 100% => 3.519E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 12 45 K 11 0.050 5.258E+06 7.213E+05 4.236E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 API RP2A-WSD 21st ES3 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 0.050 3.164E+06 4.113E+05 2.750E+05 29% T 3.135E+06 4.113E+05 2.750E+05 100% => 3.155E+06 4.113E+05 2.750E+05 0.95 0.96 0.96 12 45 K 11 0.050 4.387E+06 5.817E+05 3.889E+05 0.96 0.96 0.96

Page 39: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

39 ________________________________________________________________________

Joint Capacity 2014-02-16

NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 R3 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 0.050 3.164E+06 4.113E+05 2.750E+05 29% T 3.135E+06 4.113E+05 2.750E+05 100% => 3.155E+06 4.113E+05 2.750E+05 0.95 0.96 0.96 12 45 K 11 0.050 4.387E+06 5.817E+05 3.889E+05 0.96 0.96 0.96

Page 40: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

40 ________________________________________________________________________

Joint Capacity 2014-02-16

4.1.2 Gamma = 10, Beta = 0.8, gap/T = -0.5

Table 4-4 Joint data

Input Value Joint type K

Geometry [mm] Db 320 Tb 20 Dc 400 Tc 20 Theta 90 gap -10 Material [MPa] fyb 350 fy 350 Chord loads [N] -Axial -1.30E+06 Chord Capacity Np 8.357E+06 Mp 1.012E+09 Table 4-5 Expected capacities [N, mm]

Results for Joint Type:

K

MSL Mean MSL Char MSL

Fcrack NORSOK

R2 ISO API NORSOK

R3

Nrd.c 6.467E+06 4.974E+06 4.974E+06 4.974E+06 4.974E+06 5.761E+06 5.761E+06 Qf 0.99 0.99 0.99 0.99 0.99 0.96 0.96 Nrd.c*Qf 6.402E+06 4.924E+06 4.924E+06 4.903E+06 4.924E+06 5.541E+06 5.541E+06

Nrd.t 6.467E+06 4.974E+06 4.974E+06 4.974E+06 4.974E+06 5.761E+06 5.761E+06 Qf 0.99 0.99 0.99 0.99 0.99 0.96 0.96 Nrd.t*Qf 6.402E+06 4.924E+06 4.924E+06 4.903E+06 4.924E+06 5.541E+06 5.541E+06

Mipb 6.233E+08 5.100E+08 5.100E+08 5.100E+08 5.100E+08 4.113E+08 4.113E+08 Qf 0.97 0.97 0.97 0.97 0.97 0.96 0.96 Mipb*Qf 6.065E+08 4.962E+08 4.962E+08 4.962E+08 4.962E+08 3.946E+08 3.946E+08

Mopb 3.931E+08 2.995E+08 2.995E+08 2.995E+08 2.995E+08 2.750E+08 2.750E+08 Qf 0.99 0.99 0.99 0.99 0.99 0.96 0.96 Mopb*Qf 3.882E+08 2.957E+08 2.957E+08 2.957E+08 2.957E+08 2.638E+08 2.638E+08

Page 41: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

41 ________________________________________________________________________

Joint Capacity 2014-02-16

Table 4-6 USFOS Results [N, m] NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL mean 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 -0.010 6.467E+06 6.233E+05 3.931E+05 29% T 3.224E+06 6.233E+05 3.931E+05 100% => 5.517E+06 6.233E+05 3.931E+05 0.99 0.97 0.99 12 45 K 11 -0.010 9.958E+06 8.815E+05 5.560E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL characteristic 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 -0.010 4.974E+06 5.100E+05 2.995E+05 29% T 2.538E+06 5.100E+05 2.995E+05 100% => 4.261E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 12 45 K 11 -0.010 7.035E+06 7.213E+05 4.236E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL first crack 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 -0.010 4.974E+06 5.100E+05 2.995E+05 29% T 2.538E+06 5.100E+05 2.995E+05 100% => 4.261E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 12 45 K 11 -0.010 7.035E+06 7.213E+05 4.236E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 Rev2 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 -0.010 4.974E+06 5.100E+05 2.995E+05 29% T 2.538E+06 5.100E+05 2.995E+05 100% => 4.261E+06 5.100E+05 2.995E+05 0.98 0.97 0.99 12 45 K 11 -0.010 7.035E+06 7.213E+05 4.236E+05 0.98 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 ISO 19902 2007-12-01 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 -0.010 4.974E+06 5.100E+05 2.995E+05 29% T 2.538E+06 5.100E+05 2.995E+05 100% => 4.261E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 12 45 K 11 -0.010 7.035E+06 7.213E+05 4.236E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 API RP2A-WSD 21st ES3 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 -0.010 5.761E+06 4.113E+05 2.750E+05 29% T 3.135E+06 4.113E+05 2.750E+05 100% => 4.992E+06 4.113E+05 2.750E+05 0.95 0.96 0.96 12 45 K 11 -0.010 8.147E+06 5.817E+05 3.889E+05 0.96 0.96 0.96

Page 42: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

42 ________________________________________________________________________

Joint Capacity 2014-02-16

NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 R3 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 -0.010 5.761E+06 4.113E+05 2.750E+05 29% T 3.135E+06 4.113E+05 2.750E+05 100% => 4.992E+06 4.113E+05 2.750E+05 0.95 0.96 0.96 12 45 K 11 -0.010 8.147E+06 5.817E+05 3.889E+05 0.96 0.96 0.96

Page 43: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

43 ________________________________________________________________________

Joint Capacity 2014-02-16

4.1.3 Gamma = 10, Beta = 0.8, gap/T = -2.5

Table 4-7 Joint data

Input Value Joint type K

Geometry [mm] db 320 tb 20 Dc 400 Tc 20 theta 90 gap -50 Material [MPa] fyb 350 fy 350 Chord loads [N] -Axial -1.30E+06 Chord Capacity Np 8.357E+06 Mp 1.012E+09 Table 4-8 Expected Capacities [N,mm]

Results for Joint Type:

K

MSL Mean MSL Char MSL

Fcrack NORSOK

R2 ISO API NORSOK

R3

Nrd.c 7.211E+06 5.547E+06 5.547E+06 5.547E+06 5.547E+06 6.555E+06 6.555E+06 Qf 0.99 0.99 0.99 0.99 0.99 0.96 0.96 Nrd.c*Qf 7.139E+06 5.491E+06 5.491E+06 5.467E+06 5.491E+06 6.304E+06 6.304E+06

Nrd.t 7.211E+06 5.547E+06 5.547E+06 5.547E+06 5.547E+06 6.555E+06 6.555E+06 Qf 0.99 0.99 0.99 0.99 0.99 0.96 0.96 Nrd.t*Qf 7.139E+06 5.491E+06 5.491E+06 5.467E+06 5.491E+06 6.304E+06 6.304E+06

Mipb 6.233E+08 5.100E+08 5.100E+08 5.100E+08 5.100E+08 4.113E+08 4.113E+08 Qf 0.97 0.97 0.97 0.97 0.97 0.96 0.96 Mipb*Qf 6.065E+08 4.962E+08 4.962E+08 4.962E+08 4.962E+08 3.946E+08 3.946E+08

Mopb 3.931E+08 2.995E+08 2.995E+08 2.995E+08 2.995E+08 2.750E+08 2.750E+08 Qf 0.99 0.99 0.99 0.99 0.99 0.96 0.96 Mopb*Qf 3.882E+08 2.957E+08 2.957E+08 2.957E+08 2.957E+08 2.638E+08 2.638E+08

Page 44: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

44 ________________________________________________________________________

Joint Capacity 2014-02-16

Table 4-9 USFOS Results [N, m] NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL mean 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 -0.050 7.211E+06 6.233E+05 3.931E+05 29% T 3.224E+06 6.233E+05 3.931E+05 100% => 6.043E+06 6.233E+05 3.931E+05 0.99 0.97 0.99 12 45 K 11 -0.050 1.110E+07 8.815E+05 5.560E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL characteristic 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 -0.050 5.547E+06 5.100E+05 2.995E+05 29% T 2.538E+06 5.100E+05 2.995E+05 100% => 4.666E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 12 45 K 11 -0.050 7.845E+06 7.213E+05 4.236E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL first crack 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 -0.050 5.547E+06 5.100E+05 2.995E+05 29% T 2.538E+06 5.100E+05 2.995E+05 100% => 4.666E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 12 45 K 11 -0.050 7.845E+06 7.213E+05 4.236E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 Rev2 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 -0.050 5.547E+06 5.100E+05 2.995E+05 29% T 2.538E+06 5.100E+05 2.995E+05 100% => 4.666E+06 5.100E+05 2.995E+05 0.98 0.97 0.99 12 45 K 11 -0.050 7.845E+06 7.213E+05 4.236E+05 0.98 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 ISO 19902 2007-12-01 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 -0.050 5.547E+06 5.100E+05 2.995E+05 29% T 2.538E+06 5.100E+05 2.995E+05 100% => 4.666E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 12 45 K 11 -0.050 7.845E+06 7.213E+05 4.236E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 API RP2A-WSD 21st ES3 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 -0.050 6.555E+06 4.113E+05 2.750E+05 29% T 3.135E+06 4.113E+05 2.750E+05 100% => 5.553E+06 4.113E+05 2.750E+05 0.95 0.96 0.96 12 45 K 11 -0.050 9.269E+06 5.817E+05 3.889E+05 0.96 0.96 0.96

Page 45: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

45 ________________________________________________________________________

Joint Capacity 2014-02-16

NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 R3 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 -0.050 6.555E+06 4.113E+05 2.750E+05 29% T 3.135E+06 4.113E+05 2.750E+05 100% => 5.553E+06 4.113E+05 2.750E+05 0.95 0.96 0.96 12 45 K 11 -0.050 9.269E+06 5.817E+05 3.889E+05 0.96 0.96 0.96

Page 46: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

46 ________________________________________________________________________

Joint Capacity 2014-02-16

4.1.4 Gamma = 25, Beta = 0.8, gap/T = 6.25

Table 4-10 Joint data

Input Value Joint type K

Geometry [mm] db 320 tb 8 Dc 400 Tc 8 theta 90 gap 50 Material [MPa] fyb 350 fy 350 Chord loads [N] -Axial -1.05E+06 Chord Capacity Np 3.448E+06 Mp 4.303E+08 Table 4-11 Expected Capacities [N,mm]

Results for Joint Type:

K

MSL Mean MSL Char MSL

Fcrack NORSOK

R2 ISO API NORSOK

R3

Nrd.c 8.164E+05 6.280E+05 6.280E+05 6.280E+05 6.295E+05 7.232E+05 7.232E+05 Qf 0.96 0.96 0.96 0.94 0.96 0.91 0.91 Nrd.c*Qf 7.845E+05 6.035E+05 6.035E+05 5.930E+05 6.049E+05 6.589E+05 6.589E+05

Nrd.t 8.164E+05 6.280E+05 6.280E+05 6.280E+05 6.295E+05 7.232E+05 7.232E+05 Qf 0.96 0.96 0.96 0.94 0.96 0.91 0.91 Nrd.t*Qf 7.845E+05 6.035E+05 6.035E+05 5.930E+05 6.049E+05 6.589E+05 6.589E+05

Mipb 1.577E+08 1.290E+08 1.290E+08 1.290E+08 1.290E+08 1.234E+08 1.234E+08 Qf 0.90 0.90 0.90 0.90 0.90 0.90 0.90 Mipb*Qf 1.412E+08 1.155E+08 1.155E+08 1.155E+08 1.155E+08 1.113E+08 1.113E+08

Mopb 8.433E+07 6.425E+07 6.425E+07 6.425E+07 6.425E+07 5.604E+07 5.604E+07 Qf 0.95 0.95 0.95 0.95 0.95 0.90 0.90 Mopb*Qf 8.021E+07 6.111E+07 6.111E+07 6.111E+07 6.111E+07 5.054E+07 5.054E+07

Page 47: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

47 ________________________________________________________________________

Joint Capacity 2014-02-16

Table 4-12 USFOS Results [N, m] NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL mean 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 0.050 8.164E+05 1.577E+05 8.433E+04 29% T 5.158E+05 1.577E+05 8.433E+04 100% => 7.284E+05 1.577E+05 8.433E+04 0.95 0.89 0.95 12 45 K 11 0.050 1.257E+06 2.230E+05 1.193E+05 0.95 0.88 0.94 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL characteristic 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 0.050 6.280E+05 1.290E+05 6.425E+04 29% T 4.061E+05 1.290E+05 6.425E+04 100% => 5.630E+05 1.290E+05 6.425E+04 0.95 0.89 0.95 12 45 K 11 0.050 8.879E+05 1.825E+05 9.087E+04 0.95 0.88 0.94 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL first crack 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 0.050 6.280E+05 1.290E+05 6.425E+04 29% T 4.061E+05 1.290E+05 6.425E+04 100% => 5.630E+05 1.290E+05 6.425E+04 0.95 0.89 0.95 12 45 K 11 0.050 8.879E+05 1.825E+05 9.087E+04 0.95 0.88 0.94 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 Rev2 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 0.050 6.280E+05 1.290E+05 6.425E+04 29% T 4.061E+05 1.290E+05 6.425E+04 100% => 5.630E+05 1.290E+05 6.425E+04 0.94 0.89 0.95 12 45 K 11 0.050 8.882E+05 1.825E+05 9.087E+04 0.94 0.89 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 ISO 19902 2007-12-01 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 0.050 6.280E+05 1.290E+05 6.425E+04 29% T 4.061E+05 1.290E+05 6.425E+04 100% => 5.630E+05 1.290E+05 6.425E+04 0.95 0.89 0.95 12 45 K 11 0.050 8.882E+05 1.825E+05 9.087E+04 0.96 0.89 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 API RP2A-WSD 21st ES3 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 0.050 7.232E+05 1.234E+05 5.604E+04 29% T 6.270E+05 1.234E+05 5.604E+04 100% => 6.950E+05 1.234E+05 5.604E+04 0.88 0.90 0.90 12 45 K 11 0.050 1.023E+06 1.745E+05 7.925E+04 0.90 0.90 0.90

Page 48: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

48 ________________________________________________________________________

Joint Capacity 2014-02-16

NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 R3 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 71% K 12 0.050 7.232E+05 1.234E+05 5.604E+04 29% T 6.270E+05 1.234E+05 5.604E+04 100% => 6.950E+05 1.234E+05 5.604E+04 0.88 0.90 0.90 12 45 K 11 0.050 1.023E+06 1.745E+05 7.925E+04 0.90 0.90 0.90

Page 49: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

49 ________________________________________________________________________

Joint Capacity 2014-02-16

4.2 T/Y-Joints

P

Ax

P

Ax

Figure 4-2 Simple T/Y-Joint

Page 50: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

50 ________________________________________________________________________

Joint Capacity 2014-02-16

4.2.1 Gamma = 25, Beta =0.8

Table 4-13 Joint data

Input Value Joint type T/Y Geometry [mm] db 320 tb 8 Dc 400 Tc 8 theta 90 gap 0 Material fyb 350 fy 350 Chord loads [N] -Axial -1.03E+06 Chord Capacity Np 3.448E+06 Mp 4.303E+08 Table 4-14 Expected capacities [N, mm]

Results for Joint Type:

T

MSL Mean MSL Char MSL

Fcrack NORSOK

R2 ISO API NORSOK

R3

Nrd.c 5.158E+05 4.061E+05 4.061E+05 4.061E+05 4.061E+05 6.270E+05 6.270E+05 Qf 0.93 0.93 0.93 0.93 0.93 0.84 0.84 Nrd.c*Qf 4.809E+05 3.787E+05 3.787E+05 3.787E+05 3.787E+05 5.254E+05 5.254E+05

Nrd.t 1.152E+06 6.608E+05 5.376E+05 5.376E+05 5.376E+05 5.376E+05 5.376E+05 Qf 0.93 0.93 0.93 0.93 0.93 0.84 0.84 Nrd.t*Qf 1.074E+06 6.162E+05 5.013E+05 5.013E+05 5.013E+05 4.505E+05 4.505E+05

Mipb 1.577E+08 1.290E+08 1.290E+08 1.290E+08 1.290E+08 1.234E+08 1.234E+08 Qf 0.90 0.90 0.90 0.90 0.90 0.90 0.90 Mipb*Qf 1.417E+08 1.160E+08 1.160E+08 1.160E+08 1.160E+08 1.115E+08 1.115E+08

Mopb 8.433E+07 6.425E+07 6.425E+07 6.425E+07 6.425E+07 5.604E+07 5.604E+07 Qf 0.95 0.95 0.95 0.95 0.95 0.90 0.90 Mopb*Qf 8.035E+07 6.122E+07 6.122E+07 6.122E+07 6.122E+07 5.066E+07 5.066E+07

Page 51: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

51 ________________________________________________________________________

Joint Capacity 2014-02-16

Table 4-15 USFOS results [N, m] (compression) NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL mean 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 5.158E+05 1.577E+05 8.433E+04 0.92 0.85 0.93 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL characteristic 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 4.061E+05 1.290E+05 6.425E+04 0.92 0.85 0.93 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL first crack 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 4.061E+05 1.290E+05 6.425E+04 0.92 0.85 0.93 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 Rev2 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 4.061E+05 1.290E+05 6.425E+04 0.93 0.87 0.94 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 ISO 19902 2007-12-01 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 4.061E+05 1.290E+05 6.425E+04 0.93 0.85 0.93 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 API RP2A-WSD 21st ES3 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 6.270E+05 1.234E+05 5.604E+04 0.82 0.89 0.89 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 R3 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 6.270E+05 1.234E+05 5.604E+04 0.82 0.89 0.89

Page 52: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

52 ________________________________________________________________________

Joint Capacity 2014-02-16

Table 4-16 USFOS results [N, m] (tension) NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL mean 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 1.149E+06 1.577E+05 8.433E+04 0.92 0.85 0.93 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL characteristic 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 6.593E+05 1.290E+05 6.425E+04 0.92 0.85 0.93 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL first crack 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 5.375E+05 1.290E+05 6.425E+04 0.92 0.85 0.93 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 Rev2 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 5.376E+05 1.290E+05 6.425E+04 0.93 0.87 0.94 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 ISO 19902 2007-12-01 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 5.376E+05 1.290E+05 6.425E+04 0.93 0.85 0.93 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 API RP2A-WSD 21st ES3 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 5.376E+05 1.234E+05 5.604E+04 0.82 0.89 0.89 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 R3 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 5.376E+05 1.234E+05 5.604E+04 0.82 0.89 0.89

Page 53: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

53 ________________________________________________________________________

Joint Capacity 2014-02-16

4.2.2 Gamma = 10, Beta =0.8

Table 4-17 Joint data

Input Value Joint type T/Y Geometry [mm] Db 320 Tb 20 Dc 400 Tc 20 theta 90 gap 0 Material fyb 350 fy 350 Chord loads [N] -Axial -2.51E+06 Chord Capacity Np 8.357E+06 Mp 1.012E+09 Table 4-18 Expected capacities [N, mm]

Results for Joint Type:

T

MSL Mean MSL Char MSL

Fcrack NORSOK

R2 ISO API NORSOK

R3

Nrd.c 3.224E+06 2.538E+06 2.538E+06 2.538E+06 2.538E+06 3.135E+06 3.135E+06 Qf 0.93 0.93 0.93 0.93 0.93 0.84 0.84 Nrd.c*Qf 3.006E+06 2.367E+06 2.367E+06 2.367E+06 2.367E+06 2.627E+06 2.627E+06

Nrd.t 7.202E+06 4.130E+06 3.360E+06 3.360E+06 3.360E+06 3.360E+06 3.360E+06 Qf 0.93 0.93 0.93 0.93 0.93 0.84 0.84 Nrd.t*Qf 6.715E+06 3.851E+06 3.133E+06 3.133E+06 3.133E+06 2.816E+06 2.816E+06

Mipb 6.233E+08 5.100E+08 5.100E+08 5.100E+08 5.100E+08 4.113E+08 4.113E+08 Qf 0.90 0.90 0.90 0.90 0.90 0.90 0.90 Mipb*Qf 5.602E+08 4.584E+08 4.584E+08 4.584E+08 4.584E+08 3.718E+08 3.718E+08

Mopb 3.931E+08 2.995E+08 2.995E+08 2.995E+08 2.995E+08 2.750E+08 2.750E+08 Qf 0.95 0.95 0.95 0.95 0.95 0.90 0.90 Mopb*Qf 3.745E+08 2.854E+08 2.854E+08 2.854E+08 2.854E+08 2.486E+08 2.486E+08

Page 54: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

54 ________________________________________________________________________

Joint Capacity 2014-02-16

Table 4-19 USFOS results [N, m] (compression) NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL mean 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 3.224E+06 6.233E+05 3.931E+05 0.93 0.89 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL characteristic 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 2.538E+06 5.100E+05 2.995E+05 0.93 0.89 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL first crack 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 2.538E+06 5.100E+05 2.995E+05 0.93 0.89 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 Rev2 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 2.538E+06 5.100E+05 2.995E+05 0.93 0.89 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 ISO 19902 2007-12-01 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 2.538E+06 5.100E+05 2.995E+05 0.93 0.89 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 API RP2A-WSD 21st ES3 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 3.135E+06 4.113E+05 2.750E+05 0.83 0.90 0.90 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 R3 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 3.135E+06 4.113E+05 2.750E+05 0.83 0.90 0.90

Page 55: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

55 ________________________________________________________________________

Joint Capacity 2014-02-16

Table 4-20 USFOS results [N, m] (tension) NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL mean 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 7.183E+06 6.233E+05 3.931E+05 0.93 0.89 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL characteristic 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 4.120E+06 5.100E+05 2.995E+05 0.93 0.89 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL first crack 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 3.359E+06 5.100E+05 2.995E+05 0.93 0.89 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 Rev2 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 3.360E+06 5.100E+05 2.995E+05 0.93 0.89 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 ISO 19902 2007-12-01 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 3.360E+06 5.100E+05 2.995E+05 0.93 0.89 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 API RP2A-WSD 21st ES3 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 3.360E+06 4.113E+05 2.750E+05 0.83 0.90 0.90 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 R3 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 T 3.360E+06 4.113E+05 2.750E+05 0.83 0.90 0.90

Page 56: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

56 ________________________________________________________________________

Joint Capacity 2014-02-16

4.3 X-Joints

P

Ax

P

P

Ax

P

Figure 4-3 Simple DT/X-Joint

Page 57: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

57 ________________________________________________________________________

Joint Capacity 2014-02-16

4.3.1 Gamma = 25, Beta =0.8

Table 4-21 Joint data

Input Value Joint type X Geometry [mm] db 320 tb 8 Dc 400 Tc 8 theta 90 gap 0 Material fyb 350 fy 350 Chord loads [N] -Axial -1.03E+06 Chord Capacity Np 3.448E+06 Mp 4.303E+08 Table 4-22 Expected capacities [N, mm]

Results for Joint Type:

X

MSL Mean MSL Char MSL

Fcrack NORSOK

R2 ISO API NORSOK

R3

Nrd.c 4.089E+05 3.525E+05 3.525E+05 3.525E+05 3.626E+05 3.626E+05 3.626E+05 Qf 0.93 0.93 0.93 0.95 0.95 0.90 0.90 Nrd.c*Qf 3.813E+05 3.287E+05 3.287E+05 3.335E+05 3.430E+05 3.245E+05 3.245E+05

Nrd.t 8.163E+05 6.854E+05 4.122E+05 4.122E+05 4.122E+05 4.122E+05 4.934E+05 Qf 0.93 0.93 0.93 0.95 0.95 0.90 0.96 Nrd.t*Qf 7.612E+05 6.392E+05 3.843E+05 3.899E+05 3.899E+05 3.689E+05 4.757E+05

Mipb 1.577E+08 1.290E+08 1.290E+08 1.290E+08 1.290E+08 1.234E+08 1.234E+08 Qf 0.90 0.90 0.90 0.90 0.90 0.90 0.90 Mipb*Qf 1.417E+08 1.160E+08 1.160E+08 1.160E+08 1.160E+08 1.115E+08 1.115E+08

Mopb 8.433E+07 6.425E+07 6.425E+07 6.425E+07 6.425E+07 5.604E+07 5.604E+07 Qf 0.95 0.95 0.95 0.95 0.95 0.90 0.90 Mopb*Qf 8.035E+07 6.122E+07 6.122E+07 6.122E+07 6.122E+07 5.066E+07 5.066E+07

Page 58: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

58 ________________________________________________________________________

Joint Capacity 2014-02-16

Table 4-23 USFOS results [N, m] (compression) NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL mean 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 78% X 12 4.089E+05 1.577E+05 8.433E+04 22% T 5.158E+05 1.577E+05 8.433E+04 100% => 4.325E+05 1.577E+05 8.433E+04 0.93 0.90 0.95 12 90 X 11 4.089E+05 1.577E+05 8.433E+04 0.93 0.90 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL characteristic 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 78% X 12 3.525E+05 1.290E+05 6.425E+04 22% T 4.061E+05 1.290E+05 6.425E+04 100% => 3.643E+05 1.290E+05 6.425E+04 0.93 0.90 0.95 12 90 X 11 3.525E+05 1.290E+05 6.425E+04 0.93 0.90 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL first crack 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 78% X 12 3.525E+05 1.290E+05 6.425E+04 22% T 4.061E+05 1.290E+05 6.425E+04 100% => 3.643E+05 1.290E+05 6.425E+04 0.93 0.90 0.95 12 90 X 11 3.525E+05 1.290E+05 6.425E+04 0.93 0.90 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 Rev2 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 79% X 12 3.525E+05 1.290E+05 6.425E+04 21% T 4.061E+05 1.290E+05 6.425E+04 100% => 3.640E+05 1.290E+05 6.425E+04 0.94 0.90 0.95 12 90 X 11 3.525E+05 1.290E+05 6.425E+04 0.95 0.90 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 ISO 19902 2007-12-01 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 79% X 12 3.626E+05 1.290E+05 6.425E+04 21% T 4.061E+05 1.290E+05 6.425E+04 100% => 3.719E+05 1.290E+05 6.425E+04 0.94 0.90 0.95 12 90 X 11 3.626E+05 1.290E+05 6.425E+04 0.95 0.90 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 API RP2A-WSD 21st ES3 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 79% X 12 3.626E+05 1.234E+05 5.604E+04 21% T 6.270E+05 1.234E+05 5.604E+04 100% => 4.193E+05 1.234E+05 5.604E+04 0.88 0.90 0.90 12 90 X 11 3.626E+05 1.234E+05 5.604E+04 0.90 0.90 0.90

Page 59: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

59 ________________________________________________________________________

Joint Capacity 2014-02-16

NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 R3 4.000E-01 8.000E-03 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 79% X 12 3.626E+05 1.234E+05 5.604E+04 21% T 6.270E+05 1.234E+05 5.604E+04 100% => 4.193E+05 1.234E+05 5.604E+04 0.88 0.90 0.90 12 90 X 11 3.626E+05 1.234E+05 5.604E+04 0.90 0.90 0.90

Page 60: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

60 ________________________________________________________________________

Joint Capacity 2014-02-16

4.3.2 Gamma = 10, Beta =0.8

Table 4-24 Joint data

Input Value Joint type X Geometry [mm] Db 320 Tb 20 Dc 400 Tc 20 theta 90 gap 0 Material fyb 350 fy 350 Chord loads [N] -Axial -1.29E+06 Chord Capacity Np 8.357E+06 Mp 1.012E+09 Table 4-25 Expected capacities [N, mm]

Results for Joint Type:

X

MSL Mean MSL Char MSL

Fcrack NORSOK

R2 ISO API NORSOK

R3

Nrd.c 2.556E+06 2.203E+06 2.203E+06 2.203E+06 2.077E+06 2.077E+06 2.077E+06 Qf 0.98 0.98 0.98 0.99 0.99 0.96 0.96 Nrd.c*Qf 2.510E+06 2.164E+06 2.164E+06 2.172E+06 2.048E+06 1.989E+06 1.989E+06

Nrd.t 5.102E+06 4.284E+06 2.576E+06 2.576E+06 2.576E+06 2.576E+06 2.169E+06 Qf 0.98 0.98 0.98 0.99 0.99 0.96 0.99 Nrd.t*Qf 5.011E+06 4.208E+06 2.530E+06 2.539E+06 2.539E+06 2.466E+06 2.149E+06

Mipb 6.233E+08 5.100E+08 5.100E+08 5.100E+08 5.100E+08 4.113E+08 4.113E+08 Qf 0.97 0.97 0.97 0.97 0.97 0.96 0.96 Mipb*Qf 6.067E+08 4.964E+08 4.964E+08 4.964E+08 4.964E+08 3.947E+08 3.947E+08

Mopb 3.931E+08 2.995E+08 2.995E+08 2.995E+08 2.995E+08 2.750E+08 2.750E+08 Qf 0.99 0.99 0.99 0.99 0.99 0.96 0.96 Mopb*Qf 3.882E+08 2.958E+08 2.958E+08 2.958E+08 2.958E+08 2.639E+08 2.639E+08

Page 61: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

61 ________________________________________________________________________

Joint Capacity 2014-02-16

Table 4-26 USFOS results [N, m] (compression) NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL mean 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 89% X 12 2.556E+06 6.233E+05 3.931E+05 11% T 3.224E+06 6.233E+05 3.931E+05 100% => 2.626E+06 6.233E+05 3.931E+05 0.98 0.97 0.99 12 90 X 11 2.556E+06 6.233E+05 3.931E+05 0.98 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL characteristic 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 89% X 12 2.203E+06 5.100E+05 2.995E+05 11% T 2.538E+06 5.100E+05 2.995E+05 100% => 2.239E+06 5.100E+05 2.995E+05 0.98 0.97 0.99 12 90 X 11 2.203E+06 5.100E+05 2.995E+05 0.98 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL first crack 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 89% X 12 2.203E+06 5.100E+05 2.995E+05 11% T 2.538E+06 5.100E+05 2.995E+05 100% => 2.239E+06 5.100E+05 2.995E+05 0.98 0.97 0.99 12 90 X 11 2.203E+06 5.100E+05 2.995E+05 0.98 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 Rev2 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 90% X 12 2.203E+06 5.100E+05 2.995E+05 10% T 2.538E+06 5.100E+05 2.995E+05 100% => 2.238E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 12 90 X 11 2.203E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 ISO 19902 2007-12-01 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 90% X 12 2.077E+06 5.100E+05 2.995E+05 10% T 2.538E+06 5.100E+05 2.995E+05 100% => 2.125E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 12 90 X 11 2.077E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 API RP2A-WSD 21st ES3 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 90% X 12 2.077E+06 4.113E+05 2.750E+05 10% T 3.135E+06 4.113E+05 2.750E+05 100% => 2.186E+06 4.113E+05 2.750E+05 0.95 0.96 0.96 12 90 X 11 2.077E+06 4.113E+05 2.750E+05 0.96 0.96 0.96

Page 62: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

62 ________________________________________________________________________

Joint Capacity 2014-02-16

NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 R3 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 90% X 12 2.077E+06 4.113E+05 2.750E+05 10% T 3.135E+06 4.113E+05 2.750E+05 100% => 2.186E+06 4.113E+05 2.750E+05 0.95 0.96 0.96 12 90 X 11 2.077E+06 4.113E+05 2.750E+05 0.96 0.96 0.96

Page 63: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

63 ________________________________________________________________________

Joint Capacity 2014-02-16

Table 4-27 USFOS results [N, m] (tension) NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL mean 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 82% X 12 4.473E+06 6.233E+05 3.931E+05 18% T 7.173E+06 6.233E+05 3.931E+05 100% => 4.999E+06 6.233E+05 3.931E+05 0.98 0.97 0.99 12 90 X 11 4.473E+06 6.233E+05 3.931E+05 0.98 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL characteristic 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 82% X 12 3.511E+06 5.100E+05 2.995E+05 18% T 4.115E+06 5.100E+05 2.995E+05 100% => 3.715E+06 5.100E+05 2.995E+05 0.98 0.97 0.99 12 90 X 11 3.511E+06 5.100E+05 2.995E+05 0.98 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL first crack 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 82% X 12 2.435E+06 5.100E+05 2.995E+05 18% T 3.358E+06 5.100E+05 2.995E+05 100% => 2.615E+06 5.100E+05 2.995E+05 0.98 0.97 0.99 12 90 X 11 2.435E+06 5.100E+05 2.995E+05 0.98 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 Rev2 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 86% X 12 2.548E+06 5.100E+05 2.995E+05 14% T 3.360E+06 5.100E+05 2.995E+05 100% => 2.667E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 12 90 X 11 2.548E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 ISO 19902 2007-12-01 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 86% X 12 2.548E+06 5.100E+05 2.995E+05 14% T 3.360E+06 5.100E+05 2.995E+05 100% => 2.667E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 12 90 X 11 2.548E+06 5.100E+05 2.995E+05 0.99 0.97 0.99 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 API RP2A-WSD 21st ES3 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 86% X 12 2.552E+06 4.113E+05 2.750E+05 14% T 3.360E+06 4.113E+05 2.750E+05 100% => 2.670E+06 4.113E+05 2.750E+05 0.95 0.96 0.96 12 90 X 11 2.552E+06 4.113E+05 2.750E+05 0.96 0.96 0.96

Page 64: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

64 ________________________________________________________________________

Joint Capacity 2014-02-16

NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 R3 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 86% X 12 2.161E+06 4.113E+05 2.750E+05 14% T 3.360E+06 4.113E+05 2.750E+05 100% => 2.328E+06 4.113E+05 2.750E+05 0.98 0.96 0.96 12 90 X 11 2.161E+06 4.113E+05 2.750E+05 0.99 0.96 0.96

Page 65: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

65 ________________________________________________________________________

Joint Capacity 2014-02-16

4.3.3 Gamma = 10, Beta =1.0

Table 4-28 Joint data

Input Value Joint type X Geometry [mm] Db 400 Tb 20 Dc 400 Tc 20 theta 90 gap 0 Material fyb 350 fy 350 Chord loads [N] -Axial -2.51E+06 Chord Capacity Np 8.357E+06 Mp 1.012E+09 Table 4-29 Expected capacities [N, mm]

Results for Joint Type:

X

MSL Mean MSL Char MSL

Fcrack NORSOK

R2 ISO API NORSOK

R3

Nrd.c 4.901E+06 4.225E+06 4.225E+06 4.225E+06 3.974E+06 3.974E+06 3.974E+06 Qf 0.93 0.93 0.93 0.95 0.95 1.04 1.04 Nrd.c*Qf 4.570E+06 3.940E+06 3.940E+06 3.997E+06 3.759E+06 4.141E+06 4.141E+06

Nrd.t 5.768E+06 5.390E+06 2.240E+06 2.240E+06 2.198E+06 2.198E+06 3.567E+06 Qf 0.93 0.93 0.93 0.95 0.95 1.04 0.92 Nrd.t*Qf 5.379E+06 5.026E+06 2.089E+06 2.119E+06 2.079E+06 2.290E+06 3.289E+06

Mipb 9.740E+08 7.969E+08 7.969E+08 7.969E+08 7.969E+08 6.720E+08 6.720E+08 Qf 0.90 0.90 0.90 0.90 0.90 0.90 0.90 Mipb*Qf 8.754E+08 7.162E+08 7.162E+08 7.162E+08 7.162E+08 6.075E+08 6.075E+08

Mopb 7.438E+08 5.667E+08 5.667E+08 5.667E+08 5.667E+08 5.040E+08 5.040E+08 Qf 0.95 0.95 0.95 0.95 0.95 0.90 0.90 Mopb*Qf 7.086E+08 5.399E+08 5.399E+08 5.399E+08 5.399E+08 4.556E+08 4.556E+08

Page 66: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

66 ________________________________________________________________________

Joint Capacity 2014-02-16

Table 4-30 USFOS results [N, m] (tension) NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL mean 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 94% X 12 5.768E+06 9.740E+05 7.438E+05 6% T 8.384E+06 9.740E+05 7.438E+05 100% => 5.935E+06 9.740E+05 7.438E+05 0.93 0.90 0.95 12 90 X 11 5.768E+06 9.740E+05 7.438E+05 0.93 0.90 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL characteristic 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 94% X 12 5.384E+06 7.969E+05 5.667E+05 6% T 5.301E+06 7.969E+05 5.667E+05 100% => 5.379E+06 7.969E+05 5.667E+05 0.93 0.90 0.95 12 90 X 11 5.384E+06 7.969E+05 5.667E+05 0.93 0.90 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 MSL first crack 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 94% X 12 2.240E+06 7.969E+05 5.667E+05 6% T 4.200E+06 7.969E+05 5.667E+05 100% => 2.365E+06 7.969E+05 5.667E+05 0.93 0.90 0.95 12 90 X 11 2.240E+06 7.969E+05 5.667E+05 0.93 0.90 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 Rev2 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 94% X 12 2.240E+06 7.969E+05 5.667E+05 6% T 4.200E+06 7.969E+05 5.667E+05 100% => 2.348E+06 7.969E+05 5.667E+05 0.95 0.90 0.95 12 90 X 11 2.240E+06 7.969E+05 5.667E+05 0.95 0.90 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 ISO 19902 2007-12-01 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 94% X 12 2.198E+06 7.969E+05 5.667E+05 6% T 4.200E+06 7.969E+05 5.667E+05 100% => 2.308E+06 7.969E+05 5.667E+05 0.95 0.90 0.95 12 90 X 11 2.198E+06 7.969E+05 5.667E+05 0.95 0.90 0.95 NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 API RP2A-WSD 21st ES3 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 94% X 12 2.198E+06 6.720E+05 5.040E+05 6% T 4.200E+06 6.720E+05 5.040E+05 100% => 2.308E+06 6.720E+05 5.040E+05 0.98 0.91 0.91 12 90 X 11 2.198E+06 6.720E+05 5.040E+05 1.00 0.91 0.91

Page 67: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

67 ________________________________________________________________________

Joint Capacity 2014-02-16

NODE Capacity Chord Chord Chord ID rule diameter thickness yield str. 12 Norsok N-004 R3 4.000E-01 2.000E-02 3.500E+08 Brace Angle Conn Facing Gap Axial MipB MopB ID (deg) Type brace Cap/Qf Cap/Qf Cap/Qf 11 90 94% X 12 3.567E+06 6.720E+05 5.040E+05 6% T 4.200E+06 6.720E+05 5.040E+05 100% => 3.602E+06 6.720E+05 5.040E+05 0.92 0.91 0.91 12 90 X 11 3.567E+06 6.720E+05 5.040E+05 0.92 0.91 0.91

Page 68: 2016 04 13 Usfos  · PDF fileNorsok N-004 Revison 2, ISO: The MSL capacity check formulas have been adopted and adjusted by Norsok (rev 2) and ISO

68 ________________________________________________________________________

Joint Capacity 2014-02-16

5. REFERENCES

/1/

MSL Engineering limited: "JIP Assessment Criteria Reliability and Reserve Strength of Tubular Joints" Doc No. C14200R018 Rev0, March 1996

/2/

MSL Engineering limited: JIP Assessment criteria, reliability and reserve strength of tubular joints. Phase II, Tubular Joints – Nonlinear modelling algorithms for frame analysis. Final Report. Doc Ref C20400R014 rev 1 November 2000.

/3/ NORSOK: N-004 Design of Steel Structures, rev2, October 2004

/4/

ISO: Petroleum and natural gas industries –Fixed steel offshore structures, ISO 19902:2007

/5/

API: Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms -Working Stress Design, API RP 2A-WSD, 21’st edition, ES3, October 2007

/6/

NORSOK: N-004 Design of Steel Structures, rev3, 2013

/7/

A F Dier, P Smedley, G Solland, H Bang: New data on the capacity of X-joints under tension and implications for codes, OMAE2008-57650, June 2008 Estoril, Portugal