2012 katalisis oganologam

64
 KATALIS HOMOGEN Catalytic Deuteration Hydroformylation Monsanto Acetic Acid Process W acker (SMID T) Process Hydrogenation by Wilkinson’ s Catalyst Olefin Metathesis KA T ALIS HETEROGEN Ziegler-Natta Polymerization W ater Gas Re action KATALIS ORGANOLOGAM

description

kimia katalis

Transcript of 2012 katalisis oganologam

  • KATALIS HOMOGEN

    Catalytic Deuteration

    Hydroformylation

    Monsanto Acetic Acid Process

    Wacker (SMIDT) Process

    Hydrogenation by Wilkinsons Catalyst

    Olefin Metathesis

    KATALIS HETEROGEN

    Ziegler-Natta Polymerization

    Water Gas Reaction

    KATALIS ORGANOLOGAM

  • Why should you care ? Kimia Organologam: basis dari homogeneous catalysis,

    katalis homogen, alternatif metode sintesis yang bersih dan

    efisien untuk pembuatan farmasetika dan berbagai

    kemikalia skala besar

    plastics (polythene, polypropene, butadiene rubber, ...)

    dan deterjen dibuat via katalisis organologam.

    Kimia Organologam: juga basis pemahaman tahapan reaksi

    heterogeneous catalysis misalnya hidrogenasi olefin dan

    oksidasi CO.

    Senyawa organologam digunakan dalam skala besar sebagai

    prekursor semikonduktor (AlN, GaAs, etc).

    Silicone rubbers are one of the few classes of organometallic

    compounds used as "final products". 2

  • Homogeneous Catalysis - Introduction

    Reaction Coordinate

    G

    GReactants

    Products

    Ea

    Eacatalyzed

    Catalyzed rxn proceeding through

    an intermediate

  • the catalyst and substrates for the reaction are in the same phase in the

    homogeneous, but not in the heterogeneous type, where catalysis takes

    place at the surface of a solid catalyst.

    Advantages/Disadvantages of Homogeneous Catalysts Relative to

    Heterogeneous Catalysts

    Good homogeneous catalysts are:

    Good generally far more selective for a single product

    far more active

    far more easily studied from chemical & mechanistic aspects (NMR)

    far more easily modified for optimizing selectivity

    Green Chemistry!!! Bad far more sensitive to permanent deactivation

    far more difficult for achieving product/catalyst separations

    Heterogeneous catalysts dominate chemical and petro-chemical

    industry: ~ 95% of all chemical processes use heterogenous catalysts.

    Homogenous catalysts are used when selectivity is critical and product-

    catalyst separation problems can be solved.

  • Homogeneous or Heterogeneous? (N/A)

    There are several general ways to test whether a catalyst is homogeneous or

    heterogeneous.

    Exposure to elemental Hg will generally poison a heterogeneous catalyst

    Exposure to polythiols will poison most homogeneous catalysts

    Light scattering studies to identify the presence of colloids (heterogeneous)

    Product selectivity studies:

    e.g., polymer bound alkenes:

    Polymer

    Catalyst

    + H2 Polymer

    Catalyst Homo/Hetero % Yield

    RhCl(PPh3)3 homo 100

    Ni(OAc)2 + NaBH4 hetero --

    [Rh(nbd)(PR3)2]+ homo 90

    Pd/C hetero --

    [Ir(cod){P(i-pr)3}(py)]+ homo 100

  • Some Catalysis Terminology (N/A)

    Turnover (TO) -- one loop through the catalyst cycle. Typically one equivalent of

    reactant is converted to one equivalent of product (per equivalent of catalyst).

    Turnover Frequency (TOF) or Turnover Rate -- the number of passes through

    the catalytic cycle per unit time (typically sec, min or hrs). This number is usually

    determined by taking the # of moles of product produced, dividing that by the # of

    moles of catalyst used in the reaction, then dividing that by the time to produce the

    given amount of product.

    0 5 10 15 20

    Time (hours)

    0

    200

    400

    600

    800

    1,000

    1,200

    1,400

    1,600

    1,800

    2,000

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    Ln P)

    Vinyl Acetate Hydroformylation

    8 TO/min

    476 TO/hr

    Equiv

    Prod

    Aldehydekobs = 0.0076 min

    -1

    Initial TOF

    sampling from

    autoclave causespressure glitches

    Uptake curve

    Ln plot

    0.3mM catalyst -- 85C/90 psi H /CO2

  • Turnover Number (TON) -- the absolute number of passes through the catalytic

    cycle before the catalyst becomes deactivated.

    Academic chemists sometimes report only the turnover number when the catalyst is

    very slow (they dont want to be embarassed by reporting a very low TOF), or decomposes quite rapidly.

    Industrial chemists are interested in both TON and TOF. A large TON (e.g., 106 -

    1010) indicates a stable, very long-lived catalyst. TON is defined as the amount of

    reactant (moles) divided by the amount of catalyst (moles) times the % yield of

    product.

    Authors often report mole % of catalyst used. This refers to the fraction of catalyst

    used relative to the amount of limiting reactant present.

    These represent the

    theoretical maximum #

    of turnovers. One also

    has to note the % yield

    or the % conversion of

    substrate into product to

    figure out the actual # of

    turnovers!!

    10 mole % catalyst = 10 turnovers

    5 mole % catalyst = 20 turnovers

    1 mole % catalyst = 100 turnovers

    0.1 mole % catalyst = 1000 turnovers

    0.01 mole % catalyst = 10,000 turnovers

  • Process Typical Catalysts

    Petroleum Refining

    Cracking Pt/Re on alumina, Zeolites

    Reforming Pt/Re/Ge/Sn on alumina (dehydrogenation)

    Hydrocracking alumina, zeolites, Pt

    Hydrodesulfurization (Mo-Co) oxides, (Mo-Ni) oxides

    Hydrodenitrogenation (W-Ni) oxides

    Chemical Manufacturing

    Natural Gas desulfurization ZnO, Cu, Fe on activated C

    Hydrogenations Raney Ni, Raney Co, Pt, Rh

    Methanol synthesis Cu-ZnO

    Dehydrogenation Butadiene: Fe2O3, Pt/Re on alumina; styrene: Zn, Cr, Fe

    or Mn oxides

    Oxidations ethylene oxide: Ag, nitric acid: Pt/Rh mesh/gauze

    sulfuric acid: V2O5, maleic, phthalic anhydrides: V2O5,

    formaldehyde: Ag or Cu; Mo, Fe, V oxides

    Polymerizations Ziegler-Natta polypropylene: Al alkyls + TiCl3

    Dow single site polypropylene: Ti metallocene

    Phillips -- Cr oxide on silica, Polyethylene (low density):

    peroxides, peresters; Polystyrene: benzoyl peroxide;

    Urethanes: amines, organo-tin, phosphine oxides

    Hydroformylation Union Carbide/Hoechst/BASF: Rh/PPh3

    Exxon/BASF: HCo(CO)4 , Shell: HCo(CO)4(PR3) (R =

    bulky alkyl)

  • Rank Chemical Production

    #4 Ethylene

    33 billion lbs

    Steam Cracking of Hydrocarbons:

    larger hydrocarbon smaller hydrocarbon + H2

    C2H6(g) C2H4(g) + H2(g)

    Catalyst: Zeolites, Pt/Re on Al2O3 support

    Conditions: 850C, 20-50 atm

    #10 Propylene

    18 billion lbs

    Steam Cracking of Hydrocarbons:

    C3H8(g) C3H6(g) + C2H4(g) + CH4(g) H2(g)

    Catalyst: Zeolites, Pt/Re on Al2O3 support

    Conditions: 850C, 20-50 atm

    #12 Dichloroethane

    15 billion lbs

    Direct Chlorination:

    C2H4(g) + Cl2(g) ClCH2CH2Cl(g)

    Catalyst: FeCl3 or AlCl3

    Oxychlorination:

    2C2H4(g) + 4HCl(g) + O2 2ClCH2CH2Cl(g) + 2H2O

    Catalyst: Cu salts on SiO2 or Al2O3 supports

    #16 Benzene

    10 billion lbs

    Hydrocarbon Reforming (dehydrogenation)

    C6H14(g) C6H12(g) + H2(g) Endothermic!

    C6H12(g) C6H6(g) + 3H2(g) Endothermic!

    toluene benzene + methane

    Catalyst: Pt/Re/Ge/Sn on Al2O3 support

  • #17 Ethyl Benzene

    9 billion lbs

    C6H6(g) + C2H4(g) C6H5C2H5

    1. Catalyst: Liquid phase system with AlCl3

    2. Catalyst: Zelolite Lewis Acid based gas phase process

    Classic Friedel-Crafts rxn.

    #19 Vinyl Chloride

    8 billion lbs

    ClCH2CH2Cl(g) H2C=CHCl(g) + HCl(g)

    This reaction is often coupled with the oxychlorination reaction

    to produce dichloroethane, this allows recycling of the HCl.

    #20 Styrene

    8 billion lbs

    Dehydrogenation of ethyl benzene

    Catalyst: Fe oxides on Al2O3 support

    Conditions: 550-600C

    #21 Terephthalic

    Acid

    8 billion lbs

    Amoco Process:

    p-CH3-C6H4-CH3 + 3O2 p-HOOC-C6H4-COOH + H2O

    Catalyst: Co/Mn salts (with some heavy metal bromides)

    Conditions: liquid acetic acid solution, 200C, 20 atm

    Ti or Hastelloy C lined reactor (very corrosive)

  • #22 Methanol

    7 billion lbs

    CO + H2 CH3OH

    Catalyst: ZnO/Cu salt

    Conditions: > 100 atm, 200-300C

    #24 Ethylene Oxide

    6 billion lbs

    C2H4(g) + O2 ethylene oxide

    Catalyst: Ag

    Conditions: 300C

    #26 Toluene

    6 billion lbs

    Catalytic Reforming of methyl cyclohexane and derivatives

    Catalyst: Pt/Re on Al2O3 support

    Conditions: 500C and 25 atm

    #27 Xylenes

    5.5 billion lbs

    Catalytic Reforming of 1,4-dimethylcyclohexane

    Catalyst: Pt/Re on Al2O3 support

    Conditions: 500C and 25 atm

    #28 Ethylene

    Glycol

    5 billion lbs

    ethylene oxide + H2O HOCH2CH2OH

    Catalyst: H2SO4 (0.5 - 1%), 50-70C

    Conditions: Thermal @ 195C and 15 atm.

    #29 Butylaldehyde

    5 billion lbs

    Hydroformylation -- Union Carbide/Celanese/BASF

    propylene + H2 + CO CH3CH2CH2CHO

    Catalyst: homogeneous Rh/PPh3 catalyst

    Conditions: 100-125C, 8-25 atm

  • #31 Cummene

    3.7 billion lbs

    benzene + propene C6H5CH(CH3)2

    1. Liquid phase catalysts: H2SO4, AlCl3, HF

    2. Gas phase catalyst: H3PO4 on SiO2

    Friedel Crafts reaction

    Conditions: 35-40C, 7 bar (liquid); 200-300C, 20-40 bar (gas)

    Cumene is mainly used to produce phenol and acetone.

    #32 Acetic Acid

    3.5 billion lbs

    CH3OH + CO CH3COOH

    Catalyst: homogeneous RhI2(CO)2-

    (Monsanto Acetic Acid process)

    Conditions: 150C, 35 atm

  • CATALYTIC DEUTERATION

    .

  • Hydroformylation

    + CO + H2 H

    O

    +

    OH

    linear (normal) branched (iso)

    Rh or CoR R

    R

    Aldehydes

    R

    alkene isomerization alkene hydrogenation

    R

    side reactions

    *

    * Proses katalisis homogen terbesar

    * > 15 billion pounds of aldehydes (alcohols) per year

    Katalis komersial menggunakan kompleks Co atau Rh

    Selektivitas menghasilkan aldehid linear (normal) merupakan hal yang penting

    Otto Roelen (1897-1993)

  • HYDROFORMYLATION

    .

  • C CoC

    C

    H

    CO

    O

    OO

    - CO (disosiasi ligan)

    + alkena(cordination of olefin)

    R

    CoC

    C

    H

    CO

    O

    O

    R

    + COaddition of CO)

    C CoC

    C

    C

    R

    O

    O

    OO

    CoC

    C

    C

    R

    O

    O

    OO R

    CoC

    C

    CO

    O

    O

    Co

    CO

    CO

    CO

    O R

    H

    H

    H

    O

    R

    + H2 (Oxidative addition)

    1,2 migratory insertion

    alkyl migration

    CoC

    C

    H

    CO

    O

    O

    Reductive elimination

    18e

    18e

    18e

    18e

    16e

    16e

    16e

  • Mekanisme lain tersedia : HYDROFORMYLATION USING HRh(CO)2(PPh3)2

  • Sintesis asam asetat

    Asam asetat berperan penting dalam industri kimia.

    Proses tradisional menggunakan fermentasi : bio-oksidasi

    alkohol

    C6H12O6 2 C2H5OH + 2 CO2

    C2H5OH + O2 CH3COOH + H2O

    Bukan proses yang bersih dan efisien

    Industrial proses:

    CH3OH + CO CH3COOH, 2 juta ton per tahun

    Katalisis menggunakan kompleks rhodium. 19

  • MONSANTO ACETIC ACID PROCESS

    .

  • RhI

    OC CO

    I

    HI

    CH3I

    CH3OH(+ H2O)

    RhI

    OC CO

    I

    CH3

    I

    RhI

    OC

    II

    CH3

    O+ CO

    RhI

    OC

    II

    CH3

    OCO

    H3C

    O

    I

    + H2O(hydrolisis)

    H3C

    O

    OH

    + HI

    HI sebagai side product dipakai lagi berikatan dengan methanol

    oxidative addition

    alkyl migration

    ligand coordinaton

    reductive elimination

    Rh(I) 16e Rh(III) 18e

    Rh(III) 16eRh(III) 18e

    The reaction is independent of CO pressure First order in both rhodium and MeI. Rate determining step is the oxidative addition of MeI to the [Rh(CO)2I2]

    - catalyst.

  • WACKER (SMIDT) PROCESS

    (Nucleophilic addition of H2O at ethylene)

    untuk sintesis asetaldehida dari etilena, dimana melibatkan siklus katalitik menggunakan

    PdCl42- dimana Pd mampu mengubah sifat kimia alkena sehingga mampu mengadakan

    reaksi kimia pada saat terikat pada Pd

    .

  • Nucleophilic attack at ligand

    Nucleophilic:

    requires an electron-poor ligand atom

    (acidic proton, coordinated C=X bond)

    6/6/2012 23

    + OH- PdCl Cl

    H2O

    OH

    -

    PdCl Cl

    H2O

  • The Wacker process (N/A)

    karakteristik Wacker process:

    Oksigen pada produk berasal dari air bukan dari oksigen langung sebagai oksidan

    4 juta ton aldehid per tahun Olefin rantai lebih panjang menghasilkan keton, bukan

    aldehid

    Korosif karena perlu banyak halida Produk sampingan dihasilkan dari proses serangan

    nukleofilik halida pada olefin

    No longer important for acetic acid synthesis

    Several variations (with more complicated nucleophiles) used in organic synthesis

    25

  • The Wacker process (N/A) Characteristics of the Wacker process:

    Alkena dapat menyerang nukleus membentuk kompleks logam alkil, lalu menata ulang membentuk produk lainnya. Hal ini

    adalah dasar pengetahuan penting bagi proses industri

    Fakta bahwa PdCl2 (aq) dapat mengoksidasi etilen menjadi asetaldehid telah diketahui sejak abad 19 meski mekanismenya

    belum dimengerti saat itu

    Reaksinya mengkonsumsi PdCl2 menghasilkan Pd(0), Pd Cl2 cukup mahal jika hanya digunakan sebagai reagen stoikiometri

    J.Smidt pada Wacker Chemie (1950) menyadari bahwa Pd(0) dapat dihalangi pengendapannya menggunakan CuCl2 yang

    mengoksidasi Pd sementara tereduksi menjadi CuCl.

  • Catalytic olefin hydrogenation (N/A) Many chiral variations

    available.

    enantioselectivity mechanism

    can be very subtle

    For achiral hydrogenation,

    heterogeneous catalysts ("Pd

    black") are often a good

    alternative.

    Extremely high turnovers

    possible.

    27

    M

    H

    M

    H

    MH

    MHH

    H

    H2

    HH

    coord

    insox add

    red elim

  • . Katalis Wilkinson, RhCl(PPh3)3 Ligan

    phosphine mempunyai peranan

    penting yang membuat kompleks ini

    selektif

    Rh hanya akan bereaksi dengan

    senyawaan olefin yang tidak

    mempunyai hambatan sterik.

    Sehingga katalis wilkinson digunakan

    untuk hidrogenasi selektif dari ikatan

    C=C dengan tidak ada hambatan

    sterik.

  • Catalytic olefin hydrogenation (N/A)

    Alternative mechanism

    for metals not forming

    a "stable" hydride.

    Requires oxidative addition,

    not observed for

    early transition metals.

    Distinguish between

    mechanisms using

    H2/D2 mixtures or PHIP. 29

    M

    HH

    coord

    ins

    ox add

    red elim

    M H2

    M

    HH

    MHH

  • Wilkinsons Catalyst Rh

    Ph3P

    Ph3P PPh3

    ClRh

    Ph3P

    H PPh3

    Cl

    H

    PPh3

    + H2

    - PPh3

    RhPh3P

    PPh3

    Cl

    RhPh3P

    H PPh3

    Cl

    H

    Rh

    Ph3P

    PPh3

    Cl

    HH

    R

    - PPh3

    + H2

    RhPh3P

    H PPh3

    Cl

    H

    R

    R

    R

  • OLEFIN METATHESIS

    .

    ALKYNE METATHESIS

    M

    C C

    C M

    C

    C

    C+

    M C

    C C+

  • Metathesis

    Reaksi antara dua substrat tidak jenuh (biasanya

    alkena atau alkuna) yang menggabungkan kedua

    gugus pada kedua ujungnya yang mempunyai ikatan

    rangkap

    +

    +

    C8 C8

    C14 C2

  • The proposed mechanism for this involves metal-alkylidenes

    and is shown below:

    M M M M

    MMM

    migratoryinsertion

    migratoryinsertion

    elimination

    elimination

    ethylenedissociation

    dieneaddition

  • N/A

  • N/A

  • N/A

  • Polymerization Catalysis

    Polymerization is the reaction of an unsaturated organic reactant, typically a C=C,

    with itself over and over again to produce a polymer chain:

    **

    nn

    When only a few alkenes couple together to make a short chain, we refer to that

    as oligomerization (oligomers are very short polymers).

    Initiation: generating the active catalyst from a less active catalyst

    precursor:

    LnM-Cl LnM-R + AlR2Cl+ AlR3

    + MAO (methylalumoxane)

    + ZnR2

    LnM-Cl LnM-H+ H- + Cl-

  • Applications of oligomers and polymers Ethene and propene come directly from crude oil "crackers"

    Primary petrochemical products, basic chemical feedstocks

    Dimerization rarely desired

    Making butene costs $$$ !

    Oligomers: surfactants, comonomers

    High added value, but limited market

    Polymers: plastics, construction materials, foils and films

    Very large market, bulk products

    45

  • Propagation: the polymer chain growth portion of the reaction that occurs

    over and over again:

    M CH3 M CH3

    -

    M

    H3C

    M

    H3C

    MCH3

    Termination: a reaction step that stops the polymer chain growth:

    MCH3 CH3M H +

    CH3M H +H2

  • Cossee (migatory insertion) Propagation Mechanism

    M CH3 M CH3

    -

    M

    H3C

    M

    H3C

    MCH3

    The commonly accepted mechanism for polymer chain growth on a transition metal

    catalyst is the very simple migratory insertion mechanism initially proposed by Piet

    Cossee (Royal Shell labs) in 1964.

  • Green-Rooney (alkyidene metallacycle) Propagation Mechanism

    However in 1978 Malcolm Green and John Rooney proposed a rather different

    mechanism based on the recently reported Schrock alkylidenes:

  • ZIEGLER-NATTA POLIMERIZATION

    .

  • CO2 and CO activation Berbagai reagen organik saat ini dibuat secara komersial dari

    etilena, turunan proses pemurnian minyak bumi

    Di masa depan perlu mencari sumber karbon lain

    Batu bara atau natural gas (metana) dapat diubah menjadi

    campuran CO/H2 (water gas/synthesis gas/syn gas) dengan udara

    dan uap yang nantinya dapat diubah menjadi metanol dan bahan

    bakar alkana melalui berbagai katalis heterogen.

  • WATER GAS REACTION

    H2O + C H2 + CO T & P tinggi Fischer-Tropsch process H2 + CO alkana ; Co catalyst 3H2 + CO CH4 + H2O ; Ni catalyst 2H2 + CO CH3OH ; Co or Zn/Cu catalyst Steam reforming, pada P & T tinggi CH4 + H2O CO + 3H2 ; Ni catalyst, 700-1000

    0C Water gas shift reaction CO + H2O CO2 + H2 ; Fe/Cr or Zn/Cu catalyst, 400

    0C Solusi Green Chemistry : Chem.Rev. 2007, 107, 40224047 Hydrogen Production by Molecular Photocatalysis Arthur J. Esswein and Daniel G. Nocera fotokatalisis dengan bantuan katalis

    organologam dll. untuk mengubah berbagai substrat kimia menjadi sumber hidrogen

  • Misal reaksi FischerTropsch mengubah syn gas menjadi campuran

    alkana rantai panjang dan alkohol dengan katalis heterogen( biasanya

    Co, Fe atau Ru)

    Rasio CO:H2 syn gas dapat diubah melalui watergas shif treaction,

    yang terkatalis heterogen (Fe3O4 or Cu/ZnO) atau berbagai katalis

    homogen Fe(CO)5 atau Pt(i-Pr3P)3.

    Baik reagen maupun produk mempunyai energi bebas yang serupa

    maka reaksi dapat berjalan kedua arah sehingga dapat dianggap sebagai

    aktivasi CO maupun CO2.

  • Homogeneous Catalysis of Water Gas shift reaction

    .

  • Pd-Catalyzed C-C Coupling Rxns

    R-X + R'-SnR3

    Pd(0)

    R-R' + XSnR3

    aryl orvinyl halide

    organotin

    R-X + R'-ZnRPd(0)

    R-R' + XZnR

    aryl orvinyl halide

    organozinc

    R-X + R'-B(OH)2

    Pd(0)

    R-R' + XB(OH)2

    aryl orvinyl halide

    organoboron

    R-X +Pd(0)

    + HX

    aryl orvinyl halide

    alkene

    R'R'

    R

    R-X +Pd(0)

    + HX

    aryl orvinyl halide

    alkyne

    R' R'R

    Stille coupling:

    Negishi coupling:

    Suzuki coupling:

    Heck reaction:

    Sonogashira coupling:

  • Anorg. Chem. Inst. der Technischen Universitt Mnchen

    Why the Heck Bother with the Heck Reaction:

    Applications in Industry and Total Synthesis

    Non-Steroidal

    Anti-inflammatory drugs

    Sunscreen Agents

    Flavourings

    Cosmetic Additives

    Key Steps in Total Synthesis O

    O O

    ACB

    L.F. Tietze and T. Grote,

    J. Org. Chem., 1994, 59, 192

    J.J. Masters, D.K. Jung,

    W.G. Bornmann and

    S.J. Danishefsky,

    Tetrahedron Lett., 1993, 34, 7253

    O

    NH

    NSO2Ph

    Taxol

    Skeleton

    CC-1065

    Skeleton

    MeO

    O

    O

    2-Ethylhexyl trans-4-methoxycinnamate

    MeO

    O

    O

    Isoamyltrans-4-methoxycinnamate

    COOH

    CH3

    MeO(s)-Naproxen

    Br

    MeO

    MeO

    Heck reaction

  • The Heck reaction

    For most systems,

    we don't know the

    coordination environment

    of Pd during catalysis.

    At best, we can detect

    one or more resting states.

    The dramatic effects of

    ligand variation show

    that at least one ligand

    is bound to Pd for

    at least part of the cycle.

    59

    Pd

    H

    R

    Ar+

    Pd

    RAr

    +Pd

    Ar

    R

    +

    X-

    H+

    R

    Pd

    Ar

    X

    Ar

    RPd

    ArX

    ox add

    subst

    ins

    -elim

    R-X +Pd(0)

    + HX

    aryl orvinyl halide

    alkene

    R'R'

    R

  • The Heck reaction

    Works well with aryl iodides, bromides

    Slow with chlorides

    Hardly any activity with acetates etc

    Challenges for "green chemistry"

    Pt is ineffective

    Probably gets "stuck" somewhere in the cycle

    Oxidative addition, reductive elimination 60

  • Suzuki and Stille coupling

    The oxidative addition and

    reductive elimination steps

    have been studied extensively.

    Much less is known about

    the mechanism of

    the substitution step.

    The literature mentions

    "open" (3-center) and

    "closed" (4-center) mechanisms

    This may well be different

    for different electrophiles. 61

    Pd

    Pd

    R

    X

    Pd

    R

    Ar

    RX

    ArEEX

    RAr

    ox add

    subst

    red elim

  • Cross-Coupling of Organometallics and Halides

    R-X + R'-MPd(0)

    R-R' + MX

    M = MgX, ZrCp2Cl, ZnX, SnR3, B(OR)2, AlMe2, SiR3, Cu,

    The mechanism involves oxidative addition of the halide or triflate to the initial Pd(0) phosphine

    complex to form a Pd(II) species. The key slow step is a transmetallation, so called because

    the nucleophile (R') is transferred from the metal in the organometallic reagent to the palladium

    and the counterion (X = halide or triflate) moves in the opposite direction. The new Pd(II)

    complex with two organic ligands undergoes reductive elimination to give the coupled product

    and the Pd(0) catalyst ready for another cycle.

    L Pd L

    Pd

    L

    L R

    X

    + R-X

    R'-MM-X

    Pd

    L

    L R

    R'

    R'-R

    transmetallation

    The halide partner (RX) must be chosen with care,

    as -hydride elimination

    would decompose the first

    intermediate during the

    slow transmetallation step.

    The choice for R is

    restricted to substituents

    without -hydrogen atoms:

    vinyl, allyl, benzyl, and

    polyfluoroalkyl halides,

    triflates, and phosphates

    have all been coupled

    successfully.

  • Heck reaction: R-X +

    Pd(0)

    + Base-HX

    aryl orvinyl halide

    alkene

    R'R'

    R

    Base

    R3P Pd PR3

    R

    PdR3P X

    PR3

    R

    PdR3P PR3

    X

    -X-

    R'

    +

    R

    PdR3P

    PR3R'

    oxidativeaddition

    migratoryinsertion

    PdR3P

    PR3R'

    R

    PdR3P

    PR3R'

    R

    -hydrideelimination

    H

    H H

    H

    + R-X

    R' R

    + Base

    + [HBase]X

    - PR3

    R

    PdR3P

    X

    R'+

    R'

    PdR3P

    XR'

    RH H

    H

    migratoryinsertion

    PdR3P

    X R'

    RH

    -hydrideelimination

    R' R

    + Base

    + [HBase]X

    + PR3

    +X-

  • Big Summary

    Dari keseluruhan kuliah MRA anda telah mendapatkan (setidaknya

    salah satunya):

    +/- 3 bab dari buku teks kimia anorganik

    Pengetahuan tentang berbagai mekanisme reaksi baik stoikiometrik

    maupun katalisis kimia koordinasi dan khususnya kimia organologam

    Bekal tambahan ketika anda menghadapi kuliah kimia tingkat

    advance: kimia bioanorganik, sintesis kimia organik,+ anorganik

    (organologam)!

    (sintesis kimia merupakan kajian terpenting ilmu kimia !)

    gambaran bagaimana sebagian besar reagen kimia yang anda kenal

    dihasilkan melalui proses katalisis dari source minyak bumi (syn-gas)

    oleh perusahaan terkemuka dunia

    Gambaran bagaimana mempelajarinya dalam skala laboratorium

    Mengetahui perkembangan terakhir katalisis dan sintesis kimia (eq.

    nobel: ziegler-natta 1963, ferrocene1973, sintesis L-DOPA 2001)

  • Aplikasi kimia dalam industri

  • Sintesis kimia organik!

  • KIMIA BIOANORGANIK, MEDISINAL

  • BIOKIMIA

  • KIMIA LINGKUNGAN GREEN CHEMISTRY