2012-07-9 heat capacity in ultra thin silicon membrane.pdf

download 2012-07-9 heat capacity in ultra thin silicon membrane.pdf

of 21

Transcript of 2012-07-9 heat capacity in ultra thin silicon membrane.pdf

  • 7/28/2019 2012-07-9 heat capacity in ultra thin silicon membrane.pdf

    1/21

    SPECIFIC HEAT IN ULTRA-THIN

    SILICON MEMBRANE

    E. Chvez, J. Cuffe, F. Alzina and

    C.M. Sotomayor Torres

  • 7/28/2019 2012-07-9 heat capacity in ultra thin silicon membrane.pdf

    2/21

    MOTIVATION

    Understand theoretical and experimental of the physics of confinedacoustic phonons in free-standing silicon membranes.

    pq

    qpVqpqpg Cv,

    2 )()()(

    2

    S. Ghosh et al.Nature materials, 9(2010) 555

    J. Tang et al.Nanoletters, 10(2010) 4279

  • 7/28/2019 2012-07-9 heat capacity in ultra thin silicon membrane.pdf

    3/21

    MOTIVATION

    Understand theoretical and experimental of the physics of confinedacoustic phonons in free-standing silicon membranes.

    pq

    qpVqpqpg Cv,

    2 )()()(

    3

    Dispersion relation

    J. Cuffe et al.Nanoletters, 2012

  • 7/28/2019 2012-07-9 heat capacity in ultra thin silicon membrane.pdf

    4/21

    MOTIVATION

    Understand theoretical and experimental of the physics of confinedacoustic phonons in free-standing silicon membranes.

    pq

    qpVqpqpg Cv,

    2 )()()(

    4

    Dispersion relation

    Group velocity

  • 7/28/2019 2012-07-9 heat capacity in ultra thin silicon membrane.pdf

    5/21

    MOTIVATION

    Understand theoretical and experimental of the physics of confinedacoustic phonons in free-standing silicon membranes.

    pq

    qpVqpqpg Cv,

    2 )()()(

    5

    Dispersion relation

    Group velocity

    Relaxation time

    G.P. Srivastava, The Physics of Phonons

  • 7/28/2019 2012-07-9 heat capacity in ultra thin silicon membrane.pdf

    6/21

    MOTIVATION

    Understand theoretical and experimental of the physics of confinedacoustic phonons in free-standing silicon membranes.

    pq

    qpVqpqpg Cv,

    2 )()()(

    6

    Dispersion relation

    Group velocity

    Relaxation time

    Specific heat

  • 7/28/2019 2012-07-9 heat capacity in ultra thin silicon membrane.pdf

    7/21

    OUTLINE

    Theory:

    - Elastic continuum model

    - Equation of motion- Specific heat capacity

    7

    Numerical results:- Acoustic dispersion relation

    - Specific heat capacity

    Conclusions & future work

  • 7/28/2019 2012-07-9 heat capacity in ultra thin silicon membrane.pdf

    8/21

    THEORY: ELASTIC-CONTINUUM MODEL

    Stress-strain relationship Macroscopic model i.e. continuum-based and isotropic Well-suited for nanoscale confinement studies

    Stress tensorStress tensorStress tensorStress tensor

    iikki SST 2+=klijklij SCT =

    Elastics TensorElastics TensorElastics TensorElastics Tensor Isotropic mediaIsotropic mediaIsotropic mediaIsotropic media

    8

    Strain tensorStrain tensorStrain tensorStrain tensor

    )()(222222

    USSUStUTLT

    += /

    =

    +=

    T

    L

    S

    S )2(

    U =Vector amplitude of displacement = Density

    , = Lam constantsST, SL = Transversal and longitudinal sound speed

    Motion equation :Motion equation :Motion equation :Motion equation :

  • 7/28/2019 2012-07-9 heat capacity in ultra thin silicon membrane.pdf

    9/21

    THEORY: ELASTIC-CONTINUUM MODEL

    2

    ,

    2

    //,,, tlTLtlTL qqSKS +==qqqql, tl, tl, tl, t ||||KKKKl, tl, tl, tl, t||||

    qqqq////////

    0==surfaceziz

    Tz y

    0== surfaceziz

    T

    interfacezi

    interfacezi

    interfacezizinterfaceziz

    UU

    TT

    ==

    ==

    =

    =

    21

    21

    i =x, y, z

    9

  • 7/28/2019 2012-07-9 heat capacity in ultra thin silicon membrane.pdf

    10/21

    qmax 2

    SPECIFIC HEAT CAPACITY

    =

    =

    pq

    qp

    qp

    V

    VT

    n

    VT

    E

    VC

    ,

    11h

    Surface of

    membraneThickness

    ( ) +

    =

    +=

    pi

    q

    qpqp

    qp

    b

    pi

    qpqp

    qp

    b

    V

    dqqnnTaK

    dqqnnTaSKC

    ;

    max

    0////

    2

    ; 0

    ////2

    12

    1

    2)2(1

    h

    10

    Discretization of acoustic

    dispersion relation

    Parallel

    wavevectorEPDF

  • 7/28/2019 2012-07-9 heat capacity in ultra thin silicon membrane.pdf

    11/21

    OUTLINE

    Theory:

    - Elastic continuum model

    - Equation of motion- Specific heat capacity

    11

    Numerical results:- Acoustic dispersion relation

    - Specific heat capacity

    Conclusions & future work

  • 7/28/2019 2012-07-9 heat capacity in ultra thin silicon membrane.pdf

    12/21

    RESULTS:ACOUSTIC DISPERSION RELATION

    SiO2-Si-SiO2

    Si-SiO2-Si-SiO2-Si

    Split fundamental

    mode

    12

    Oxide effect: decrease of frequencyOxide effect: decrease of frequencyOxide effect: decrease of frequencyOxide effect: decrease of frequency

    for large qfor large qfor large qfor large q////////& high order modes& high order modes& high order modes& high order modes

    AlN-Pt-Si

  • 7/28/2019 2012-07-9 heat capacity in ultra thin silicon membrane.pdf

    13/21

    RESULTS: SPECIFIC HEAT CAPACITY

    13

    mem T (Ultra-Low Temperature)

    mem T2 (Low Temperature)

  • 7/28/2019 2012-07-9 heat capacity in ultra thin silicon membrane.pdf

    14/21

    RESULTS: SPECIFIC HEAT CAPACITY

    14

    mem T (Ultra-Low Temperature)

    mem T2 (Low Temperature)

  • 7/28/2019 2012-07-9 heat capacity in ultra thin silicon membrane.pdf

    15/21

    RESULTS: SPECIFIC HEAT CAPACITY

    15

    mem T (Ultra-Low Temperature)

    mem T2 (Low Temperature)

  • 7/28/2019 2012-07-9 heat capacity in ultra thin silicon membrane.pdf

    16/21

    RESULTS: SPECIFIC HEAT CAPACITY

    16

    Done ticker membranes we recover the bulk

  • 7/28/2019 2012-07-9 heat capacity in ultra thin silicon membrane.pdf

    17/21

    RESULTS: SPECIFIC HEAT CAPACITY

    17

    a

    2a

    a

    b

    b

    Si

    Si

    Si

    SiO2

    SiO2

    Dependence of a is due to quadratic

    behaviour of zero order flexural mode

  • 7/28/2019 2012-07-9 heat capacity in ultra thin silicon membrane.pdf

    18/21

    Theory:

    - Elastic continuum model

    - Equation of motion- Specific heat capacity

    OUTLINE

    18

    Numerical results:- Acoustic dispersion relation

    - Specific heat capacity

    Conclusions & future work

  • 7/28/2019 2012-07-9 heat capacity in ultra thin silicon membrane.pdf

    19/21

    CONCLUSION

    Heat capacity departs from T3 to T in low-temperature

    regime.

    The change of behaviour is due to flexural mode

    19

    contribution.

    Oxide effect: decrease of frequency for large q//

    The same model can be used for layered systems

  • 7/28/2019 2012-07-9 heat capacity in ultra thin silicon membrane.pdf

    20/21

    FUTURE WORK

    Electrical measurements of heat

    capacity/ thermal conductivity

    Calculus on phononic crystal

    A. Jain & K.E. Goodson, Journal of heat

    transfer, 130(2008), 102402-1

    Y. Pennec et al, surface science reports

    65(2010), pp 229-291

    20

  • 7/28/2019 2012-07-9 heat capacity in ultra thin silicon membrane.pdf

    21/21

    THANK YOU FOR YOUR ATTENTION!

    21