2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications...

65
Solar Fuels Christian Sattler, Martin Roeb, Christian Jung DLR Institute of Solar Research Solar Chemical Engineering [email protected] www.DLR.de • Chart 1 > Solar Fuels > 24 July 2012

Transcript of 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications...

Page 1: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Solar FuelsChristian Sattler, Martin Roeb, Christian JungDLR Institute of Solar Research Solar Chemical Engineering [email protected]

www.DLR.de • Chart 1 > Solar Fuels > 24 July 2012

Page 2: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Overview

• European Perspectives: 2020 • Reasons for solar fuel production, connection to Fuel Cells

• Concentrating Solar Systems• Solar Fuels short and long term applications

• Processes• Projects and existing pilot plants

• Summary and Outlook

> Solar Fuels > 24 July 2012www.DLR.de • Chart 2

Page 3: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

European Perspectives

www.DLR.de • Chart 3 > Solar Fuels > 24 July 2012

Page 4: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Political view: SET-Plan (2007) European Strategic Plan for Energy Technology

• Goals of the EU until 2020 (20/20/20)• 20% higher energy efficiency• 20% less GHG emission• 20% renewable energy

• Goal of the EU until 2050: • 80% less CO2 emissions than in 1990

• Actions in the field of energy efficiency, codes and standards, funding mechanisms, and the charging of carbon emissions necessary

• Significant research effort for the development of a new generation of CO2emission free energy technologies, like

• Offshore-Wind • Solar• 2nd generation Biomass

> Solar Fuels > 24 July 2012www.DLR.de • Chart 4

Page 5: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

www.DLR.de • Chart 5 > Solar Fuels > 24 July 2012

• Private – Public – Partnership• European Commission• Industry – Represented by NEW-IG (more than 60

companies)• Research – Represented by N.ERGHY (more than 60

research organizations)• Budget 940 M€

• 50% EC : 50% Industry + Research • Contains all Fuel Cell and Hydrogen Research within the

European Research Framework Programme 7 since 2008• Annual Calls for proposals until 2013• Presently preparation of the JU 2.0 (2014 – 2020)

Page 6: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

www.DLR.de • Chart 6 > Solar Fuels > 24 July 2012

Page 7: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Production-, Storage- and Infrastructure topics of the European Hydrogen and Fuel Cell JTI

> Solar Fuels > 24 July 2012www.DLR.de • Chart 7

Page 8: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Hydrogen production & distribution (including energy storage) 2020 Objectives• Portfolio of cost-competitive, energy efficient and sustainable

hydrogen production, storage and distribution processes, • Europe: largest hydrogen pipeline network in the world• More than 100 000 bulk and cylinder deliveries per year all over

Europe • 50% of hydrogen used for energy applications produced from

renewable sources or from near zero-CO2-emission sources.• The mature production technologies include:• Reforming technologies (and gas purification) based on bio-fuels

as well as conventional fuels• Cost-efficient low-temperature electrolyzers adapted for the large-

scale use of carbon free electricity• Biomass-to-hydrogen (BTH) thermal conversion

www.DLR.de • Chart 8 > Solar Fuels > 24 July 2012

Page 9: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Studies Published (www.fch-ju.eu)

www.DLR.de • Chart 9 > Solar Fuels > 24 July 2012

Page 10: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Long-term and breakthrough oriented research

• Improving efficiencies of technologies for water splitting

• High temperature electrolyzers

• Thermo-chemical processes based on solar, nuclear or waste heat

• Low-temperature, low-cost biological hydrogen (e.g. enzymes for fermentation) and photo-electrochemical processes

• High capacity and flexible electrolysis-systems essential for hydrogen production for the EU wide increasing share of fluctuating renewable energies such as wind or solar

www.DLR.de • Chart 10 > Solar Fuels > 24 July 2012

Page 11: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Hydrogen Storage and Distribution

• Establishment of a safe, efficient and reliable hydrogen distribution and refueling infrastructure.

• Progress has been made in providing options for high volume and safe hydrogen storage such as

• underground storage capacities • liquefaction

• Stepping-stone for long-term research on improved hydrogen storage based on solid and liquid materials for increased efficiency and storage capability.

• For hydrogen distribution, the sector will strive to achieve a delivery cost to weight ratio that can compete with existing fossil fuel solutions

www.DLR.de • Chart 11 > Solar Fuels > 24 July 2012

Page 12: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

European FCH Technology Objectives until 2020

www.DLR.de • Chart 12 > Solar Fuels > 24 July 2012

Transport Contribution of 500,000 Fuel Cell Electric vehicles (FCEVs) and1,000+ hydrogen refueling stations towards the transition of thetransport sector towards electric drives

Energy conversion Contributing to the transformation of the European energy mixby producing 50% of H2 used for these applications fromrenewables energies or from zero‐CO2 emission sources

Energy storage Contributing to the integration of intermittent renewable energies (wind, solar) by applying hydrogen storage capacity up to500MWh as part of a grid scalable storage

EarlyMarkets

Contributing to the demonstration of cost‐efficient solutions withclean and sustainable FCH technologies for material handlingvehicles, back‐up power and portable power applications

Heat & Power generation

Contributing to the transformation of the energy sector byproviding heat and power to more than 50,000 households usingstationary fuel cell systems

Page 13: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Estimated Ressources needed until 2020

• The total estimated financial need for reaching the hydrogen production, storage and distribution objectives is €1806 million.

• Almost 50% of this amount is needed for R&D (€330 million) and demonstration projects (€492 million).

• This has to be covered in the continuation of the FCH-JU under the next Framework Programme the HORIZON 2020

• Financial effort to support market introduction is estimated at €984 million covering

• deployment of distributed production (€498 million), • centralized production and underground storage (€390 million) • carbon capture technologies for hydrogen production (€96 million)

Source: New-IG, 2011

www.DLR.de • Chart 13 > Solar Fuels > 24 July 2012

Page 14: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Solar Fuels

www.DLR.de • Chart 14 > Solar Fuels > 24 July 2012

Page 15: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Solar Chemistry instead of Solar Power

• Solar Thermochemistry is efficient because energy conversion steps arereduced!

• Example: Hydrogen production: H2O → H2 + ½ O2

• Solarchemical: 2 conversions• Solar radiation – heat – Chemical reaction

• Via solar power: 4 conversions• Solar radiation – heat – mechanical energy – electrical energy –

chemical reaction• Solar photo-chemistry uses the light directly without any conversion.

Photo-chemistry is economical if the reaction needs a large amount ofphotons

• Example: Production of Caprolactam an intermediate for Nylon Annual production > 200,000 t (by artificial light)

> Solar Fuels > 24 July 2012www.DLR.de • Chart 15

Page 16: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Energy Routes

Hydrogen

Fossil Resources Biomass PV

Radiation

Solar Energy

Power

Electrolysis PhotochemistryThermochemistry

Mechanical Energy

Heat

Heat

CO2

Synthetic Fuels

Solar‐thermal

> Solar Fuels > 24 July 2012www.DLR.de • Chart 16

Page 17: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Temperature Levels of CSP Technologies

Paraboloid: „Dish“

Solar Tower (Central ReceiverSystem)

Parabolic Trough / Linear Fresnel

3500°C

1500°C

390°C

150°C50°C

> Solar Fuels > 24 July 2012www.DLR.de • Chart 17

Page 18: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Principle of the solar thermal fuel production

Solar Tower

Heat ChemicalReactor

FuelH2

CO + H2

Energy ConverterFuel Cell

Transportation

Power Production 

RecoursesNatural GasWater, CO2

Industry

Transportation

> Solar Fuels > 24 July 2012www.DLR.de • Chart 18

Page 19: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Solar Towers, “Central Receiver Systems”

‐PS10, PSA CESA‐1, Torresol, Spain ‐Solar‐Two, Daggett, USA‐Solarturm Jülich, Germany

> Solar Fuels > 24 July 2012www.DLR.de • Chart 19

Page 20: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Annual Efficiency of Solar Power TowersPower Tower 100MWth

Optical and thermal efficiency / Receiver-Temperature

0

5

10

15

20

25

30

35

40

45

50

600 700 800 900 1000 1100 1200 1300 1400

Receiver-Temperature [°C]

Opt

ical

effi

cien

cy a

nd th

erm

al a

nnua

l use

ef

ficie

ncy

[%]

R.Buck, A. Pfahl, DLR, 2007

> Solar Fuels > 24 July 2012www.DLR.de • Chart 20

Page 21: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Solar Tower Jülich

Receiver 22.7m² 

(Intratec, Saint‐Gobain)

Tower 60m 

(Züblin)

2150 Heliostats á 8.2 m² 

(SHP/AUSRA)

Vessel 9t/h, 30 bar/500°C 

(VKK‐Standardkessel)

Thermal storage 1h

Turbine 1.5 MWe 

(KKK‐Siemens)

> Solar Fuels > 24 July 2012www.DLR.de • Chart 21

Page 22: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Short-term CO2-Reduction: Solar Reforming

www.DLR.de • Chart 22 > Solar Fuels > 24 July 2012

Page 23: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

CO2 Reduction by solar heating of state of the art processes like steam methane reforming and coal gasification

kg/kg

SMR

SSMR

CG

SPCR

0

5

10

15

20

25

30

SMR SSMR CG SPCR

CO2 Reduction 20 – 50%

> Solar Fuels > 24 July 2012www.DLR.de • Chart 23

Page 24: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Steam and CO2-Reforming of Natural Gas

Steam reforming: H2O + CH4 3 H2 + 1 CO

CO2 Reforming: CO2 + CH4 2 H2 + 2 CO

Reforming of mixtures of CO2/H2O is possible and common

Use of CO2 for methanol production:

e.g. 2H2 + CO CH3COH (Methanol)

Both technologies can be driven by solar energy as shown in the projects: CAESAR, ASTERIX, SOLASYS, SOLREF…

> Solar Fuels > 24 July 2012www.DLR.de • Chart 24

Page 25: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Solar Methane Reforming – Technologies

Reformer heated externally (700 to 850°C)Optional heat storage (up to 24/7) 

E.g. ASTERIX project

Irradiated reformer tubes (up to 850°C), temperature gradient 

Approx. 70 % Reformer‐hDevelopment: CSIRO, Australia and in Japan; Research in Germany and Israel

Australian solar gas plant in preparation

Catalytic active direct irradiated absorber

Approx. 90 % Reformer‐hHigh solar flux, works only by direct solar radiation

DLR coordinated projects: Solasys, Solref; Research in Israel, Japan

decoupled/allothermal indirect (tube reactor) Integrated, direct, volumetric

Source: DLR

> Solar Fuels > 24 July 2012www.DLR.de • Chart 25

Page 26: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Project Asterix: Allothermal Steam Reforming of Methan

• DLR, Steinmüller, CIEMAT• 180 kW plant at the Plataforma Solar de Almería, Spain

(1990)• Convective heated tube cracker as reformer• Tubular receiver for air heating

> Solar Fuels > 24 July 2012www.DLR.de • Chart 26

Page 27: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Pilot Scale Solar Chemical Reactors - SolarGasExperimental set-up of the 200 kW SolarGas reactor

Source: R. McNaughton et al., CSIRO, Australia

Top view of DCORE reactor (right) layout of entire integrated reformer and HRU

> Solar Fuels > 24 July 2012www.DLR.de • Chart 27

Page 28: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Direct heated volumetric receivers:SOLASYS, SOLREF (EU FP4, FP6)• Pressurised solar receiver,

• Developed by DLR• Tested at the Weizmann Institute of Science, Israel

• Power coupled into the process gas: 220 kWth and 400 kWth

• Reforming temperature: between 765°C and 1000°C

• Pressure: SOLASYS 9 bar, SOLREF 15 bar

• Methane Conversion:max. 78 % (= theor. balance)

> Solar Fuels > 24 July 2012www.DLR.de • Chart 28

Page 29: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Potential Solar sites

> Solar Fuels > 24 July 2012www.DLR.de • Chart 29

Page 30: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Suitable locations for CSP in Northern Africa

> Solar Fuels > 24 July 2012www.DLR.de • Chart 30

Page 31: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Natural Gas Pipeline Grid and Natural Gas Fields

www.DLR.de • Chart 31 > Solar Fuels > 24 July 2012

Page 32: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Suitable locations for solar reforming ‐ Example Algeria and Tunisia

50 km distance to pipelinesAcceptable DNIAvailable Land

kWh/m²/y

Pipelines Fields

> Solar Fuels > 24 July 2012www.DLR.de • Chart 32

Page 33: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Long-term: Water splitting processes

www.DLR.de • Chart 33 > Solar Fuels > 24 July 2012

Page 34: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

www.DLR.de • Chart 34 > Solar Fuels > 24 July 2012

Carbon Monoxide

Solar Pathways from Water or CO2 to Fuels

Page 35: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

www.DLR.de • Chart 35 > Solar Fuels > 24 July 2012

Promising and well researched Thermochemical CyclesSteps Maximum Temperature

(°C)LHV Efficiency

(%)

Sulphur CyclesHybrid Sulphur (Westinghouse, ISPRA Mark 11) 2 900 (1150 without

catalyst)43

Sulphur Iodine (General Atomics, ISPRA Mark 16) 3 900 (1150 without catalyst)

38

Volatile Metal Oxide CyclesZinc/Zinc Oxide 2 1800 45

Hybrid Cadmium 1600 42

Non-volatile Metal Oxide CyclesIron Oxide 2 2200 42

Cerium Oxide 2 2000 68

Ferrites 2 1100 – 1800 43

Low-Temperature CyclesHybrid Copper Chlorine 4 530 39

Page 36: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

www.DLR.de • Chart 36 > Solar Fuels > 24 July 2012

36

Efficiency comparison for solar hydrogen production from water (SANDIA, 2008)*

Process T[°C]

Solar plant Solar-receiver+ power [MWth]

η T/C

(HHV)

η Optical η Receiver

ηAnnual

EfficiencySolar – H2

Elctrolysis (+solar-thermal power)

NA Actual Solar tower

Molten Salt 700

30% 57% 83% 14%

High temperature steam electrolysis

850 Future Solar tower

Particle 700

45% 57% 76,2% 20%

Hybrid Sulfur-process

850 Future Solar tower

Particle 700

51% 57% 76% 22%

Hybrid Copper Chlorine-process

600 Future Solar tower

Molten Salt700

49% 57% 83% 23%

Nickel Manganese Ferrit Process

1800 Future Solar dish

Rotating Disc < 1

52% 77% 62% 25%

*G.J. Kolb, R.B. Diver SAND 2008-1900

Page 37: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

H2

H2O

O

O

O

OH

HOH

HH

H

O H

HMOreduced MOoxidized

MOreduced MOoxidized

Fuel Production from H2O and CO2 by Solar Radiation

1200 °C

800-900 °C

DLR: Roeb, Müller-Steinhagen, Science, Aug. 2010

CO2

CO

> Solar Fuels > 24 July 2012www.DLR.de • Chart 37

Page 38: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

2004:First solar thermochemical Η2 production

2008:Pilot reactor (100 kW)

2005:Continuous Η2 production

HYDROSOL technology scale-up

DLR solar furnace

PSA solar tower

> Solar Fuels > 24 July 2012www.DLR.de • Chart 38

Page 39: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Modelling‐ControlSoftware(Labview®)

Hydrogen ProductionModel

Modelling of the pilot plant - Overview Modelling:

TemperatureModel(Matlab/Simulink®)

Heliostatfield‐Simulation ToolSTRAL (C++)Insulated Power (#1)

Parameter

Parameter

Temperature (#2)

Parameter

Hydrogen Amount (#3)

> Solar Fuels > 24 July 2012www.DLR.de • Chart 39

Page 40: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

www.DLR.de • Chart 40 > Solar Fuels > 24 July 2012

Modelling – Temperature model:

KFQ aKQ

Collecting formulas of the heat flows (simplified balance!)

Heat flows: heat radiation, heat conduction and convection

HSQ aFQKFQ

aKQ

KKQ

GaBaQKGaQ

aFQ

GBQ

Page 41: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Modelling – Temperature model:

First Verification of open loop control system

Temperatures East (23.04.2009)

0

200

400

600

800

1000

1200

1400

10:15

:0010

:30:00

10:45

:0011

:00:00

11:15

:0011

:30:00

11:45

:0012

:00:00

12:15

:0012

:30:00

12:45

:0013

:00:00

13:15

:0013

:30:00

13:45

:0014

:00:00

14:15

:0014

:30:00

14:45

:0015

:00:00

Time

T [°

C]

Temperature SimulatedTemperature Measured

Regeneration

Production

Input:Simulated power EastSampling rate (Sim.):every secondSampling rate (Exp.):Every secondAverage Deviation: 6.5%

> Solar Fuels > 24 July 2012www.DLR.de • Chart 41

Page 42: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

1 MW Pilot Plant Designs

> Solar Fuels > 24 July 2012Solar Fuels, Niigata University > 3 July 2012www.DLR.de • Chart 42

850 mm

530 mm 1000 mm

Installation on DLR‘s Solar Tower Jülich (Artistic View)

Compact 1 MW Receiver Design

Page 43: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

www.DLR.de • Chart 43 > Solar Fuels > 24 July 2012

Carbon Monoxide

Solar Pathways fromWater or CO2 to Hydrogen

Page 44: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Sulphur-Iodine Process

WaterH2O

OxygenO2

Heat800–900 °C

HydrogenH2

www.DLR.de • Chart 44 > Solar Fuels > 24 July 2012

Page 45: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

www.DLR.de • Chart 45 > Solar Fuels > 24 July 2012

Electrolysis (90°C) HH22SOSO44 + H+ H2 2 SOSO22 + 2 H+ 2 H22O O

HH22HH22OO

OO22

HH22SOSO44

SOSO22

WWäärmerme

800800°°C C –– 12001200°°CC

HH22SOSO44 HH22O + SOO + SO33

SOSO33 SOSO22 + + ½½OO22

+ H+ H22OO

HH22SOSO44 + H+ H2 2 SOSO22 + 2 H+ 2 H22O O

HH22HH22OO

OO22

HH22SOSO44

SOSO22

800800°°C C –– 12001200°°CC

HH22SOSO44 HH22O + SOO + SO33

SOSO33 SOSO22 + + ½½OO22

+ H+ H22OO

HeatHeat

Electrolysis (90°C) HH22SOSO44 + H+ H2 2 SOSO22 + 2 H+ 2 H22O O

HH22HH22OO

OO22

HH22SOSO44

SOSO22

WWäärmerme

800800°°C C –– 12001200°°CC

HH22SOSO44 HH22O + SOO + SO33

SOSO33 SOSO22 + + ½½OO22

+ H+ H22OO

HH22SOSO44 + H+ H2 2 SOSO22 + 2 H+ 2 H22O O

HH22HH22OO

OO22

HH22SOSO44

SOSO22

800800°°C C –– 12001200°°CC

HH22SOSO44 HH22O + SOO + SO33

SOSO33 SOSO22 + + ½½OO22

+ H+ H22OO

HeatHeat

Hybrid Sulphur Cycle

Page 46: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Performance of long‐term corrosion campaigns (SO2, SO3 rich, boiling H2SO4) and post‐exposure mechanical testing and inspection

mainstream materials SiC‐based as well as brazed samples SiC based materials retained suitable for the intended application since they are not  affected 

significantly by the SO2‐rich, SO3‐rich and boiling sulphuric acid exposures.

Stability of construction materials

High temperature tests (850oC)

SiO2layer

Core material

Das Bild kann zurzeit nicht angezeigt werden.

Das Bild kann zurzeit nicht angezeigt werden.

www.DLR.de • Chart 46 > Solar Fuels > 24 July 2012

Page 47: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

‘In‐house’ synthesized materials (metal oxide based) with high catalytic activity in termsof SO2 production from H2SO4:

Coating of active materials in small‐ & large‐scale SiSiC monoliths or fragments

Satisfying stability of samples coated with ‘in‐house’ materials under ‘long‐term’operation

Derivation of an empirical kinetic model

Evaluation of the employed materials chemical stability Extraction of an SO3 dissociation mechanism CrFe oxide identified as the most suitable catalyst

Advanced catalysts and coatings for H2SO4 decomposition

0

10

20

30

40

50

60

70

80

90

100

8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

WHSV (h-1)

SO3

conv

ersi

on (%

)

exp. 1 bar

exp. 2 bar

exp. 3 bar

exp. 4 bar

kin model 1-4 bar

Karagianakis et al, IJHE 2011/2012; Giaconia et al, IJHE 2011

> Solar Fuels > 24 July 2012www.DLR.de • Chart 47

Page 48: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

www.DLR.de • Chart 48 > Solar Fuels > 24 July 2012

Solar reactor as H2SO4 decomposer

‐ Development and operation of a scalable prototype

‐ FEM analysis‐ trouble‐free operational > 200 h‐ conversions > 80 %‐ reactor efficiency > 25 %

‐ Continuum model of foam vaporiser‐ Computer tomography

‐ Modelling of SO3 decomposition‐ Validation with experimental data

‐ Control procedure for scale‐up solar tower system

Das Bild kann zurzeit nicht angezeigt werden.

Das Bild kann zurzeit nicht angezeigt werden.

Das Bild kann zurzeit nicht angezeigt werden.

Das Bild kann zurzeit nicht angezeigt werden.

Thomey et al, IJHE 2012Noglik et al, IJER 2010Haussener et al, ASME‐JHT 2009

Page 49: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Scale-up of the solar HyS process

> Solar Fuels > 24 July 2012www.DLR.de • Chart 49

Page 50: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Implementation into a Solar Tower

> Solar Fuels > 24 July 2012www.DLR.de • Chart 50

Page 51: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Techno-economics

Flowsheet for solar HyS process refined and completed

All Components including the solar field were sized for a nuclear HyS and SI process and a solar HyS process

Investment, O&M cost, production cost were analysed 6-7 €/kg(H2) for HyS scenarios lead to 3.5 €/kg(H2)

50 MW solar tower plant for hydrogen production by HyS cycle defined and depicted

Thorough safety analysis was carried out for respective nuclear and solar power plants

By-product revenues

Decomposer investment

Plant life

Electrolyser investment

Discount rate

Electricity cost

Electrolyser replacement

6 8 10 12Production cost of hydrogen [€/kg]

Start-up expenses

InterestsPeriphery

StorageGeneral facilities

Contingencies

Electrolyser replacement

50%26%

4%

5%

Equipment

Electrolyser replacement

Contingencies

General facilities

Storage

Periphery (Land & Piping)

Interests

Start-up expenses

9%2%

2%

2%

Equipment

Lebros et et al, IJHE 2010

> Solar Fuels > 24 July 2012www.DLR.de • Chart 51

Page 52: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

www.DLR.de • Chart 52 > Solar Fuels > 24 July 2012

Carbon Monoxide

Solar Pathways fromWater or CO2 to Fuels

Page 53: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

High temperature electrolysis processTemperature in the range of 600°C to 900°C are required to drive the electrolyser.Electricity and heat are supplied to the electrolyser to drive the electro-chemicals reactions. The waste heat from the H2 and O2 gas streams existing the cell is used to evaporate water.The H2O stream is further heated by the second Heat exchanger to raise the temperature of the electrolyser.

222 2 OHeOH

eOO 221

22

222 21 OHOH

> Solar Fuels > 24 July 2012www.DLR.de • Chart 53

Page 54: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Economic analysis

Key parameters of the hydrogen production cost with the a concentrating solar installation coupled to a high temperature electrolyzer:

Efficiency of the plantEfficiency of the solar installationElectricity consumption of the electrolyzer

Site of the plant (annual solar irradiation, availability of water, connection to the electricity and gas gritInvestmentLifetime of the plant

> Solar Fuels > 24 July 2012www.DLR.de • Chart 54

Page 55: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Thermal conductivity of working fluids

> Solar Fuels > 24 July 2012www.DLR.de • Chart 55

Page 56: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Flow diagram of the coupling of the solar power tower with the electrolyzer

> Solar Fuels > 24 July 2012www.DLR.de • Chart 56

Page 57: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Flow diagram of the coupling of the parabolic dish to the electrolyzer

> Solar Fuels > 24 July 2012www.DLR.de • Chart 57

Page 58: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Flow Diagram of the coupling of the parabolic trough to the electrolyzer

Feed Water

Sensible heat storagefor pre‐heating

Latent heat storage forevaporation

Sensible heat storagefor super‐heating

Power Block

ElectrolyserBlock

Parabolic Trough Collectors

Pre‐heating Evaporation Super‐heating

> Solar Fuels > 24 July 2012www.DLR.de • Chart 58

Page 59: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

www.DLR.de • Chart 59 > Solar Fuels > 24 July 2012

Carbon Monoxide

Solar Pathways fromWater or CO2 to Fuels

Page 60: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

ChemistryDas Bild kann zurzeit nicht angezeigt werden.

+‐

++

Photocatalytic Water Splitting

Das Bild kann zurzeit nicht angezeigt werden.

21/2

H2H2

H2OH2O

O2O2H+H+‐ CO2‐free production

‐ abundant sources

> Solar Fuels > 24 July 2012www.DLR.de • Chart 60

Page 61: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Engineering:Choice of a Concentrator Concept

Concentrator

Reflector Refractor

CompoundParabolic

Concentrator

Parabolic Dish

CentralReceiverSystem

Parabolic Trough

LinearFresnelCollector

SolarFurnace

C ≈ 20RisksOblong focusComplexity / size

> Solar Fuels > 24 July 2012www.DLR.de • Chart 61

Page 62: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Conclusion and Outlook

www.DLR.de • Chart 62 > Solar Fuels > 24 July 2012

Page 63: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Future Concentrated Solar Plants – more than power!

Production of solar fuels (renewable H2 and CH4 / CH3OH),Recycling of CO2, Power Production and Water Desalination (H2O)

CO2

H2O

Sea water

Desalinated Water

CH4, CH3OH

H2

Heat

Power

• > Solar Fuels > 24 July 2012• www.DLR.de • Chart 63

Page 64: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Acknowledgement• Thanks to all agencies funding the development

of solar fuel technologies, especially theEuropean Commission and to all industrialpartners involved.

• Thanks to all colleagues and partners whoprovided various contributions to this work.

> Solar Fuels > 24 July 2012www.DLR.de • Chart 64

DLR Fuel Cell AircraftANTARES

Page 65: 2012 07 24 ASME Solar Fuels final - DLR Portal · • 50% of hydrogen used for energy applications produced from ... Catalytic active direct irradiated ... Nickel Manganese Ferrit

Thank you very much for your attention!

> Solar Fuels > 24 July 2012www.DLR.de • Chart 65