20110203 Syngas Final Vah

download 20110203 Syngas Final Vah

of 5

Transcript of 20110203 Syngas Final Vah

  • 8/9/2019 20110203 Syngas Final Vah

    1/9

    1

    Fuel Synthesis from Syngas

    Introduction

    Nowadays the society we are living in is experiencing high oil prices and global warming threats, which are

    mainly caused by extensive use of traditional fossil fuels such as coal and crude oil. In the future, renewable

    and environmental friendly sources of energy would be more and more attractive. Synthesis gas (also called

    as syngas, which is a mixture of mainly CO and H2) could potentially play a significant role in addressing the

    above mentioned problems. Basically it can be derived from any carbon containing raw material: coal,

    biomass such as straw and wood or even wastes. Provided that a sustainable and effective way of

    electrochemical conversion is found, even CO2  and H2O could serve as initial materials for syngas

    production. (Electrochemical fixation of CO2, CASE project). Then, syngas can be converted to various liquid

    fuels such as methanol, Fisher-Tropsch oil (FT oil, a mixture of hydrocarbons) and higher alcohols (Figure 1).Alcohols are widely used in our society as solvents, pharmaceuticals, and starting materials for synthesis of

    various chemicals, including fuels or fuel additives.1,2,3

     

    . The scope of this project is to develop catalysts for

    the direct conversion of syngas to alcohols, either methanol (low pressure synthesis) or higher alcohols.

    Opportunities for syngas production and conversion of syngas to variousliquid fuels and chemicals.

    Methanol Synthesis

    Introduction

    Synthesis of methanol from syngas (a mixture of carbon monoxide and hydrogen with small amounts of

    carbon dioxide) in an industrial scale is typically carried out at elevated temperatures and pressures (up to

    2500C and 100 bar respectively 4

    Synthesis of methanol from synthesis gas at lower temperature and pressure are desirable if sustainable

    fuel methanol is to be synthesized in decentralized units following biomass gasification or synthesis gas

    ), which requires high operational and investment costs. The only 

    commercially used catalyst for methanol production is Cu/ZnO/Al2O3, which is optimized to operate under

    conditions mentioned above.

  • 8/9/2019 20110203 Syngas Final Vah

    2/9

    2

    production by electrolysis. The «Dream Carbon Cycle» is schematically illustrated in the picture below:

    carbon dioxide and water are electrochemically converted to syngas (a mixture of CO and H2), which is then

    converted into methanol at low pressure and temperature over a catalyst that needs to be developed.

    Finally, methanol can be used as a fuel.

    Why decrease temperature and pressure?

    High pressure processes not only contribute significantly to the total process cost of chemical engineering

    plant, but also add up certain degree of complexity to the equipment used, thus increasing the investment

    costs. Consequently, low pressure process would make methanol a more sustainable fuel, botheconomically and environmentally.

    From thermodynamic point of view, one has to go down in temperature in order to produce methanol from

    syngas with reasonable conversion at low pressures, as it can be seen from the figure below (assuming

    stoichiometric amounts of CO and H2  and no water-gas shift activity; the same trends apply for CO 2 

    containing mixtures): 

  • 8/9/2019 20110203 Syngas Final Vah

    3/9

    3

    It is clear that at lower temperatures thermodynamic yield of methanol is sufficiently high even at low

    pressures. However, at present no catalyst is known to activate the process at such low temperatures.

    Research and development

    Based on DFT (Density Functional Theory) calculations performed by the theoretical group at DTU Fysik and

    Stanford University (Dep. of Chemical Engineering at Stanford University), it has been proposed that certain

    metal alloys should be catalytically active towards methanol synthesis from syngas at lower temperatures

    (150-2000C) and pressures close to atmospheric

    A limited amount of work has been done in the field of using alloyed catalysts for methanol synthesis. In

    the early 80s it has been shown that certain copper-thorium and copper cerium based alloys are active

    towards methanol synthesis at industrial conditions 5,6

    The main objective of the research is to validate DFT calculations by synthesizing, testing and

    characterization of several most interesting alloyed catalysts. Depending on the progress of the research,

    one of the catalysts should be optimized

    . However, nothing economically more viable than

    copper based catalysts has been proposed yet

    Higher alcohols synthesis

    Introduction

    Higher alcohols (C2+OH) are very attractive as fuels or fuel additives because they have a low vapor

    pressure, high water tolerance, good solubility in hydrocarbons, high heating value and high commercial

    value.7

     

    Currently, higher alcohols such as ethanol are mainly produced according to two processes. The first

    process is essentially fermentation of sugars that are derived from sugarcane or corn; 2,8 the second one ishydration of ethylene produced from petroleum. However, Crutzen et al. 9

    Syngas can be converted into alcohols in a two step process: first a mixture of CO and H2  is

    thermochemically produced by gasification of biomass, and then syngas is converted into higher alcohols

    catalytically.

    found that corn-ethanol

    production process can emit nitrous oxide that contributes to global warming as well. Moreover, food

    shortage problems might come up if materials such as sugarcane and corn are utilized for fuel production.

    Therefore, an alternative way to produce higher alcohols from syngas is favorable.

    http://www.fys.dtu.dk/English.aspxhttp://www.fys.dtu.dk/English.aspxhttp://www.fys.dtu.dk/English.aspxhttp://engineering.stanford.edu/research/lab_ctr_dtl.php?org=3http://engineering.stanford.edu/research/lab_ctr_dtl.php?org=3http://engineering.stanford.edu/research/lab_ctr_dtl.php?org=3http://engineering.stanford.edu/research/lab_ctr_dtl.php?org=3http://www.fys.dtu.dk/English.aspx

  • 8/9/2019 20110203 Syngas Final Vah

    4/9

    4

    The catalysts and process for the higher alcohol synthesis (HAS) can be divided into four catagories10,11,12

    1.  Modified methanol synthesis catalysts: alkali-doped ZnO/Cr2O3  (high temperature methanolsynthesis catalyst) and alkali-doped Cu/ZnO and Cu/Zn/Al2O3 (low temperature methanol synthesiscatalyst).

    :

    2.  Modified FT catalysts: alkali-doped Co/Fe/Ni-Cu-Al2O3;3.  Modified Mo-based catalysts: Carbides and Sulfides;4.  Noble metal catalysts, Rh, Pd, Pt, Re: heterogeneous oxide supported metals and homogeneous

    metal complexes;

    Table 1 illustrates that the higher alcohol synthesis typically takes place at 250-325 °C, 50-200 bar, H2/CO =

    1 mol/mol and GHSV = 2000-10000 h-1. In comparison the dedicated methanol synthesis operates at a

    lower temperature and pressure (225 °C - 275 °C,

  • 8/9/2019 20110203 Syngas Final Vah

    5/9

    5

    Challenges

    •  Catalysts with high selectivity towards higher alcohols.

    •  Sufficiently active catalysts.

    • 

    Cheap catalysts, i.e. based on abundant elements.•  Chemical stability in synthesis gas.

    The main problem lies in that the catalyst need to:

    •  Be efficient in breaking the C-O bond to produce long chain intermediates CxHy*, but retain a

    large coverage of intact CO molecules to form CxHyCO*.

    •  Be efficient in hydrogenating CxHyCO* intermediates into alcohols, but not too good, as high

    hydrogenation activity leads to termination as CxHy.

    Approaches•  Design of catalysts using both density functional theory (DFT) and literature-based prediction.

    •  Synthesis of catalysts by different methods such as co-precipitation and flame spray pyrolysis.

    •  High pressure testing of catalysts for activity and selectivity.

    •  Characterization techniques: BET (DTU KT), H2-TPR (DTU KT), XPS (DTU Fysik), ICP (Haldor Topsøe

    A/S), and XRD (DTU Fysik). 

    •  In-situ characterization like TEM (DTU Cen), XAS (ANKA-KIT, Inst. for chem. technol. and polymer

    chem. at Univ. Karlsruhe), and XRD (DTU Fysik). 

    Characterization of new catalysts

    The characterization of the catalyst aims at getting to know the traits of a material in many different

    aspects. Important for a catalytic material is the performance to convert the Syngas into the desired

    product, so a high turnover rate. But also the selectivity, the ability to convert only into the desired product

    or with little byproducts is important. Both can be tested at DTU in test facilities at industrial conditions and

    in microreactors with a greater control over the gas flow and heat distribution.

    To get, however, a deeper insight into the basic function of a catalyst we also use methods to study

    changes in the shape and the structure of the catalyst on the atomic level. This is done with x-ray

    diffraction (XRD) as well as electron microscopy. What makes our characterization abilities special is thatwe are able to study the catalysts with those methods closer to their working conditions than normal x-ray

    diffractometers and electron microscopes. With that, we aim for getting a deeper understanding of the

    basic catalytic process on the atomic scale 19

    These are some of the devices we have available:

    . These information can be used by the CASE participants who

    predict and synthesize the catalysts and therefore create a feedback loop to improve the catalysts

    systematically.

    http://www.kt.dtu.dk/English.aspxhttp://www.kt.dtu.dk/English.aspxhttp://www.kt.dtu.dk/English.aspxhttp://www.kt.dtu.dk/English.aspxhttp://www.kt.dtu.dk/English.aspxhttp://www.kt.dtu.dk/English.aspxhttp://www.fys.dtu.dk/English.aspxhttp://www.fys.dtu.dk/English.aspxhttp://www.fys.dtu.dk/English.aspxhttp://www.topsoe.com/http://www.topsoe.com/http://www.topsoe.com/http://www.topsoe.com/http://www.fys.dtu.dk/English.aspxhttp://www.fys.dtu.dk/English.aspxhttp://www.fys.dtu.dk/English.aspxhttp://www.cen.dtu.dk/English.aspxhttp://www.cen.dtu.dk/English.aspxhttp://www.cen.dtu.dk/English.aspxhttp://www.itcp.uni-karlsruhe.de/english/index.php?PHPSESSID=b2e95a2759877d68a767c53801dd9ca0http://www.itcp.uni-karlsruhe.de/english/index.php?PHPSESSID=b2e95a2759877d68a767c53801dd9ca0http://www.itcp.uni-karlsruhe.de/english/index.php?PHPSESSID=b2e95a2759877d68a767c53801dd9ca0http://www.itcp.uni-karlsruhe.de/english/index.php?PHPSESSID=b2e95a2759877d68a767c53801dd9ca0http://www.fys.dtu.dk/English.aspxhttp://www.fys.dtu.dk/English.aspxhttp://www.fys.dtu.dk/English.aspxhttp://www.fys.dtu.dk/English.aspxhttp://www.itcp.uni-karlsruhe.de/english/index.php?PHPSESSID=b2e95a2759877d68a767c53801dd9ca0http://www.itcp.uni-karlsruhe.de/english/index.php?PHPSESSID=b2e95a2759877d68a767c53801dd9ca0http://www.cen.dtu.dk/English.aspxhttp://www.fys.dtu.dk/English.aspxhttp://www.topsoe.com/http://www.topsoe.com/http://www.fys.dtu.dk/English.aspxhttp://www.kt.dtu.dk/English.aspxhttp://www.kt.dtu.dk/English.aspx

  • 8/9/2019 20110203 Syngas Final Vah

    6/9

    6

    Titan ETEM 

    This machine is an Environmental Transmission Electron Microscope (ETEM). It features the full capability

    of a monochromated, image Cs 

    aberration corrected TEM with the

    possibility to study specimens in a gas

    atmosphere and at elevated

    temperatures. It is still possible to get

    atomic resolution at these conditions

    20. Within CASE, this microscope is

    mainly used for dynamic studies of

    the catalysts focusing on the crystal

    structure, particle sizes and other

    effects on the nm to Å scale. The

    electron microscopes are located atthe Center for Electron Nanoscopy

    (DTU Cen). 

    An example of a catalytic study carried out in the ETEM is CuSn:

    During the catalytic process the catalyst undergoes structural changes. In this case it is

    CuSn catalyst particles that sinter and get deactivated during the process.

    http://www.cen.dtu.dk/English/Research/Instrumentation/TITAN_E-CELL.aspxhttp://www.cen.dtu.dk/English/Research/Instrumentation/TITAN_E-CELL.aspxhttp://www.cen.dtu.dk/English.aspxhttp://www.cen.dtu.dk/English.aspxhttp://www.cen.dtu.dk/English.aspxhttp://www.cen.dtu.dk/English/Research/Instrumentation/TITAN_E-CELL.aspx

  • 8/9/2019 20110203 Syngas Final Vah

    7/9

    7

    In-situ XRD 

    This is an X-ray diffractometer equipped with a gas handling system and an in-situ

    cell to study specimens in gas atmosphere and at elevated temperatures. The XRD

    reveals the crystal structure and changes thereof during the exposure to the gas

    and heat. Libraries allow identifying different phases in a mixture and during

    changes. In the future it will be possible to treat and investigate the same sample

    in the XRD and transfer it over to the TEM for further investigation

    This XRD system is also part of  DTU Cen. 

    Equipment for catalyst testing at low pressures at DTU

    Fysik. Products are analyzed by Gas Chromatography.

    High pressure fixed-bed continuous-flow reactor(maximum 110 bar and 600 °C) at Department ofChemical Engineering (DTU KT) 

    Diagram illustrating the catalyst testing setup.BFM: Bubble Flow Meter; MF(P)C: Mass Flow(Pressure) Controller; P: Manometer. Heattraced tubing is indicated by sinusoidal curves.

    http://www.cen.dtu.dk/English/Research/Instrumentation/PANalytical_XPert_PRO_DIFFRACTOMETER.aspxhttp://www.cen.dtu.dk/English/Research/Instrumentation/PANalytical_XPert_PRO_DIFFRACTOMETER.aspxhttp://www.cen.dtu.dk/English.aspxhttp://www.cen.dtu.dk/English.aspxhttp://www.cen.dtu.dk/English.aspxhttp://www.fys.dtu.dk/English.aspxhttp://www.fys.dtu.dk/English.aspxhttp://www.fys.dtu.dk/English.aspxhttp://www.fys.dtu.dk/English.aspxhttp://www.kt.dtu.dk/English.aspxhttp://www.kt.dtu.dk/English.aspxhttp://www.kt.dtu.dk/English.aspxhttp://www.kt.dtu.dk/English.aspxhttp://www.fys.dtu.dk/English.aspxhttp://www.fys.dtu.dk/English.aspxhttp://www.cen.dtu.dk/English.aspxhttp://www.cen.dtu.dk/English/Research/Instrumentation/PANalytical_XPert_PRO_DIFFRACTOMETER.aspx

  • 8/9/2019 20110203 Syngas Final Vah

    8/9

    8

    BET-Autosorb-iQ2 (Quantachrome Instruments)

    at Department of Chemical Engineering (DTU KT) 

    H2-TPR on NETZSCH STA-449 at Department of

    Chemical Engineering (DTU KT) 

    Institute for Synchrotron Radiation (ISS – ANKA, Karlsruher Institut für Technologie , Germany) 

    List of participants

    Name Affiliation

    Anker Degn Jensen  DTU KT 

    Qiongxiao Wu  DTU KT 

    Jakob Munkholt Christensen  DTU KT 

    Jakob Birkedal Wagner  DTU Cen 

    Christian Danvad Damsgaard  DTU Cen 

    Linus Daniel Leonhard Duchstein  DTU Cen 

    Søren Dahl  DTU Fysik 

    Irek Sharafutdinov  DTU Fysik 

    Christian Fink Elkjær DTU Fysik 

    Jens Kehlet Nørskov  Dep. of Chemical Engineering at Stanford University 

    Jan-Dierk Grunwaldt  Inst. for chem. technol. and polymer chem. at Univ. Karlsruhe 

    Burcin Temel Haldor Topsøe A/S 

    http://www.kt.dtu.dk/English.aspxhttp://www.kt.dtu.dk/English.aspxhttp://www.kt.dtu.dk/English.aspxhttp://www.kt.dtu.dk/English.aspxhttp://www.kt.dtu.dk/English.aspxhttp://www.kt.dtu.dk/English.aspxhttp://anka.iss.kit.edu/english/index.phphttp://anka.iss.kit.edu/english/index.phphttp://www.kt.dtu.dk/Om_instituttet/Medarbejdere.aspx?lg=showcommon&id=1020&type=personhttp://www.kt.dtu.dk/Om_instituttet/Medarbejdere.aspx?lg=showcommon&id=1020&type=personhttp://www.kt.dtu.dk/English.aspxhttp://www.kt.dtu.dk/English.aspxhttp://www.kt.dtu.dk/Om_instituttet/Medarbejdere.aspx?lg=showcommon&id=60115&type=personhttp://www.kt.dtu.dk/Om_instituttet/Medarbejdere.aspx?lg=showcommon&id=60115&type=personhttp://www.kt.dtu.dk/English.aspxhttp://www.kt.dtu.dk/English.aspxhttp://www.kt.dtu.dk/Om_instituttet/Medarbejdere.aspx?lg=showcommon&id=17576&type=personhttp://www.kt.dtu.dk/Om_instituttet/Medarbejdere.aspx?lg=showcommon&id=17576&type=personhttp://www.kt.dtu.dk/English.aspxhttp://www.kt.dtu.dk/English.aspxhttp://www.cen.dtu.dk/English/Staff.aspx?lg=showcommon&id=43950&type=personhttp://www.cen.dtu.dk/English/Staff.aspx?lg=showcommon&id=43950&type=personhttp://www.cen.dtu.dk/English.aspxhttp://www.cen.dtu.dk/English.aspxhttp://www.cen.dtu.dk/English/Staff.aspx?lg=showcommon&id=9800&type=personhttp://www.cen.dtu.dk/English/Staff.aspx?lg=showcommon&id=9800&type=personhttp://www.cen.dtu.dk/English.aspxhttp://www.cen.dtu.dk/English.aspxhttp://www.cen.dtu.dk/English/Staff.aspx?lg=showcommon&id=59812&type=personhttp://www.cen.dtu.dk/English/Staff.aspx?lg=showcommon&id=59812&type=personhttp://www.cen.dtu.dk/English.aspxhttp://www.cen.dtu.dk/English.aspxhttp://www.fys.dtu.dk/Medarbejdere/Samlet_medarbejderstab.aspx?lg=showcommon&id=437&type=personhttp://www.fys.dtu.dk/Medarbejdere/Samlet_medarbejderstab.aspx?lg=showcommon&id=437&type=personhttp://www.fys.dtu.dk/English.aspxhttp://www.fys.dtu.dk/English.aspxhttp://www.fys.dtu.dk/Medarbejdere/Samlet_medarbejderstab.aspx?lg=showcommon&id=60915&type=personhttp://www.fys.dtu.dk/Medarbejdere/Samlet_medarbejderstab.aspx?lg=showcommon&id=60915&type=personhttp://www.fys.dtu.dk/English.aspxhttp://www.fys.dtu.dk/English.aspxhttp://www.fys.dtu.dk/English.aspxhttp://www.fys.dtu.dk/English.aspxhttp://engineering.stanford.edu/research/layout.php?sunetid=norskovhttp://engineering.stanford.edu/research/layout.php?sunetid=norskovhttp://engineering.stanford.edu/research/lab_ctr_dtl.php?org=3http://engineering.stanford.edu/research/lab_ctr_dtl.php?org=3http://www.itcp.kit.edu/grunwaldt/24.phphttp://www.itcp.kit.edu/grunwaldt/24.phphttp://www.itcp.uni-karlsruhe.de/english/index.php?PHPSESSID=b2e95a2759877d68a767c53801dd9ca0http://www.itcp.uni-karlsruhe.de/english/index.php?PHPSESSID=b2e95a2759877d68a767c53801dd9ca0http://www.topsoe.com/http://www.topsoe.com/http://www.topsoe.com/http://www.itcp.uni-karlsruhe.de/english/index.php?PHPSESSID=b2e95a2759877d68a767c53801dd9ca0http://www.itcp.kit.edu/grunwaldt/24.phphttp://engineering.stanford.edu/research/lab_ctr_dtl.php?org=3http://engineering.stanford.edu/research/layout.php?sunetid=norskovhttp://www.fys.dtu.dk/English.aspxhttp://www.fys.dtu.dk/English.aspxhttp://www.fys.dtu.dk/Medarbejdere/Samlet_medarbejderstab.aspx?lg=showcommon&id=60915&type=personhttp://www.fys.dtu.dk/English.aspxhttp://www.fys.dtu.dk/Medarbejdere/Samlet_medarbejderstab.aspx?lg=showcommon&id=437&type=personhttp://www.cen.dtu.dk/English.aspxhttp://www.cen.dtu.dk/English/Staff.aspx?lg=showcommon&id=59812&type=personhttp://www.cen.dtu.dk/English.aspxhttp://www.cen.dtu.dk/English.aspxhttp://www.cen.dtu.dk/English/Staff.aspx?lg=showcommon&id=9800&type=personhttp://www.cen.dtu.dk/English.aspxhttp://www.cen.dtu.dk/English/Staff.aspx?lg=showcommon&id=43950&type=personhttp://www.kt.dtu.dk/English.aspxhttp://www.kt.dtu.dk/Om_instituttet/Medarbejdere.aspx?lg=showcommon&id=17576&type=personhttp://www.kt.dtu.dk/English.aspxhttp://www.kt.dtu.dk/Om_instituttet/Medarbejdere.aspx?lg=showcommon&id=60115&type=personhttp://www.kt.dtu.dk/English.aspxhttp://www.kt.dtu.dk/Om_instituttet/Medarbejdere.aspx?lg=showcommon&id=1020&type=personhttp://anka.iss.kit.edu/english/index.phphttp://anka.iss.kit.edu/english/index.phphttp://www.kt.dtu.dk/English.aspxhttp://www.kt.dtu.dk/English.aspx

  • 8/9/2019 20110203 Syngas Final Vah

    9/9

    9

    References

    1 Subramani, V.; Gangwal, S. K. Energy Fuels 2008, 22, 814-839.

    2 Goldemberg, J. Science 2007, 315, 808.

    3 Ferreira-Aparicio, P.; Benito, M. J.; Sanz, J. L. Catal. Rev. , Sci. Eng. 2005, 47, 491-588.

    4 I. Chorkendorff, J. W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics, 2nd edition, p. 315

    5 Lambert R.M., Nix R.M., Methanol synthesis catalysts from intermetallic precursors: Binary lanthanide-copper

    catalysts, Applied Catalysis 1987; 33(2), pp. 405-430

    6 Baglin E.G., Atkinson G.B., Nicks L.J., METHANOL SYNTHESIS CATALYSTS FROM THORIUM-COPPER INTERMETALLICS.

    PREPARATION AND EVALUATION, Industrial & Engineering Chemistry, Product Research and Development 1981; 20(1),

     pp. 87-90

    7 Spath, P. L.; Dayton, D. C. 2003, A925634.

    8 Fougret, C. M.; Hölderich, W. F. Appl. Catal. A: General 2001, 207, 295-301.

    9 Crutzen, P. J.; Mosier, A. R.; Smith, K. A.; Winiwarter, W. 2008, 389, 389-395.

    10 Spivey, J. J.; Egbebi, A. Chem. Soc. Rev. 2007, 36, 1514-1528.11 Tien-Thao, N.; Alamdari, H.; Zahedi-Niaki, M. H.; Kaliaguine, S. Appl. Catal. A 2006, 311, 204-212.

    12 Herman, R. G. Catal. Today 2000, 55, 233-245.

    13 Chinchen, G.C. Waugh, K.C. J. Catal. 1986, 97, 280-283.

    14 Kung, H.H. Catal. Rev. 1980, 22, 259.

    15 Waugh, K.C. Catal. Today 1992, 15, 51-75.

    16 Herman, R.G. Stud. Surf. Sci. Catal. 1991, 64, 265-349.

    17 Christensen, J.M. Mortensen, P.M. Trane, R. Jensen, P.A. Jensen, A.D. App. Catal. A 2009, 366, 29-43.

    18 Christensen, J.M. Jensen, P.A. Schiødt, N.C. Jensen, A.D. ChemCatChem 2010,2, 523-526.

    19 Dayte, Journal of Catalysis, 216, 1-2, pp. 144-154 (2003)

    20 Hansen et al., Science 294, 5546, pp. 1508-10 (2001)