2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic...

37
Wireless Power Transfer for EV 2011 REGIONAL CONFERENCES ANSYS Japan K K © 2011 ANSYS, Inc. 1 ANSYS Japan K.K. Takahiro Koga

Transcript of 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic...

Page 1: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Wireless Power Transferfor EV

2011 REGIONAL CONFERENCES

ANSYS Japan K K

© 2011 ANSYS, Inc.1

ANSYS Japan K.K.

Takahiro Koga

Page 2: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Agenda

1. Electromagnetic tools for Wireless Power Transfer

2. Coupling Simulation:Electromagnetic Electrical CircuitElectromagnetic ‐ Electrical Circuit

3 Application for Wireless Power Supply3. Application for Wireless Power Supply

– Inductive type

– Magnetic resonance typeMagnetic resonance type

© 2011 ANSYS, Inc.2

Page 3: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Wireless Power Supply

• Method :

– Electromagnetic Induction

–Magnetic Resonance

– Microwave

© 2011 ANSYS, Inc.3

Ref.: Nikkei Electronics Mar. 2007EE Times Japan Oct. 2009, Nov. 2010

Page 4: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Method Map

100%

Induction type(~15W) Induction type(~50kW)

50%

ficiency

Resonance type

Eff

Microwave type

0%

Microwave type

© 2011 ANSYS, Inc.4Ref: EE Times Japan 2009.10

1mm         1cm               10cm                  1m                10m            100m

Transfer Distance

Page 5: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Electromagnetic tools

Which is the optimal simulation tool ? p

“L F ” “Hi h F ”“Low Freq.”    “High Freq.”

HFSSMaxwell© 2011 ANSYS, Inc.5

HFSSMaxwell

Page 6: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Differentiating Features

• Maxwell: Low Frequency Field Simulatord l “ ” d “ l ”– Separated Solver “Magnetic” and “Electric”

– Time Transient and Lumped Circuit: L,R,C 

– Linear and Nonlinear Material

– Application: Motor, Transformer/Inductor for power machine, Inductive noise

• HFSS:  High Frequency Structure Simulator– Electromagnetic Full Wave Solver

– Distributed Circuit: S,Z,Y

– Linear Material

– Application: Antenna, Transformer/Inductor for signal, Radiation noise

© 2011 ANSYS, Inc.6

pp , / g ,

Page 7: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Resonance Type Coupling

1. Self Capacitance 

2 External Capacitance2. External Capacitance

Magnetic → R L M

C

C CMagnetic → R, L, M

Maxwell R R

LL

Electrostatic → C

LLM

Use Maxwell parasitic extraction and couple with circuit simulator for resonance

© 2011 ANSYS, Inc.7Reference:  Wireless Power Transfer via Strongly Coupled Magnetic ResonacesA.Kurs, A.Kralis, R.Moffatt,B.J.Jonnapoulos, P.Fisher, Vo;.317, pp.83‐86, July 2007

with circuit simulator for resonance

Page 8: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Inductive Type Coupling

Principle physics is magnetic coupling

Magnetic → R, L, MC C

MaxwellR R

LLMMaxwell

The resonant circuit is full realized via a lumped capacitance solved using circuit simulator

© 2011 ANSYS, Inc.8

capacitance solved using circuit simulator

Page 9: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Resonance Type Coupling

1. Self Capacitance 

2 External Capacitance2. External Capacitance

HFSS

Use HFSS’ full wave capability when the resonance occurs by self capacitance

© 2011 ANSYS, Inc.9

Reference:Wireless Power Transfer via Strongly Coupled Magnetic ResonacesA.Kurs, A.Kralis, R.Moffatt,B.J.Jonnapoulos, P.Fisher, Vo;.317, pp.83‐86, July 2007

Page 10: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Coupling Simulation Electromagnetic and Circuit

R1 R2Cs+WM1

+WM2

R1 R2Cs+WM1

+WM2

(1/87) ohm(1/348) ohm

L1

0.19267mH

L2

0.048166mH

M1

0.5668

1.93uF

Cp

5.24uF

Rload

10ohm

W W

E1AMPL=200VFREQ=10kHz

(1/87-0.004) ohm (1/348-0.001) ohm1.87uF

Cp

5.23uF

Rload

10ohm

W W

E1AMPL=200VFREQ=10kHz

Current_1st_1:src

Current_1st_2:src

Current_2nd_1:src

Current_2nd_2:src

Current_1st_1:snk

Current_1st_2:snk

Current_2nd_1:snk

Current_2nd_2:snk

0 00 0

_ _

© 2011 ANSYS, Inc.10

Page 11: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Calculation of Coil Resistance

11.5mohm 2.87mohm

Coil• Litz:0.25φ × 384parallel• σ:5.8×107[S/m]

SlR

Sl

σ:5.8 10 [S/m]• Primary:20 turns• Secondary:10 turns x 2parallel

100mm

Primary Coil   R1:(2*100*pi*10^‐3)/(58000000*(0.25/2)^2*pi*10^‐6)*(1/384)*20 = 1/87 ohm = 11.5mohm

Coil slot center

© 2011 ANSYS, Inc.11

Secondary Coil   R2:(2*100*pi*10^‐3)/(58000000*(0.25/2)^2*pi*10^‐6)*(1/384)*10/2 = 1/348 ohm = 2.87mohm

Page 12: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Capacitance Calculation

Cs5.24uF

k

Cp1.93uF

L1 L2

k

f010kHz

L1 = 0.19267mHL2 = 0.048166mH

Cp:

k = 0.5668

2

1C 1/((2*10000*pi)^2*0.0048166) = 5.24*10^‐6 F = 5.24uF

Cs:1 /((2*10000*pi)^2*(1‐0.5668^2)*0.0019267) = 1.93*10^‐6 F = 1.93uF 22

220

11

LkC

LC

s

p

© 2011 ANSYS, Inc.12

1 /((2 10000 pi) 2 (1 0.5668 2) 0.0019267)   1.93 10 6 F   1.93uF 10 1 Lk

Page 13: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

System Simulation

R1

(1/87-0.004) ohm

R2

(1/348-0.001) ohm

Cs

1.93uF

Cp

5.24uF

Rload

10ohm

W

+WM1

W

+WM2

D4

D3

D2

D1

IGBT4

IGBT3

IGBT2

IGBT1

C1

1000uF

~

3PHAS

~

~

A * sin (2 * pi * f * t + PHI + phi_u)

PHI = 0°

PHI = -120°

PHI = -240°

THREE_PHASE1D5

D6

D7

D8

D9

D10 Battery- +

D11

D12

D13

D14

C2

1e-006farad

Current_1st_1:src

Current_1st_2:src

Current_2nd_1:src

Current_2nd_2:src

Current_1st_1:snk

Current_1st_2:snk

Current_2nd_1:snk

Current_2nd_2:snk

R1

(1/87-0.004) ohm

R2

(1/348-0.001) ohm

Cs

1.93uF

Cp

5.24uF

Rload

10ohm

W

+WM1

W

+WM2

D4

D3

D2

D1

IGBT4

IGBT3

IGBT2

IGBT1

C1

1000uF

~

3PHAS

~

~

A * sin (2 * pi * f * t + PHI + phi_u)

PHI = 0°

PHI = -120°

PHI = -240°

THREE_PHASE1D5

D6

D7

D8

D9

D10 Battery- +

D11

D12

D13

D14

C2

1e-006farad

Current_1st_1:src

Current_1st_2:src

Current_2nd_1:src

Current_2nd_2:src

Current_1st_1:snk

Current_1st_2:snk

Current_2nd_1:snk

Current_2nd_2:snk

Rload

10ohm

Battery- +

D11

D12

D13

D14

C2

1e-006farad

0

0

0

TRANS2TRANS1

STATE_11_2STATE_11_1

ICA: FML_INIT1

Modulation_Index:=0Carrier Freq:=10k

Battery

LBATT_A1

20.00

40.00 Curve Info rmsWM1.I

TR 9.4139

WM2.ITR 10.5939

0

0

0

TRANS2TRANS1

STATE_11_2STATE_11_1

ICA: FML_INIT1

Modulation_Index:=0Carrier Freq:=10k

Battery

LBATT_A1

20.00

40.00 Curve Info rmsWM1.I

TR 9.4139

WM2.ITR 10.5939

0

Battery

LBATT_A1

AC200V Rectify InverterWireless Power Transformer Battery

TRANS4

DT4

TRANS3

SINE1.VAL > TRIANG1.VAL

DT1SINE1.VAL < TRIANG1.VAL

STATE_11_4

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT4##Dead_Time

STATE_11_3

SET: TSV4:=0SET: TSV3:=1SET: TSV2:=1SET: TSV1:=0

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT1##Dead_Time

SET: TSV4:=1SET: TSV3:=0SET: TSV2:=0SET: TSV1:=1

TRIANG1

AMPL=1FREQ=Carrier_Freq

SINE1

AMPL=Modulation_IndexFREQ=Frequency

Carrier_Freq:=10kFrequency:=10k

DC_Source:=200Dead_Time:=2u

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00Time [ms]

-40.00

-20.00

0.00

Y1 [A

]

300.00 Curve Info rms

TRANS4

DT4

TRANS3

SINE1.VAL > TRIANG1.VAL

DT1SINE1.VAL < TRIANG1.VAL

STATE_11_4

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT4##Dead_Time

STATE_11_3

SET: TSV4:=0SET: TSV3:=1SET: TSV2:=1SET: TSV1:=0

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT1##Dead_Time

SET: TSV4:=1SET: TSV3:=0SET: TSV2:=0SET: TSV1:=1

TRIANG1

AMPL=1FREQ=Carrier_Freq

SINE1

AMPL=Modulation_IndexFREQ=Frequency

Carrier_Freq:=10kFrequency:=10k

DC_Source:=200Dead_Time:=2u

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00Time [ms]

-40.00

-20.00

0.00

Y1 [A

]

300.00 Curve Info rms

Controller

300 00

-100.00

100.00

Y1 [V

]

WM1.VTR 154.9045

WM2.VTR 120.2425

1.90 1.92 1.94 1.96 1.98 2.00Time [ms]

-40.00

-20.00

0.00

20.00

40.00

Y1 [A

]

-200.00

-100.00

0.00

100.00

200.00

Y2 [V

]

-6.0797-1.2036-0.0090

131.1979

-0.51411.340627.9814

156.0455Curve Info Y Axis rms

WM1.ITR Y1 9.3501

WM2.ITR Y1 10.5176

WM1.VTR Y2 153.6594

WM2.VTR Y2 119.4615

300 00

-100.00

100.00

Y1 [V

]

WM1.VTR 154.9045

WM2.VTR 120.2425

1.90 1.92 1.94 1.96 1.98 2.00Time [ms]

-40.00

-20.00

0.00

20.00

40.00

Y1 [A

]

-200.00

-100.00

0.00

100.00

200.00

Y2 [V

]

-6.0797-1.2036-0.0090

131.1979

-0.51411.340627.9814

156.0455Curve Info Y Axis rms

WM1.ITR Y1 9.3501

WM2.ITR Y1 10.5176

WM1.VTR Y2 153.6594

WM2.VTR Y2 119.4615

© 2011 ANSYS, Inc.13

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00Time [ms]

-300.00[ ]MX1: 1.9753

MX2: 1.97830.0030 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time [ms]

-300.00[ ]MX1: 1.9753

MX2: 1.97830.0030

Page 14: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Distinguishing Features for Coupled Simulation

• Integrated design environment• Integrated design environment

– Easy and intuitive user interface

• Dynamically linked parameters between the Circuit d 3D FEA d land 3D FEA model 

– Geometry / Material / Gap etc…

Efficient workflow design enablesSimulation Driven Product DevelopmentTM

© 2011 ANSYS, Inc.14

p

Page 15: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Application

• ANSYS Products for Wireless Power Supply

100%Inductive type(~15W) Inductive type(~50kW)

cy Resonance type

MaxwellSimplorer

50%

Efficienc Resonance type

HFSS

0%

Microwave typeNEXXIM

© 2011 ANSYS, Inc.15

1mm        1cm         10cm         1m          10m         100m

Transfer DistanceRef: EE Times Japan 2009.10

Page 16: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Wireless Power Supply System for EV

• Inductive type

100%Inductive type(~15W) Inductive type(~50kW)

ncy Resonance type

MaxwellSimplorer

50%

Efficien yp

BatteryR ifi /Ch

0%AC

Power CableSecondary CoilSecondary Coil

Rectifier/Charger

© 2011 ANSYS, Inc.16

1mm        1cm         10cm         1m          10m         100m

Transfer DistanceRef: EE Times Japan 2009.10

InverterCapacitor

Primary CoilPrimary Coil

Page 17: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Geometry

© 2011 ANSYS, Inc.17

Page 18: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Schematic

20kW @ 400V/20kHz

CoreSecondary Coil

© 2011 ANSYS, Inc.18

CoilShield Plate Primary Coil

Page 19: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

MaterialsCore

• Material : FDK 6H40 (Bs=0.53T, μi=2400)

Coil• Litz wire : 0.25φ × 384 parallel turns• Conductivity : 5.8×107[S/m]• Primary : 10 turns• Secondary : 5 turns

Secondary

90mm330mm

400mm

Primary

© 2011 ANSYS, Inc.19 500mm410mm

90mm

Page 20: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Solution Flow Chart

• Maxwell + SimplorerGap

MaxwellMagnetostatic

GapSliding

Magnetostatic

Maxwell

Core, Winding

MaxwellEddy Current Simplorer

AC / TRImpedance Model AC / TRp

Circuit / Drive / Controller designWaveform Efficiency Power

MaxwellEddy Current

© 2011 ANSYS, Inc.20

Waveform, Efficiency, Power factor, Response

Eddy CurrentField, Loss

Page 21: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Maxwell / Magnetostatic

• L, M, k : – Self Inductance

M l I d– Mutual Inductance

– Coupling Coefficient

L1   MM L2

M

L1

L2

k=0 54

M    L2

© 2011 ANSYS, Inc.21

k=0.54

Page 22: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Maxwell / Magnetostatic

Inductance L, MCoupling factor kFi ld

Core Shape/MaterialNumber of turnsCurrent Amp Field

Core saturation

Current Amp.Gap

C li f t k lidi1 003D_Static_sliding_kCoupling - k ANSOFT

1 003D_Static_sliding_kCoupling - k ANSOFT

Coupling factor k – sliding gap

0.80

1.00

Cur

rent

_2)

Curve InfoMatrix1.CplCoef(Current_1,Current_2)

Setup1 : LastAdaptiveGap='50mm'

Matrix1.CplCoef(Current_1,Current_2)Setup1 : LastAdaptiveGap='100mm'

Matrix1 CplCoef(Current 1 Current 2)

0.80

1.00

Cur

rent

_2)

Curve InfoMatrix1.CplCoef(Current_1,Current_2)

Setup1 : LastAdaptiveGap='50mm'

Matrix1.CplCoef(Current_1,Current_2)Setup1 : LastAdaptiveGap='100mm'

Matrix1 CplCoef(Current 1 Current 2)

Mag B 0.40

0.60

trix1

.Cpl

Coe

f(Cur

rent

_1,C Matrix1.CplCoef(Current_1,Current_2)

Setup1 : LastAdaptiveGap='150mm'

Matrix1.CplCoef(Current_1,Current_2)Setup1 : LastAdaptiveGap='200mm'

0.40

0.60

trix1

.Cpl

Coe

f(Cur

rent

_1,C Matrix1.CplCoef(Current_1,Current_2)

Setup1 : LastAdaptiveGap='150mm'

Matrix1.CplCoef(Current_1,Current_2)Setup1 : LastAdaptiveGap='200mm'

© 2011 ANSYS, Inc.22 0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00Sliding [mm]

0.00

0.20

Mat

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00Sliding [mm]

0.00

0.20

Mat

Page 23: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Maxwell / Magnetostatic

Verification for core saturation:21LLkM

X: Gap [mm] / Y: Input Current [A] / Z: Mutual inductance [nH]

1.002D_Static_BHMutual Inductance L12 ANSOFT

Matrix1.L(C [nH]

2.8500e+004

3.4200e+004

10002D_StaticMutual Inductance L12 ANSOFT

Matrix1.L(C [nH]

2.8500e+004

3.4200e+004

0.01

0.10

Gap

[met

er]

0.0000e+000

5.7000e+003

1.1400e+004

1.7100e+004

2.2800e+004

10

100

Gap

[mm

]

0.0000e+000

5.7000e+003

1.1400e+004

1.7100e+004

2.2800e+004

Specification Area Specification Area

0.00 20.00 40.00 60.00 80.00 100.00Current [A]

0.00 0.00 20.00 40.00 60.00 80.00 100.00

Current [A]

1

Saturation

© 2011 ANSYS, Inc.23

Linear Material(Initial permeability)

Nonlinear Material(BH curve)

Page 24: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

0 40

0.50

0.60

Maxwell / Magnetostatic

0.20

0.30

0.40

B (t

esla

)

• Verification for core saturation

– Core’s BH curve, Mag_B field plotNonlinear BH curve

0.00 100.00 200.00 300.00 400.00H (A_per_meter)

0.00

0.10

, g_ p

– No magnetic saturation

1 002D_Static_BHMutual Inductance L12 ANSOFT

0.10

1.00

er]

Matrix1.L(C [nH]

1 1400e+004

1.7100e+004

2.2800e+004

2.8500e+004

3.4200e+004

Specification Area

~0.4T 0.01

Gap

[met

e

0.0000e+000

5.7000e+003

1.1400e+004

0.00 20.00 40.00 60.00 80.00 100.00Current [A]

0.00

© 2011 ANSYS, Inc.24

Maximum point : 0.26T

Page 25: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Maxwell / Eddy Current

• State Space Modeling for Simplorerd d ( ) d l f l– Frequency domain impedance(R,L) model for circuit simulation

• AC Field and Loss (after circuit simulation)AC Field and Loss (after circuit simulation)

© 2011 ANSYS, Inc.25

Page 26: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Maxwell / Eddy Current Solver

Core Shape/MaterialAC CharacteristicsInductance L, M

Number of turnsFrequencyGapShield Shape/Material

Coupling factor kFieldCore HysteresisShieldShield Shape/Material Shield

Core(Power Ferrite)

© 2011 ANSYS, Inc.26

Shield Plate (Aluminum)No Shielding Shielding

Page 27: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Simplorer with Maxwell State Space Model

AC / Frequency domain TR / Time domain

© 2011 ANSYS, Inc.27

Page 28: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Efficiency Map

• Output/Input Power

• Tuned capacitance for each conditions

cosVIP Max.96%

90%[%]100

cos

out

PPVIP

50%

inPiency[%]

20%Effici

Gap Sliding

© 2011 ANSYS, Inc.28

Sliding [mm]Gap [mm]

Page 29: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Maxwell – Simplorer System Simulation

R1

7.2mOhm

R2

3.6mOhm

Cs

1.72uF

Cp

4.96uF

Rload

13ohm

W

+WM1

W

+WM2

D4

D3

D2

D1

IGBT4

IGBT3

IGBT2

IGBT1

C1

1000uF

~

3PHAS

~

~

A * sin (2 * pi * f * t + PHI + phi_u)

PHI = 0°

PHI = -120°

PHI = -240°

THREE_PHASE1D5

D6

D7

D8

D9

D10 B tt- +

D11

D12

D13

D14

C2

1uF

Current_1:srcCurrent_2:src

Current_1:snkCurrent_2:snk

R1

7.2mOhm

R2

3.6mOhm

Cs

1.72uF

Cp

4.96uF

Rload

13ohm

W

+WM1

W

+WM2

D4

D3

D2

D1

IGBT4

IGBT3

IGBT2

IGBT1

C1

1000uF

~

3PHAS

~

~

A * sin (2 * pi * f * t + PHI + phi_u)

PHI = 0°

PHI = -120°

PHI = -240°

THREE_PHASE1D5

D6

D7

D8

D9

D10 B tt- +

D11

D12

D13

D14

C2

1uF

Current_1:srcCurrent_2:src

Current_1:snkCurrent_2:snk

0

0

0

TRANS2TRANS1

STATE_11_2STATE_11_1

ICA: FML_INIT1

D6 D8 D10 Battery

LBATT_A1

200.00

700.00

V]

Curve Info rmsWM1.V

TR 281.0066

WM2.VTR 321.9453

PWRProbe

PWR_Probe1

0

0

0

TRANS2TRANS1

STATE_11_2STATE_11_1

ICA: FML_INIT1

D6 D8 D10 Battery

LBATT_A1

200.00

700.00

V]

Curve Info rmsWM1.V

TR 281.0066

WM2.VTR 321.9453

PWRProbe

PWR_Probe1

AC400V Rectify InverterWireless Power Transformer Battery

TRANS4

DT4

TRANS3

SINE1.VAL > TRIANG1.VAL

DT1SINE1.VAL < TRIANG1.VAL

STATE_11_4

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0

STATE_11_3

SET: TSV4:=0SET: TSV3:=1SET: TSV2:=1

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT1##Dead_Time

SET: TSV4:=1SET: TSV3:=0SET: TSV2:=0SET: TSV1:=1

TRIANG1

AMPL=1

SINE1

AMPL=Modulation_IndexFREQ=Frequency

Modulation_Index:=0Carrier_Freq:=20kFrequency:=20k

DC_Source:=400Dead_Time:=2u

2.00 2.20 2.40 2.60 2.80 3.00Time [ms]

-800.00

-300.00

Y1 [

V

PWRProbe

PWR_Probe2

TRANS4

DT4

TRANS3

SINE1.VAL > TRIANG1.VAL

DT1SINE1.VAL < TRIANG1.VAL

STATE_11_4

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0

STATE_11_3

SET: TSV4:=0SET: TSV3:=1SET: TSV2:=1

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT1##Dead_Time

SET: TSV4:=1SET: TSV3:=0SET: TSV2:=0SET: TSV1:=1

TRIANG1

AMPL=1

SINE1

AMPL=Modulation_IndexFREQ=Frequency

Modulation_Index:=0Carrier_Freq:=20kFrequency:=20k

DC_Source:=400Dead_Time:=2u

2.00 2.20 2.40 2.60 2.80 3.00Time [ms]

-800.00

-300.00

Y1 [

V

PWRProbe

PWR_Probe2

Controller

SET: TSV2:=0SET: TSV1:=0DEL: DT4##Dead_Time

SET: TSV2:=1SET: TSV1:=0

FREQ=Carrier_Freq

-50.00

0.00

50.00

100.00

150.00

Y1 [

A]

Curve Info rmsWM1.I

TR 41.6165

WM2.ITR 34.8648

125 00

0.00

125.00

250.00

Y1 [A

]

-500 00

0.00

500.00

873.02

Y2 [V

]

-408.7847-315.0105-64.8250

-40.2840-377.1247-319.5653 -53.6971

-0.0037

Curve Info Y Axis rmsWM1.I

TR Y1 38.9542

WM2.ITR Y1 34.1140

WM1.VTR Y2 276.0822

WM2.VTR Y2 316.6292

SET: TSV2:=0SET: TSV1:=0DEL: DT4##Dead_Time

SET: TSV2:=1SET: TSV1:=0

FREQ=Carrier_Freq

-50.00

0.00

50.00

100.00

150.00

Y1 [A

]

Curve Info rmsWM1.I

TR 41.6165

WM2.ITR 34.8648

125 00

0.00

125.00

250.00

Y1 [A

]

-500 00

0.00

500.00

873.02

Y2 [V

]

-408.7847-315.0105-64.8250

-40.2840-377.1247-319.5653 -53.6971

-0.0037

Curve Info Y Axis rmsWM1.I

TR Y1 38.9542

WM2.ITR Y1 34.1140

WM1.VTR Y2 276.0822

WM2.VTR Y2 316.6292

© 2011 ANSYS, Inc.29

2.00 2.20 2.40 2.60 2.80 3.00Time [ms]

-150.00

-100.00

2.900 2.925 2.950 2.975 3.000Time [ms]

-250.00

-125.00

-1000.00

500.00

MX1: 2.9200MX2: 2.9811

0.0610 2.00 2.20 2.40 2.60 2.80 3.00Time [ms]

-150.00

-100.00

2.900 2.925 2.950 2.975 3.000Time [ms]

-250.00

-125.00

-1000.00

500.00

MX1: 2.9200MX2: 2.9811

0.0610

Page 30: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Simplorer:  Design by Circuit Level Simulation

Circuit Driver

AC/TR ResponseWaveformEfficiency

Controller

© 2011 ANSYS, Inc.30

Page 31: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Back to Maxwell: Core Hysteresis Loss Using the Current Amplitude and Phase from Simplorerp p

Considering Magnetic Loss tangent

j tan1 j

Primary

Freq [kHz]Core1st_LossSetup1 : LastAdaptivePhase='0deg'

Core2nd_LossSetup1 : LastAdaptivePhase='0deg'

1 20.000000 0.909102 0.313144

3D_EddyCore Loss ANSOFT

C l [ ]

y

Secondary

© 2011 ANSYS, Inc.31

Hysteresis Loss Core loss[W]

Page 32: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Back to Maxwell: Shield Surface Loss Using the Current Amplitude and Phase from Simplorer

Key Point:Impedance boundary BCp y

Shield1st_Loss Shield2nd_Loss

3D_EddyShield Loss ANSOFT

Shield1st_Loss Shield2nd_Loss

3D_EddyShield Loss ANSOFT

Freq [kHz] Setup1 : LastAdaptivePhase='0deg'

Setup1 : LastAdaptivePhase='0deg'

1 20.000000 22.938675 37.886583

Freq [kHz] Setup1 : LastAdaptivePhase='0deg'

Setup1 : LastAdaptivePhase='0deg'

1 20.000000 22.938675 37.886583

Shield Loss[W]

© 2011 ANSYS, Inc.32

Surface Loss

Primary Secondary

Page 33: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Back to Maxwell: Field Solution Using the Current Amplitude and Phase from Simplorer

1.00

10.002D_EddyXY Plot 1 ANSOFT

Curve InfoMag_B

Setup1 : LastAdaptiveFreq='20kHz' Phase='0deg'

1.00

10.002D_EddyXY Plot 1 ANSOFT

Curve InfoMag_B

Setup1 : LastAdaptiveFreq='20kHz' Phase='0deg'

0.01

0.10

Mag

_B [m

Tesl

a]

q g

0.01

0.10

Mag

_B [m

Tesl

a]

q g

0.00 0.20 0.40 0.60 0.80 1.00Distance [meter]

0.00

0.00

0.00 0.20 0.40 0.60 0.80 1.00Distance [meter]

0.00

0.00

Magnetic Field Density

Distance

Magnetic Field Density

Distance

© 2011 ANSYS, Inc.33

Magnetic Field Intensity

Page 34: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Back to Maxwell     and Link to HFSS

• Maxwell → HFSS Dynamic Link– Magnetic source solved by Maxwell and Link to HFSS field solution

– Far Field and Large Area electromagnetic solution

– HFSS can handle a car body object as 2D sheet objecty j j

Maxwell

© 2011 ANSYS, Inc.34

HFSS

Page 35: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Back to Maxwell and Link to HFSS

• Maxwell → HFSS Dynamic Link– Magnetic source solved by Maxwell and Link to HFSS field solution

– Far Field and Large Area electromagnetic solution

– HFSS can handle a car body object as 2D sheet objecty j j

Maxwell

© 2011 ANSYS, Inc.35

HFSS

Page 36: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Conclusion

• Wireless power transfer for HEV/EV’s can easily be simulated with ANSYS’ electromagnetic and circuit simulation tools.

• The full solutions requires a system level approach. 

ANSYS’ P d t l t lti h i i l ti i bi d

D3D1 IGBT3IGBT1THREE PHASE1 D3D1 IGBT3IGBT1THREE PHASE1

• ANSYS’ Products can also support multiphysics simulation, i.e. combined Thermal / Structure / Fluid

0

0

0

R1

(1/87-0.004) ohm

R2

(1/348-0.001) ohm

Cs

1.93uF

Cp

5.24uF

Rload

10ohm

W

+WM1

W

+WM2

D4

D3

D2

D1

IGBT4

IGBT3

IGBT2

IGBT1

C1

1000uF

TRANS2TRANS1

STATE_11_2STATE_11_1

FML INIT1

~

3PHAS

~

~

A * sin (2 * pi * f * t + PHI + phi_u)

PHI = 0°

PHI = -120°

PHI = -240°

THREE_PHASE1D5

D6

D7

D8

D9

D10 Battery- +

LBATT_A1

D11

D12

D13

D14

C2

1e-006farad

20 00

40.00 Curve Info rmsWM1.I

TR 9.4139

WM2.ITR 10.5939

Current_1st_1:src

Current_1st_2:src

Current_2nd_1:src

Current_2nd_2:src

Current_1st_1:snk

Current_1st_2:snk

Current_2nd_1:snk

Current_2nd_2:snk

0

0

0

R1

(1/87-0.004) ohm

R2

(1/348-0.001) ohm

Cs

1.93uF

Cp

5.24uF

Rload

10ohm

W

+WM1

W

+WM2

D4

D3

D2

D1

IGBT4

IGBT3

IGBT2

IGBT1

C1

1000uF

TRANS2TRANS1

STATE_11_2STATE_11_1

FML INIT1

~

3PHAS

~

~

A * sin (2 * pi * f * t + PHI + phi_u)

PHI = 0°

PHI = -120°

PHI = -240°

THREE_PHASE1D5

D6

D7

D8

D9

D10 Battery- +

LBATT_A1

D11

D12

D13

D14

C2

1e-006farad

20 00

40.00 Curve Info rmsWM1.I

TR 9.4139

WM2.ITR 10.5939

Current_1st_1:src

Current_1st_2:src

Current_2nd_1:src

Current_2nd_2:src

Current_1st_1:snk

Current_1st_2:snk

Current_2nd_1:snk

Current_2nd_2:snk

0

Rload

10ohm

Battery- +

LBATT_A1

D11

D12

D13

D14

C2

1e-006farad

TRANS4

DT4

TRANS3

SINE1.VAL > TRIANG1.VAL

DT1SINE1.VAL < TRIANG1.VAL

STATE_11_4

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT4##Dead_Time

STATE_11_3

SET: TSV4:=0SET: TSV3:=1SET: TSV2:=1SET: TSV1:=0

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT1##Dead_Time

SET: TSV4:=1SET: TSV3:=0SET: TSV2:=0SET: TSV1:=1

TRIANG1

AMPL=1FREQ=Carrier_Freq

SINE1

AMPL=Modulation_IndexFREQ=Frequency

ICA: FML_INIT1

Modulation_Index:=0Carrier_Freq:=10kFrequency:=10k

DC_Source:=200Dead_Time:=2u

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00Time [ms]

-40.00

-20.00

0.00

20.00

Y1 [A

]

100.00

300.00

V]

Curve Info rmsWM1.V

TR 154.9045

WM2.VTR 120.2425

20.00

40.00

A]

100.00

200.00

V]

131.1979

1 340627.9814

156.0455Curve Info Y Axis rms

WM1.ITR Y1 9.3501

WM2.ITR Y1 10.5176

WM1.VTR Y2 153.6594

WM2.VTR Y2 119 4615

TRANS4

DT4

TRANS3

SINE1.VAL > TRIANG1.VAL

DT1SINE1.VAL < TRIANG1.VAL

STATE_11_4

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT4##Dead_Time

STATE_11_3

SET: TSV4:=0SET: TSV3:=1SET: TSV2:=1SET: TSV1:=0

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT1##Dead_Time

SET: TSV4:=1SET: TSV3:=0SET: TSV2:=0SET: TSV1:=1

TRIANG1

AMPL=1FREQ=Carrier_Freq

SINE1

AMPL=Modulation_IndexFREQ=Frequency

ICA: FML_INIT1

Modulation_Index:=0Carrier_Freq:=10kFrequency:=10k

DC_Source:=200Dead_Time:=2u

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00Time [ms]

-40.00

-20.00

0.00

20.00

Y1 [A

]

100.00

300.00

V]

Curve Info rmsWM1.V

TR 154.9045

WM2.VTR 120.2425

20.00

40.00

A]

100.00

200.00

V]

131.1979

1 340627.9814

156.0455Curve Info Y Axis rms

WM1.ITR Y1 9.3501

WM2.ITR Y1 10.5176

WM1.VTR Y2 153.6594

WM2.VTR Y2 119 4615

© 2011 ANSYS, Inc.36

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00Time [ms]

-300.00

-100.00

Y1 [

1.90 1.92 1.94 1.96 1.98 2.00Time [ms]

-40.00

-20.00

0.00

Y1 [A

-200.00

-100.00

0.00

Y2 [V

MX1: 1.9753MX2: 1.9783

-6.0797-1.2036-0.0090 -0.51411.3406

0.0030

TR Y2 119.4615

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00Time [ms]

-300.00

-100.00

Y1 [

1.90 1.92 1.94 1.96 1.98 2.00Time [ms]

-40.00

-20.00

0.00

Y1 [A

-200.00

-100.00

0.00

Y2 [V

MX1: 1.9753MX2: 1.9783

-6.0797-1.2036-0.0090 -0.51411.3406

0.0030

TR Y2 119.4615

Page 37: 2011 REGIONAL CONFERENCES ANSYSJapan KK K.K. Takahiro … · Coupling Simulation Electromagnetic and Circuit = + Cs R1 R2 WM1 + WM2 +Cs R1 R2 WM1 WM2 (1/87) ohm (1/348) ohm L1 0.19267mH

Thank you!

Maxwell 14 0Maxwell 14.0HFSS 13.0Simplorer 9.0Designer/NEXXIM 6.0

© 2011 ANSYS, Inc.37