20100205043742!530_343lecture05

6
ME 530.343: Design and Analysis of Dynamic Systems Spring 2009 Lecture 5 – Mass-Spring Systems and Equivalent Mechanical Systems Wednesday, February 11, 2009 1 T oda y’ s Object iv es Purpose of today’s lecture: Degrees of freedom Identify equivalent systems: m eq ¨ x + b eq ˙ x + k eq x = f eq Springs and dampers in series and in parallel Reading: Palm Chapter 4.1, 4.2, 4.4, 4.5 (ignore Laplace transform examples for now) 2 Degrees of F reedom To begin modeling any dynamic system, you rst know how many degrees of freedom there are in the system. This will tell you: How many equations of motion you will nding The size of the matrix equation describing the system (if you need to put it in that form, as we will in the last half of this course) How many and which system variables you will select The number of degrees of freedom is the number of parameters that can be independently varied in a system. Test for simple mass-spring-damper systems: Can you hold one mass in a mechanical system at a constant position, but still move another mass in the system? m m k For complex or continuous systems (e.g., buildings), the concept of (nite) degrees of freedom is not as well dened. You typical ly want to create a model that has enough degr ees of freedom to appro- priately characterize the system’s behavior, but not so many that the computational requirements are too high. 1

Transcript of 20100205043742!530_343lecture05

Page 1: 20100205043742!530_343lecture05

8/7/2019 20100205043742!530_343lecture05

http://slidepdf.com/reader/full/20100205043742530343lecture05 1/6

ME 530.343: Design and Analysis of Dynamic SystemsSpring 2009

Lecture 5 – Mass-Spring Systems andEquivalent Mechanical Systems

Wednesday, February 11, 2009

1 Today’s Objectives

Purpose of today’s lecture:

• Degrees of freedom

• Identify equivalent systems: meqx + beqx + keqx = f eq

• Springs and dampers in series and in parallel

Reading: Palm Chapter 4.1, 4.2, 4.4, 4.5 (ignore Laplace transform examples for now)

2 Degrees of Freedom

To begin modeling any dynamic system, you first know how many degrees of freedom  there are inthe system. This will tell you:

• How many equations of motion you will finding

• The size of the matrix equation describing the system (if you need to put it in that form, as wewill in the last half of this course)

• How many and which system variables you will select

The number of degrees of freedom is the number of parameters that can be independently

varied in a system.

Test for simple mass-spring-damper systems: Can you hold one mass in a mechanical system at aconstant position, but still move another mass in the system?

mm

For complex or continuous systems (e.g., buildings), the concept of (finite) degrees of freedom is notas well defined. You typically want to create a model that has enough degrees of freedom to appro-priately characterize the system’s behavior, but not so many that the computational requirementsare too high.

1

Page 2: 20100205043742!530_343lecture05

8/7/2019 20100205043742!530_343lecture05

http://slidepdf.com/reader/full/20100205043742530343lecture05 2/6

3 Equivalent System Example

     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x     x

k m

1

m

 b

y

x

r J

q

1 1

1

2

2

2

m

m

f  f 

f k1

 b2

1

1

1

2

2

2

k2

r J

q

1 1

First question: How many degrees of freedom? 1Next question: In which variable(s) do we want to write the EOM? y

From last time, in terms of x:m1 + m2

r2r1

2+

J 1

r21

x + b

r2r1

2x + (k1 + k2)

r2r1

2x = 0

equivalent mass: meq = m1 + m2r22

r21

+ J 1r21

equivalent damping: beq = br22

r21

equivalent stiffness: keq = (k1 + k2)r22

r21

The equation of motion of a second order, one-degree-of-freedom system should always be of theform: meqx + beqx + keqx = f eq

Putting this in terms of y, we havem2 + m1

r1r2

2+

J 1

r22

y + by + (k1 + k2)y = 0 Left as an excercise to prove this!

So, for in terms of y, get a equivalent mass: meq = m2 + m1(r1

r2 )2

+J 1

r22equivalent damping: beq = b

equivalent stiffness: keq = k1 + k2

Note that this is quite different!

2

Page 3: 20100205043742!530_343lecture05

8/7/2019 20100205043742!530_343lecture05

http://slidepdf.com/reader/full/20100205043742530343lecture05 3/6

4 Elements in Parallel and in Series

What is meant by “parallel” and “series”?

Springs:

m

ym

m

y

x

k 1

k1

k1

k2

k2

1

2

2

mf 

x

y

k2

Parallel: my = −f k1 − f k2my = −k1y − k2y

my + (k1 + k2)y = 0=⇒ keq = k1 + k2

Series: 0 = −f k1 + f k2f k1 = k1y

f k2 = k2(x− y)mx = −f k2mx = −k2(x− y)f k1 = f k2 = k1y = k2(x− y)

(k1 + k2)y = k2xy = k2x

k1+k2

mx + k2(−y + x) = 0

mx + k2(− k2xk1+k2

+ k1+k2k1+k2

x) = 0

mx + k1k2k1+k2

x = 0

keq = k1k2k1+k2

1keq

= 1k1

+ 1k2

+ ...

Questions: in parallel or in series?

m

xxxxxxxxxxxxxx

xxxxxxxxxxxxxx

 b b

 b1

22

 b1

      x      x     x     x     x     x     x     x     x     x     x

     x     x     x     x     x     x     x     x     x     x     x     x     x    x    x    x   x   x   x   x   x  x

  x  x  x x x

 xxxx x x x  x  x  x  x  x   

x   x   x   x    x    x    x    x     x      x x  x  x  x  x

   x   x   x

   x    x

    x    x    x    x     x     x     x      x      x

     x     x     x     x     x     x     x     x     x     x     x    x    x   x   x  x

  x x xxx x  x  x  x   

x   x    x    x      x  x  x

   x   x

    x    x     x     x

3

Page 4: 20100205043742!530_343lecture05

8/7/2019 20100205043742!530_343lecture05

http://slidepdf.com/reader/full/20100205043742530343lecture05 4/6

mixed systems:

m

y

q k  k 2 2

11

J

q

k  k 

Laws for dampers → same thing!series: 1

beq= 1

b1+ 1

b2+ ...

parallel: beq = b1 + b2 + ...

4.1 Why are these simplifications useful?

Translational example

m

k 1 2

3

4

5

6

7

eq

k k 

m

x

Want to write: meqx + keqx = 0. Exercise: compute meq and keq.

Rotational example:

m

J

q

J1

1

2

2

3

3

4

4

JJ

xxx

xxx

xxxxxx

 b b b

 b

x

meqx + beqx = 0 or J eqθ + beq θ = 0

Exercise: compute J eq and beq.

4

Page 5: 20100205043742!530_343lecture05

8/7/2019 20100205043742!530_343lecture05

http://slidepdf.com/reader/full/20100205043742530343lecture05 5/6

4.2 Example: Modeling the human fingertip

m

y

k k 

k 1 1

2 2

eq eq

3

 b

 b

 bk 

m

y

1beq

= 1b1

+ 1b2→ beq = b1b2

b1+b2keq2,3 = k2 + k31

keq= 1

k1+ 1

keq2,3→ keq =

k1keq2,3k1+keq2,3

keq = k1(k2+k3)k1+k2+k3

meqx + beqx + keqx = 0

5 Revisit Example From Lecture 4

m

xxxxxxxxxxxxxxxxxxx

 b

1

1

1

2

2

2

3

 b

m

xxxxxxxxxxxxxx k 

 b

First question: How many degrees of freedom? 2

Next question: In which variable(s) do we want to write the EOM? x1 and x2

Note: x2 is defined with respect to movement of first block, x1Recall from last time:

mass 1: m1x1 = f k1 + f b2 − f b1 − f b3= −k1x1 + b2x2 − b1x1 − b3x1

m1x1 + (b1 + b3)      beq

x1 + k1x1 − b2x2 = 0

5

Page 6: 20100205043742!530_343lecture05

8/7/2019 20100205043742!530_343lecture05

http://slidepdf.com/reader/full/20100205043742530343lecture05 6/6