2010_01_12_3DBeam_CDT6

65
A preliminary design tool for composite A preliminary design tool for composite structures : 3D structures : 3D Beam II, v 5.51 Beam II, v 5.51 CDT 6, Jan 15, 2010 Sung K. Ha, Mustafa Ghulam, Lei Xu & Stephen Tsai Stanford Composite Design Team Stanford University 1

Transcript of 2010_01_12_3DBeam_CDT6

Page 1: 2010_01_12_3DBeam_CDT6

A preliminary design tool for composite A preliminary design tool for composite structures : 3D structures : 3D Beam II, v 5.51Beam II, v 5.51

CDT 6, Jan 15, 2010

Sung K. Ha, Mustafa Ghulam, Lei Xu & Stephen Tsai

Stanford Composite Design TeamStanford University

1

y

Page 2: 2010_01_12_3DBeam_CDT6

3D Beam II

MS Excel based User-friendly finite element analysis program

for beam or frame type structures

Structure with large slenderness ratio Structure with large slenderness ratio (long compared to cross-section)

Three dimensional grid, frame structures Tapered / Untapered beam structure Arbitrary ply drop off

A bit l d (3 f / 3 t ) t l ti Arbitrary loads (3 forces / 3 moments) at any location Multiply connected frames Modal analysis Modal analysis

An accurate, yet easy-to-use tool !!

2

Page 3: 2010_01_12_3DBeam_CDT6

Beam modeling of 3D structures

Beam analysis3D geometry- Fast

Si l- Slow

Complicated[A]n,[B]n,[D]n

- Simple- Complicated

[A]k,[B]k,[D]k

[A]2,[B]2,[D]2

[A]1,[B]1,[D]1

3

Page 4: 2010_01_12_3DBeam_CDT6

FEM formulation for a composite beam

1 1 3 2 2 3( , , )u x y z d x x

1) Displacement 3 3,d

At each node (6 dof)

2 2 3 1( , , )u x y z d x

3 3 2 1( , , )u x y z d x d

2 2,d Laminates

11 1 1

13

22

3 u d x x 22 2 2 0 u 33 3 3 0 u

2) strain-displacement

'n3 n1' ''

n3' n2''

1 1,d

11 1 11

31

21x x x, 22 2 2, 33 3 3,

12 1 2 2 1 3

2

13

1

1

12

12

( ), ,u u d

xx

x

n1n2=n2'

n3'

n1

n2'n1'=n1''

n3'' n2

13 1 3 3 1 2

3

12

1

1

12

12

( ), ,u u d

xx

x

23 2 3 3 2 1 112

12

0 ( ), ,u u

1 1 1 1

2 1 2 2 1 2 2

3 1 2 2 1 2 3

0d C S Dd S S C C S Dd S C S C C D

2 2

1 11 1 3 2 2 3

5 13 5 2 122

x xx

4

6 12 6 3 12 x

Page 5: 2010_01_12_3DBeam_CDT6

FEM formulation for a composite beam

1

5

11 15 16

15 55 56

1

5

1

5

Local

C C CC C C C

3) Constitutive equation (stress-strain) 4) F.E. formulation

d d dT

1

MD'

5

6

15 55 56

16 56 66

5

6

5

6

local local local

Local

localC C C

1 11 16 15 2 15 3 16 3 11 2 11

1

6

C C C x C x C x C x C

d d d

1 5 6 5

6

MD

d N d N iih

a ai ih

aa ai

a

, , ,

1

2

1

2

1 2 3( )

5

6

15 56 55 2 55 3 56 3 15 2 15

16 66 56 2 56 3 66 3 16 2 16

5

1

2

3

C C C x C x C x C x CC C C x C x C x C x C

D'

k B DB B DBe T Txdx jd

e

( ) ( ) 12

11 16 15 11 12 131 1

66 56 21 22 232 6

A G G B B BFG G B B BF

G B B BF

Resultants Loads vs strains

k B DB B DBx

dx jde

( ) ( )

1155 31 32 333 5

11 12 131 1

22 232 2

333 3

.

G B B BFD D DM

sym D DMDM

2

1

1

1( )

e

e

xe

xN dx N jd

f f f

2 1( )

exe N dx N jd m m mM

e e e e ed d m +k f MD+KD F

1 1( )

exN dx N jd

m m m

F

3F

3M

2F 2M

11 2 3. .,e g A dx dx 11= CLaminates

5

d dm +k f MD+KD F1F

1M

Page 6: 2010_01_12_3DBeam_CDT6

FEM formulation for a composite beam

3 3,d 3Q

3M

2 2,d

Laminates

1N2Q 2M

1 1,d 1

1M1x

5) strain-displacement

6) Constitutive equation (macro strain macro stress) MMF •Failure

SMM+

F b F i( )1 2 6

7) Failure criterion : Quadratic Tsai-Wu criterion

(macro strain macro stress) MMF •Fatigue Life

a F b F iij i j i i , ( , , )1 2 6

aR bR2 1 0 R

0 : safe0 : fail

kR

1 0 : fail0 : safe

Strength ratio

6

0 : fail

Page 7: 2010_01_12_3DBeam_CDT6

Coordinate Transformation for 3D Post-processingn

Plies

X3x3

t

(If = 0°, the reference X2-axis is parallel to the global X-Y plane.)

Z

L#n1

n2n

Bricksx2

Laminates n

bxs

TxI

J

J

X2

X1

X3

X3X1

t s nX2

b

,G Ix

I J

X1 Y

I

I

X2

X3X2

X2

X3

X1

t s n(1,0,0)s

h t

,g Ix Global coordinates (X-Y-Z)

X

J

S

,2B T bx x t xZ

, ,G I T g I x Tx x Reference coordinates (X1-X2-X3)

Local coordinates (x1-x2-x3)YX

, ,G g

T: a transformation matrix from (s, n,t) to (S,X2,X3)

local node#

1 46 7

85

n

tlocal node#

7

3D Beam v5.4x; worksheet : PostProcess-I 32 s

Page 8: 2010_01_12_3DBeam_CDT6

Coordinate systems and Layup direction

ZY

Structure

X₂X₃

Element

Ply

Fiber direction

X X₁ , ply angle

X1

, p y g

Cross Section

X

Plies

Bricks

X3

x2

x3

LaminatesLayup Sequence

Global coordinates (X-Y-Z)

X2

n2nt n3

y p qDirection, t

( )

Reference coordinates (X1-X2-X3)

L#n1

8

Local coordinates (x1-x2-x3)

Page 9: 2010_01_12_3DBeam_CDT6

Program Flow : 3D Beam II

Main Analysis ModulesInput Output

Step 1 : Section & Material• Cross Section

• Material property

• Displacement & Rotation

• Global Strains & Curvatures

Step 2 : Global Geometry

Material property

• Nodes (Global coordinates)

• Global Loadings & Moments

• In-Plane Strains

Step 3 : Loads

•Elements (node connectivity)

• Boundary conditions

• In-Plane Loads

• Strength Ratios

• Mode shape & NaturalStep 3 : Loadsy

• Global ForcesMode shape & Natural

Frequency

Step 4 : Solve

Graphical Post Processor:3D contour Plot tool

9

3D contour Plot tool,HUSAP

Page 10: 2010_01_12_3DBeam_CDT6

Version updated3D BEAM “M i ” h

Version 5.xx

3D BEAM “Main” sheet

Import and export input files(*.3db)

Modal analysis

Version 5.xx

Modal analysis (up to 10 mode)

10

Page 11: 2010_01_12_3DBeam_CDT6

Step 1 : Specification of Plies, Laminates and Sections3D BEAM “S i DB” h

[A]n,[B]n,[D]n3D BEAM “Section DB” sheet

(4)

[A] [B] [D]

[ ]n,[ ]n,[ ]n

[A]k,[B]k,[D]k

[A]2,[B]2,[D]2

pliesbricks

X3x3

Laminates

[A]1,[B]1,[D]1

bricks

X2

x2

(2 (3)

brick nodesMaterial DB sheet

• SI unit

Laminate nodes

)

(1)p8

Ply group number(2)

L2 L3

p1

p

(4)

(2)

•English unit

L1

L2

(3) (x2,x3)

11

Page 12: 2010_01_12_3DBeam_CDT6

Laminates in a rectangular thin-wall cross section

2

x3[03/45/-45/902]s

(2 , 1)(-2 , 1)

x3

a1a2 a1a2

Direction of ply sequencea1a2

n

t

1

x22" 3 x2

x1 t

2

4"

4

(-2 , -1) (2 , -1)

x1

Laminate #1

x1

Laminate #1

Laminate #2 a1a2

Laminate #3

Laminate #4

12

Base Line Option :0

Page 13: 2010_01_12_3DBeam_CDT6

Step 2 : Global Geometry (nodes and elements)3D BEAM “Gl b l h ”3D BEAM “Global geometry sheet”

[A]n,[B]n,[D]n

[A]k,[B]k,[D]k

[A]2,[B]2,[D]2

13

[A]1,[B]1,[D]1

Page 14: 2010_01_12_3DBeam_CDT6

Varying Sections

Z

21 3 4 Element #

X

1 2 32 Group #Section (group) #

[A]2[B]2[D]2

1 2 43 521 3 4

[A]1[B]1[D]1 [A]3[B]3[D]3

N d #

1 2 32

element #Section (group) #

1 2 43 5 Node #

14

Page 15: 2010_01_12_3DBeam_CDT6

Step 3 : Loads3D BEAM “L d h ”

Displacements & Rotations

3D BEAM “Loads sheet”

Displacements & Rotations

U3

Y

Z

X U

U2

X U1

Forces & Moments

[A]n,[B]n,[D]n

Forces & Moments

Z

F3

M3

M2

[A]k,[B]k,[D]k

[A]2,[B]2,[D]2

Y

X F1 M1

F2

15

[A]1,[B]1,[D]1 Global coordinates (X-Y-Z)

Page 16: 2010_01_12_3DBeam_CDT6

Step 4 : Results3D BEAM “R l h ”

Displacements & Rotations

Displacement chart Global resultant stress

3D BEAM “Results sheet”

Displacements & Rotations

U3

Y

Z

X U

U2

X U1

Forces & Moments

In plane load Strength ratio

Forces & Moments

Z

F3

M3

M2

Y

X F1 M1

F2

16

Global coordinates (X-Y-Z)

Page 17: 2010_01_12_3DBeam_CDT6

Step 4 : Results

Deflection along the X‐axis0.02

Cross‐sectionY 1kN

‐0.005

0

0.005

0 0.1 0.2 0.3 0.4 0.5 0.6

U₁

0.005

0.01

0.015

z_b

0.03m

0.5m

X

0 025

‐0.02

‐0.015

‐0.01U₁

U₂

U₃

‐0.015

‐0.01

‐0.005

0

‐0.02 ‐0.015 ‐0.01 ‐0.005 0 0.005 0.01 0.015 0.02

zT

zB

Cross-section:20 segments (laminates)

‐0.03

‐0.025

‐0.02

At each section, in-plan loads, strains and strength ratios

20 segments (laminates)

0 2

0.4

0.6

0.8

In Plane stress at Element # 1

N1

N2

N6 0.002

0.004

0.006

In Plane strain at Element # 1

e1

e2

e60.40.60.81

1.21

23

4

517

18

1920

Failure Index (1/R)

‐0.6

‐0.4

‐0.2

0

0.2

0 5 10 15 20 25

‐0.004

‐0.002

0

0 5 10 15 20 25

e6

00.2

6

7

8

913

14

15

16

‐0.8Laminate #

‐0.006

Laminate #

910

1112

13

Laminat #

Page 18: 2010_01_12_3DBeam_CDT6

Step 5 : 3D contour plotHUSAPHUSAP

18

Page 19: 2010_01_12_3DBeam_CDT6

Verification of 3D Beam – Comparison with analytic solution

Z 100 NCross-Section

X3 (x3)

7 cm.

X X2 (x2)

11 m

Comparison of three point bending results

0.0150.02

0.025with [010/9010]s

-0.0050

0.0050.01

0 0.2 0.4 0.6 0.8 1x) &

w'(x

)

0 025-0.02

-0.015-0.01

0 0.2 0.4 0.6 0.8 1

w(x

3D BEAM:w(x)

Analytic:w(x)

3D BEAM:w'(x)

A l ti '( )

19

-0.025X [m]

Analytic:w'(x)

Page 20: 2010_01_12_3DBeam_CDT6

Verification of 3D Beam –Case 2: Hollow Composite Beam with Circular Cross-section

Deformation under simple loadingVertical100 N Torsion

100 N · m

L 1 m

D = 0.1 m

[0/±45/90]S

L = 1 m

1

1.2

aqus

res

ult

Deflection

0 4

0.6

0.8

norm

aliz

ed b

y A

ba

3D Beam IIAbaqus

0

0.2

0.4

Def

orm

atio

n n

20

0Deflection Rotational Angle Rotational Angle

Page 21: 2010_01_12_3DBeam_CDT6

Verification of 3D Beam –Case 2: Hollow Composite Beam with Circular Cross-section

Natural frequencies & mode shapes

L 1

D = 0.1 m Mode 1

L = 1 m

[0/±45/90]S

M d 2

1400

1600

1800

Mode 2

800

1000

1200

1400

l Fre

quen

cy (H

z)

3D Beam IIAbaqus

Mode 3

200

400

600

Nat

ural

Abaqus

21

0Mode 1 Mode 2 Mode 3 Mode 4

Mode 4

Page 22: 2010_01_12_3DBeam_CDT6

Case 5: Hollow Composite Beam with Rectangular Cross-section

1.60E‐04

Load Case 1 : Max. Displacement

Results Results

Load Case 2 : Max. Rotation

0 00 002.00E‐054.00E‐056.00E‐058.00E‐051.00E‐041.20E‐041.40E‐0460 0

Dispalcemen

t (m)

Load Case 1 Load Case 2L = 1 m

1.00E‐042.00E‐043.00E‐044.00E‐045.00E‐046.00E‐047.00E‐048.00E‐04

Rotatio

n (radians)

0.00E+00

Abaqus (Shell Element) Abaqus (Beam Element) 3D Beam  II5.50

H = 0.1m

100 N 100 N · m

H = 0.1m

0.00E+00

Abaqus (Shell Element) Abaqus (Beam Element)

3D Beam  II5.50

W = 0.1m

Laminate Layup : [08/±458/908]SMaterial : AS/H3501

W = 0.1m

AbaqusAbaqus(Beam Element)(Beam Element)

AbaqusAbaqus(Shell Element)(Shell Element)

3D Beam II5.503D Beam II5.50

Load Case 1Load Case 1

Load Case 2Load Case 2

Page 23: 2010_01_12_3DBeam_CDT6

Case 5: Hollow Composite Beam with Rectangular Cross-sectionResults : Natural Frequencies & Mode shapesResults : Natural Frequencies & Mode shapes

AbaqusAbaqus(Shell Element)(Shell Element)

AbaqusAbaqus(Beam Element)(Beam Element)

3D Beam II5.503D Beam II5.50

Laminate Layup : [08/±458/908]S

L = 1 mMode 1Mode 1

130.45 120.32 132.64

1200

1400

1600

1800

z)

Abaqus (Shell Element)

Abaqus (Beam Element)

3DBeam II5 50

Material : AS/H3501

Mode Mode 22705.49 972.93 743

0

200

400

600

800

1000

1200

1stMode 2ndMode 3rdMode 4thMode

Freq

uency (Hz 3D Beam  II5.50

ModeMode 33 792 25 791 77 923 591st Mode  2nd Mode  3rd Mode 4th Mode  Mode Mode 33 792.25 791.77 923.59

Mode Mode 441539.5 1648.8 1481.6

Page 24: 2010_01_12_3DBeam_CDT6

Case 6 :Ellipse Composite Circular Beam

8.00E‐03

Load Case 1 : Max. DisplacementD = 0.1 m

Results Results

2 50E 02

Load Case 2 : Max. Rotation

0 00 001.00E‐032.00E‐033.00E‐034.00E‐035.00E‐036.00E‐037.00E‐038 00 03

Dispalcemen

t (m)

Load Case 1 Load Case 2100 N 100 N · m

L = 1 m

0 00E 00

5.00E‐03

1.00E‐02

1.50E‐02

2.00E‐02

2.50E‐02

Rotatio

n (radians)

0.00E+00

Abaqus (Shell Element) Abaqus (Beam Element) 3D Beam  II5.50

100 N

5 cm

100 N · m

5 cm

0.00E+00

Abaqus (Shell Element) Abaqus (Beam Element)

3D Beam  II5.50

Laminate Layup : [0/±45/90]SMaterial : AS/H3501

10 cm 10 cm

AbaqusAbaqus(Beam Element)(Beam Element)

AbaqusAbaqus(Shell Element)(Shell Element)

3D Beam II5.503D Beam II5.50

Load Case 1Load Case 1

Load Case 2Load Case 2

Page 25: 2010_01_12_3DBeam_CDT6

Case 6 :Ellipse Composite Circular BeamResults : Natural Frequencies & Mode shapesResults : Natural Frequencies & Mode shapes

D = 0.1 m

AbaqusAbaqus(Shell Element)(Shell Element)

AbaqusAbaqus(Beam Element)(Beam Element)

3D Beam II5.503D Beam II5.50

Laminate Layup : [0/±45/90]S

L = 1 m

Mode 1Mode 1

61.46 61.61 61.93

700

Material : AS/H3501

Mode Mode 22103.88 101.95 104.93

200

300

400

500

600

Frequency (H

z)

Abaqus (Shell Element)

Abaqus (Beam Element)

3D Beam II5.50

ModeMode 33 366 15 379 43 371 56

0

100

1st Mode  2nd Mode  3rd Mode 4th Mode 

Mode Mode 33 366.15 379.43 371.56

Mode Mode 44613.01 610.32 620.27

Page 26: 2010_01_12_3DBeam_CDT6

Verification of 3D Beam – Case 1: Composite plate

Deformation under simple loading

10 N Torsion

L = 1 m W = 7 cm

10 N · m

L 1 m

[08/±458/908]S

1

1.2

aqus

res

ult

Deflection

0 4

0.6

0.8

norm

aliz

ed b

y A

ba

3D Beam IIAbaqus

0

0.2

0.4

Def

orm

atio

n n

Rotational

26

0Deflection Rotational Angle

Rotational Angle

Page 27: 2010_01_12_3DBeam_CDT6

Verification of 3D Beam – Case 1: Composite plate

Natural frequencies & mode shapes

Mode 1

L 1 mW = 7 cm

L = 1 m

[08/±458/908]S

Mode 2

140

160

180

Mode 380

100

120

140

l Fre

quen

cy (H

z)

3D Beam IIAbaqus

20

40

60

Nat

ural

Abaqus

27

Mode 40Mode 1 Mode 2 Mode 3 Mode 4

Page 28: 2010_01_12_3DBeam_CDT6

Verification of 3D Beam – Case4: Composite Pi-Joint Deformation under simple loading

100 N

L = 1 m[08/±458/908]S

Torsion100 N · m

W = 7 cm

H = 3.5 cm

Deflection

1

1.2

1.4

aqus

res

ult

0.6

0.8

1

norm

aliz

ed b

y A

ba

3D Beam IIAbaqus

0

0.2

0.4

Def

orm

atio

n n

28

Rotational Angle

0Deflection Rotational Angle

Page 29: 2010_01_12_3DBeam_CDT6

Verification of 3D Beam – Case4: Composite Pi-Joint Natural frequencies & mode shapes

L = 1 m[08/±458/908]S

Mode 1

W = 7 cm

H = 3.5 cm

[08/±458/908]S

Mode 2

200

250

z)

Mode 3100

150

ral F

requ

ency

(Hz

3D Beam IIAbaqus

0

50

Nat

ur

29

Mode 40

Mode 1 Mode 2 Mode 3 Mode 4

Page 30: 2010_01_12_3DBeam_CDT6

Parametric Study-Easy to change the layup angles.

Pli

3D BEAM “Section DB” sheet

Laminates

Plies

Change ply angle for 3 cases

θ

C (1) 30°

•[0/±θ/90]s

Case (1) 30°

Case (2) 45°

Case (3) 60°

30

( )

Page 31: 2010_01_12_3DBeam_CDT6

Results: a clamped beam with circular cross-section

Displacement U3Z

Y

XZ

X

Case (2) : θ = 45° ; Deflection= -0.018 m

Case (1) : θ = 30° ; Deflection= -0.014 m

°Case (3) : θ = 60° ; Deflection= -0.020 m

31

Page 32: 2010_01_12_3DBeam_CDT6

Results: a clamped beam with circular cross-sectionR lt t th tA cantilever beam

under concentrated tip load

In plane loadBOTTOM

Results at the root

Fixed

p

TOPFixed

L3L4

L5L6L7

L8 TOPIn plane strain

BOTTOM

(Global coordinate)ZL1

L2

L8

L9

L10Z

TOP

TOP

BOTTOM

YL10

L11

L12

L20Y

XL12

L13L14

L15 L16 L17L18

L19

BOTTOM

- In plane load & strain are same for- In plane load & strain are same for case(1),(2) and (3).

32

Page 33: 2010_01_12_3DBeam_CDT6

Effect of fiber angles on stress distribution: Circular Beam

At root

L2

L3L4

L5L6L7

L8

FixedTOP

(Global coordinate)

Y

ZL1

L2L9

L10Y

Z

X

YL11

L12 L19

L20

BOTTOM XL13

L14L15 L16 L17

L18 Laminate #BOTTOM

TensionCompression

Small fiber angle reduces strength ratios

θFiber

33

Page 34: 2010_01_12_3DBeam_CDT6

Effect of ply angles on natural frequencies : Circular Beam

Natural frequencies & modal shapes

1st Mode shape1st Mode shape

2nd Mode shape

3rd Mode shape

Case(1): 30°

Case(2): 45°

Case(3): 60°

34

Page 35: 2010_01_12_3DBeam_CDT6

Application : PI joint

PI-Joint : One of most critical joints in aerospace structures

shaped Joint

35

p

Page 36: 2010_01_12_3DBeam_CDT6

Modeling of PI joint using 3D-BEAM

•No. of Laminates: 12

L12

•A section consists of several laminatesL1, L2, L7, L8, L11, L12 [0/45/-45/0]2s

L L L L [0/45/ 45/0]

•No. of Section Groups : 1•No of Nodes: 11L9

L10

L11 L2 ~ L6 , L9, L10 [0/45/-45/0]4s

•No. of Nodes: 11•No. of Elements: 10L1 L2 L3 L4 L5 L6 L7 L8

E10

E1E2

E3

36

Page 37: 2010_01_12_3DBeam_CDT6

Results : PI joint using 3D-BEAM

•No. of Laminates: 12

L1 L2 L7 L8 L11 L12 [0/45/ 45/90]L120.025

Deflection along X‐axis

L1, L2, L7, L8, L11, L12 : [0/45/-45/90]2s

L2 ~ L6 , L9, L10 : [0/45/-45/90]4sL10

L11

L12

0 01

0.015

0.02

U₁

U₂

L1 L2 L3 L4 L5 L6 L7 L8

L9

0

0.005

0.01

0 0 2 0 4 0 6 0 8 1 1 2

U₂

U₃

‐0.0050 0.2 0.4 0.6 0.8 1 1.2

0 50.6

1

212

Failure Index (1/R)Failure Index (1/R)

0.10.20.30.40.5

311

0 4

59

10

Laminate #3D contour plot tool for the 3D BEAM II

37

6

7

8for the 3D BEAM II

Page 38: 2010_01_12_3DBeam_CDT6

Parametric Study: PI-joint

L11

L12

Cross section

(Local coordinate)

Task : Minimize ply thickness for a layup sequence.

Restriction : Strength ratio(1/R) > 1

• No. of Section group : 1

• No. of Laminates: 12

N f N d 21

L9

L10 0.1mX₂

X₃

( )

• Load : 100kN

• Material : T300/N520

100kN

• No. of Nodes : 21

• No. of Elements : 20L1 L2 L3 L4 L5 L6 L7 L8 (: Laminate #)

0.2m

• Laminate sequence : [0/(±θ) /0]ns

Element #20

Node #21

1mY

θ x

Fixed

Angle of ply

N d #2

X

Y Case (1) 30°1/R > 1Case (2) 45°

C (3) 60°

38

Node #1Node #2

Element #1Element #2

Z(Global coordinate)

Case (3) 60°

Page 39: 2010_01_12_3DBeam_CDT6

Application: PI-joint (Stress & strength ratio).

Displacement at the end

L11

L12

Strength ratio

L9

L10

Strength ratio

L1 L2 L3 L4 L5 L6 L7 L8

39

Page 40: 2010_01_12_3DBeam_CDT6

Application: PI-joint ( Mode shape )

Natural frequencies

1st Mode shape

Mode shape

2nd Mode shape

3rd Mode shape

° C (2) θ 45° Case(3) : θ = 60°

40

Case(1) : θ = 30° Case(2) : θ = 45° Case(3) : θ = 60

Page 41: 2010_01_12_3DBeam_CDT6

Twisted PI joint

Twisted

How to twist sections (3D BEAM “Section DB” sheet) θ = 0° θ = 45°

PliesX₃

X₃

x₃ x₂45°

Laminates

X₂X₂

x₂ x₃

41

Page 42: 2010_01_12_3DBeam_CDT6

Application : Wing in aircraft Regional jet

Modeling in 3D BEAM

42

Page 43: 2010_01_12_3DBeam_CDT6

Problem statement : Wing in aircraft Task : Apply different fiber angle to reduce strength ratio and adjust natural frequency.

L4L5L6L7L8L9• No. of Section group : 19

• No. of Laminates: 20L1L2

L3L4L9L10L11

L12

L13

L25L26

L27

L28L29

L30

• No. of Nodes : 20

• No. of Elements : 19

• Airfoil : NACA 64A204Fixed

N d #14.4mZ

L13L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24

• Airfoil : NACA 64A204

• Wing load : Fz (5kN : distributed )

• Material : T300/N520

Node #1…

Element #1Node #2

Y

• Laminate sequence [05/(±θ)5/905]

θ Element #20

X

Case (1) 30°

Case (2) 45°

Case (3) 60°

Node #21

1m

43

Case (3) 60

Page 44: 2010_01_12_3DBeam_CDT6

Wing in aircraft : Stress analysis results.

Strength ratio

3L1L2

L3L4L5L6L7L8L9L10L11

L12L25

L26 L28L29

1

23 L12

L13L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24

L27L29

L30

1 2 3

To decrease strength ratio, make the fiber direction smaller.

Page 45: 2010_01_12_3DBeam_CDT6

Wing in aircraft : Modal analysis results

1st Mode shape

Natural frequency (Hz) Mode shape

2nd Mode shape

3rd Mode shape

As increase fiber direction, decrease natural frequency.

Case(1): 30°

Case(2): 45°

Case(3): 60°

45

, q y

Page 46: 2010_01_12_3DBeam_CDT6

Swung PI joint

3D contour plot tool for the 3D BEAM II

Helix twistHalf circle

46

Page 47: 2010_01_12_3DBeam_CDT6

Application : Fuselage with stringers and spars Fuselage with stringers and spar in aircraft structure

M d li i 3D BEAMModeling in 3D BEAM

47

Page 48: 2010_01_12_3DBeam_CDT6

Problem statement : Structure of aircraft Task : Minimize maximum displacement in structure changing fiber direction.

• No. of Section group : 8 • Load : 3.45kN θ

• No. of Laminates: 12

• No. of Nodes : 80

f l

• Material : AS/H3501

• Laminate sequence : [02/(±θ)2/02]s

Case (1) 30°Case (2) 45°Case (3) 60°• No. of Elements : 88 Case (3) 60

2 m

0.5m

L11

L12

2 m

L1 L2 L3 L4 L5 L6 L7 L8L9

L100.05 m

3 45kN

L1 L2 L3 L4 L5 L6 L7 L8

Fixed 0.1 m

48

3.45kN

Page 49: 2010_01_12_3DBeam_CDT6

Structure of aircraft : Problem statement

49

Page 50: 2010_01_12_3DBeam_CDT6

Structure of aircraft : Stress results Maximum displacement comparison Original shape

Case(1) : θ = 30°

Maximum displacement Deformed shapeCase(2) : θ = 45°

UyCase(2) : θ 45

Case(3) : θ = 60°

As smaller degree of fiber direction , less displacement

50

less displacement.

Page 51: 2010_01_12_3DBeam_CDT6

Structure of aircraft : Mode results Natural frequencies Mode shapes

1st Mode shape 2nd Mode shape

3rd Mode shape 4th Mode shape

As increase fiber direction decrease natural frequency

Case(1) : θ = 30° Case(2) : θ = 45° Case(3) : θ = 60°

51

As increase fiber direction, decrease natural frequency.

Page 52: 2010_01_12_3DBeam_CDT6

WindWind Turbine BladesTurbine BladesWind Wind Turbine BladesTurbine Blades

HSC

L Tu

rbin

e

52

Page 53: 2010_01_12_3DBeam_CDT6

Application: 5 kW Wind turbine blades

• Rated Power: 5 kW• Rated wind speed: 10 m/s• Hub height: 10 m

• Blades = 3• Orientation = Upwind• Rotation = Clockwise

D

• Rotor diameters: 2.5 m• Cut in wind speed: 4 m/s• Cut out wind speed: 25 m/s• Annual mean wind speed: 5 m/s

• Speed = Variable• Control = Pitch regulated

Hub height• Annual mean wind speed: 5 m/s• Average Reynolds # : 1.5 x 106

• Vertical Wind Shear: α = 0.2• Weibull Distribution: k = 2

*Reference: Finite element analysis with an improved failure criterionfor composite wind turbine blades, Forsch Ingenieurwes (2008) 72: 193–207

Hub height

Airfoil NACA 4412Rotor Radius = 2.5 m

Hub

Sections = 12Twist = 18o

Material:

Neck

Sh llHub Metal and Composite*Neck Composite*Shell Composite*

18ºFig: Model of a wind turbine blade

Shell

* E-glass LY556 epoxy resin lamina Twistangle 0º

Page 54: 2010_01_12_3DBeam_CDT6

Application: Wind turbine blades

Distributed loads : Fz/length= 350N/ (2.5 m)

2.5mLayup sequence[ 0 / (±45) ][ 0 / (±45) ][ Al(4mm)/0 / (±45) ]

Material : E-glass LY556

Layup sequence[ 0 6/ (±45)2][ 0 8/ (±45)4][ Al(4mm)/0 8/ (±45)4]

Wing sections

0.04

0.06

0.08

Airfoil NACA 4412Twist = 18o

‐0.08

‐0.06

‐0.04

‐0.02

0

0.02

‐0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Page 55: 2010_01_12_3DBeam_CDT6

Application : Wind turbine blade

55

Page 56: 2010_01_12_3DBeam_CDT6

Application : Wind turbine blade

0.01

0.02

0.03

In Plane stress at Element # 1

N1

N2

N6 0.00002

0.00004

0.00006

0.00008

In Plane strain at Element # 1

e1

e2

e6

0.005

0.01

0.0151

23

4

517

18

1920

Failure Index (1/R)Element #1

‐0.03

‐0.02

‐0.01

0

0 5 10 15 20 25

‐0.00008

‐0.00006

‐0.00004

‐0.00002

0

0 5 10 15 20 25

e60 6

7

8

91012

13

14

15

16

Laminate # Laminate # 11Laminat #

0.02

0.03

0.04

In Plane stress at Element # 4

N1

N2

N6 0 0002

0.0004

0.0006

In Plane strain at Element # 4

e1

e2 0.040.060.080.1

12

3

4

517

18

1920

Failure Index (1/R)

(4)

(8)Element #4

‐0.03

‐0.02

‐0.01

0

0.01

0 5 10 15 20 25

N6

0 0006

‐0.0004

‐0.0002

0

0.0002

0 5 10 15 20 25

e60

0.025

6

7

8

913

14

15

16

17

(1)

‐0.04Laminate #

‐0.0006

Laminate #

910

1112

13

Laminat #

0.04

0.06

In Plane stress at Element # 8

N1

N2 0 001

0.0015

In Plane strain at Element # 8

e10 1

0.15

0.21

23

418

1920

Failure Index (1/R)Element #8

0 04

‐0.02

0

0.02

0 5 10 15 20 25

N2

N6

‐0.0005

0

0.0005

0.001

0 5 10 15 20 25

e2

e60

0.05

0.15

6

7

814

15

16

17

56

‐0.06

‐0.04

Laminate #

‐0.001

Laminate #

910

1112

13

Laminat #

Page 57: 2010_01_12_3DBeam_CDT6

Application :3.5kW Wind turbine 3.5kW Wind turbine with blades and tower

Blade

Modeling in 3D BEAM

Tower

57

Page 58: 2010_01_12_3DBeam_CDT6

3.5kW wind turbine blades and tower Task : Analyze 3.5kW wind turbine for gravitational and aerodynamic load

• Rated power : 3.5kW • No. of Nodes : 57 • No. of Section group : 16

• Rated wind speed : 12m/s

• Load : gravitational and aerodynamic

• No. of Elements : 56

• Materials : Tower ( Steel ), Blade ( Steel, E-glass, IM6/epoxy)

• No. of Laminates: 30

8.3m

Wind turbine geometry Blade loads

12m

1m

0.6m

Airfoils : DU45 Gravitational load Aerodynamic load

58

Page 59: 2010_01_12_3DBeam_CDT6

3.5kW wind turbine : stress resultantsMaximum displacement

0.15m

Maximum strength ratioStrength ratio at blade

Strength ratio at root

59

Page 60: 2010_01_12_3DBeam_CDT6

3.5kW wind turbine : mode results

Natural frequencies and mode shapes

2nd Mode shape : 1 28Hz 3rd Mode shape : 2 71Hz1st Mode shape : 1.02 Hz 2nd Mode shape : 1.28Hz 3rd Mode shape : 2.71Hz

60

Page 61: 2010_01_12_3DBeam_CDT6

Effects of stiffeners thickness on wind turbine bladesT300/N5208Stiffener T300/N5208

E glass/LY556 Epoxy

Leading edge

Trailing edge

E-glass/LY556 Epoxy

[0/+45/0] 60 [0/+45/0]40 [0/+45/0]40 [0/+45/0]10

Trailing edge

Upper Spar Cap

Lower Spar Cap

Shear web [0/+45/0] 8 [0/+45/0] 8 [0/+45/0] 8 [0/+45/0] 8

Case (1) : n = 0;Case(2) : n = 10;Case(3) : n = 20.

[0n]Stiffener T300/N5208

61

( )

Page 62: 2010_01_12_3DBeam_CDT6

Blade deflection : Ultimate load

Ultimate load at the tip4,000 N/m

Deflection

: No Stiffener

: Stiffener =[010] T300/N5208

: Stiffener =[020] T300/N5208

62

Page 63: 2010_01_12_3DBeam_CDT6

Strength ratio : Ultimate load

(1) (2) (3)

(1) (2) (3)Strength ratio (Tsai-Wu)

L3L4L5L6L7L8L9L10

Laminate #

L1L2L3L4L9L10

L11L12

L13 L23 L24

L25L26

L27

L28L29

L30

L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24

63

Page 64: 2010_01_12_3DBeam_CDT6

Vibration mode

: No Stiffener

Stiff [0 ] G hit1st mode shape

: Stiffener =[010] Graphite

: Stiffener =[020] Graphite

1st 2nd 3rd 4th

Vibration modesVibration modes

2nd mode shape 3rd mode shape 4th mode shape

64

Page 65: 2010_01_12_3DBeam_CDT6

Summary and Conclusion

• The 3D beam can be used as a preliminary design tool• The 3D-beam can be used as a preliminary design tool.• Accurate, yet easy-to-use Tool for structural analysis of composite structures.• Calculate displacements, strains, stresses, failure index and natural vibration modes.p• It is based on a new composite beam theory, as accurate as 3D shell• Various applications, many structures can be treated as beams.

• A 3D-beam II- basic is available to the audience.• A smooth link from the 3D-beam to the SMM+ is under development• A smooth link from the 3D-beam to the SMM+ is under development.• Reliablity analysis tool will be linked.

Thank you for your attention !!!

65