201 Circulation

download 201 Circulation

of 57

Transcript of 201 Circulation

  • 8/2/2019 201 Circulation

    1/57

    Chapter 14

    Cardiac Output, Blood Flow, and Blood

    Pressure

    14-1

  • 8/2/2019 201 Circulation

    2/57

    Is volume of blood pumped/min by each ventricle

    Stroke volume (SV) = blood pumped/beat by eachventricle

    CO = SV x HR

    Total blood volume is about 5.5L

    Cardiac Output (CO)

    14-4

  • 8/2/2019 201 Circulation

    3/57

    Regulation of Cardiac Rate

    Without neuronal influences, SA node will driveheart at rate of its spontaneous activity

    Normally Symp & Parasymp activity influence HR

    (chronotropic effect) Autonomic innervation of SA node is main

    controller of HR

    Symp & Parasymp nerve fibers modify rate ofspontaneous depolarization

    14-5

  • 8/2/2019 201 Circulation

    4/57

    Regulation of Cardiac Rate continued

    NE & Epi stimulateopening of pacemakerHCN channels This depolarizes SA

    faster, increasing HR

    ACH promotes openingof K+ channels The resultant K+ outflow

    counters Na+ influx,slowing depolarization &decreasing HR

    Fig 14.1

    14-6

  • 8/2/2019 201 Circulation

    5/57

    Cardiac control centerof medulla coordinatesactivity of autonomic innervation

    Sympathetic endings in atria & ventricles can

    stimulate increased strength of contraction

    Regulation of Cardiac Rate continued

    14-7

  • 8/2/2019 201 Circulation

    6/57

    14-8

  • 8/2/2019 201 Circulation

    7/57

    Stroke Volume

    Is determined by 3 variables:

    End diastolic volume (EDV) = volume of blood in

    ventricles at end of diastoleTotal peripheral resistance (TPR) = impedance to blood

    flow in arteries

    Contractility = strength of ventricular contraction

    14-9

  • 8/2/2019 201 Circulation

    8/57

    EDV is workload (preload) on heart prior tocontraction

    SV is directly proportional to preload & contractility

    Strength of contraction varies directly with EDV

    Total peripheral resistance = afterload whichimpedes ejection from ventricle

    Ejection fraction is SV/ EDVNormally is 60%; useful clinical diagnostic tool

    Regulation of Stroke Volume

    14-10

  • 8/2/2019 201 Circulation

    9/57

    Frank-Starling Law of the Heart

    States that strengthof ventricularcontraction variesdirectly with EDV

    Is an intrinsicproperty ofmyocardium

    As EDV increases,myocardium isstretched more,causing greatercontraction & SV

    Fig 14.2

    14-11

  • 8/2/2019 201 Circulation

    10/57

    Frank-Starling Law of the Heart continued

    (a) is state of myocardial sarcomeres just before filling

    Actins overlap, actin-myosin interactions are reduced & contraction would beweak

    In (b, c & d) there is increasing interaction of actin & myosin allowingmore force to be developed

    Fig 14.3

    14-12

  • 8/2/2019 201 Circulation

    11/57

    Extrinsic Control of Contractility

    At any given EDV,contraction depends

    upon level of

    sympathoadrenal

    activity

    NE & Epi produce an

    increase in HR &

    contraction (positive

    inotropic effect)

    Due to increased Ca2+

    in sarcomeres

    Fig 14.414-13

  • 8/2/2019 201 Circulation

    12/57

    Fig 14.5

    14-14

  • 8/2/2019 201 Circulation

    13/57

    Venous Return

    Is return of blood toheart via veins

    Controls EDV & thus

    SV & CO Dependent on:

    Blood volume &venous pressure

    Vasoconstrictioncaused by Symp

    Skeletal muscle pumps

    Pressure drop duringinhalation

    Fig 14.7 14-15

  • 8/2/2019 201 Circulation

    14/57

    Venous Return continued

    Veins hold most ofblood in body (70%)& are thus calledcapacitance vessels

    Have thin walls &stretch easily toaccommodate more

    blood withoutincreased pressure

    (=highercompliance) Have only 0-

    10 mm Hg pressure

    Fig 14.6

    14-16

  • 8/2/2019 201 Circulation

    15/57

    Blood & Body Fluid Volumes

    14-17

  • 8/2/2019 201 Circulation

    16/57

    Blood Volume

    Constitutes small fraction of total body fluid

    2/3 of body H20 is inside cells (intracellular compartment)

    1/3 total body H20 is in extracellular compartment

    80% of this is interstitial fluid; 20% is blood plasma

    Fig 14.8

    14-18

    E h f Fl id b C ill i

  • 8/2/2019 201 Circulation

    17/57

    Exchange of Fluid between Capillaries

    & Tissues

    Distribution of ECF between blood & interstitialcompartments is in state of dynamic equilibrium

    Movement out of capillaries is driven by hydrostatic

    pressure exerted against capillary wallPromotes formation of tissue fluid

    Net filtration pressure= hydrostatic pressure in capillary(17-37 mm Hg) - hydrostatic pressure of ECF (1 mm Hg)

    14-19

    Click here to playFluid Exchange AcrossThe Walls of Capillaries

    RealMedia Movie

    E h f Fl id b C ill i

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    18/57

    Exchange of Fluid between Capillaries

    & Tissues

    Movement also affected by colloid osmotic pressure

    = osmotic pressure exerted by proteins in fluid

    Difference between osmotic pressures in & outside of

    capillaries (oncotic pressure) affects fluid movement Plasma osmotic pressure = 25 mm Hg; interstitial osmotic

    pressure = 0 mm Hg

    14-20

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    19/57

    Overall Fluid Movement

    Is determined by net filtration pressure & forcesopposing it (Starling forces)

    Pc + Pi (fluid out) - Pi + Pp (fluid in)

    Pc = Hydrostatic pressure in capillary

    Pi = Colloid osmotic pressure of interstitial fluid Pi = Hydrostatic pressure in interstitial fluid

    Pp = Colloid osmotic pressure of blood plasma

    14-21

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    20/57

    Fig 14.9

    14-22

    http://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    21/57

    Edema

    Normally filtration, osmotic reuptake, & lymphatic drainage

    maintain proper ECF levels

    Edema is excessive accumulation of ECF resulting from:

    High blood pressure Venous obstruction

    Leakage of plasma proteins into ECF

    Myxedema (excess production of glycoproteins in extracellular

    matrix) from hypothyroidism

    Low plasma protein levels resulting from liver disease

    Obstruction of lymphatic drainage

    14-23

    t

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    22/57

    egu at on o oo o ume yKidney

    Urine formation begins with filtration of plasma in

    glomerulus

    Filtrate passes through & is modified by nephron Volume of urine excreted can be varied by changes

    in reabsorption of filtrate

    Adjusted according to needs of body by action ofhormones

    14-24

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    23/57

    ADH (vasopressin)

    ADH released by Post

    Pit when

    osmoreceptors detect

    high osmolality

    From excess salt intakeor dehydration

    Causes thirst

    Stimulates H20

    reabsorption from urine ADH release inhibited

    by low osmolality

    Fig 14.11

    14-25

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    24/57

    Aldosterone

    Is steroid hormone secreted by adrenal cortex

    Helps maintain blood volume & pressure throughreabsorption & retention of salt & water

    Release stimulated by salt deprivation, low bloodvolume, & pressure

    14-26

    R i A i t i Ald t

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    25/57

    Renin-Angiotension-Aldosterone

    System

    When there is a salt deficit, low blood volume, or

    pressure, angiotensin II is produced

    Angio II causes a number of effects all aimed atincreasing blood pressure:

    Vasoconstriction, aldosterone secretion, thirst

    14-27

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    26/57

    Fig 14.12

    shows when

    & how

    Angio II is

    produced, &its effects

    II

    14-28

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    27/57

    Atrial Natriuretic Peptide (ANP)

    Expanded blood volume is detected by stretch

    receptors in left atrium & causes release of ANP

    Inhibits aldosterone, promoting salt & water excretion to

    lower blood volume

    Promotes vasodilation

    14-29

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    28/57

    Factors Affecting Blood Flow

    14-30

    http://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    29/57

    Vascular Resistance to Blood Flow

    Determines how much blood flows through a tissueor organ

    Vasodilation decreases resistance, increases blood flow

    Vasoconstriction does opposite

    14-31

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    30/57

    14-32

    h i l ibi l d l

    http://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    31/57

    Physical Laws Describing Blood Flow

    Blood flows through vascular system when there is pressure difference(DP) at its two ends Flow rate is directly proportional to difference (DP = P1 - P2)

    Fig 14.13

    14-33

    Ph i l L D ibi Bl d Fl

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    32/57

    Physical Laws Describing Blood Flow

    Flow rate is inversely proportional to resistance Flow = DP/R

    Resistance is directly proportional to length of vessel (L) &viscosity of blood ()

    Inversely proportional to 4th power of radius So diameter of vessel is very important for resistance

    Poiseuille's Law describes factors affecting blood flow

    Blood flow = DPr4

    ()L(8)

    14-34

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    33/57

    Fig 14.14. Relationship

    between blood flow,radius & resistance

    14-35

    E i i R l i f Bl d Fl

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    34/57

    Sympathoadrenal activation causes increased CO &resistance in periphery & viscera

    Blood flow to skeletal muscles is increased

    Because their arterioles dilate in response to Epi & their Sympfibers release ACh which also dilates their arterioles

    Thus blood is shunted away from visceral & skin to muscles

    Extrinsic Regulation of Blood Flow

    14-36

    E t i i R l ti f Bl d Fl

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    35/57

    Parasympathetic effects are vasodilativeHowever, Parasymp only innervates digestive tract,

    genitalia, & salivary glands

    Thus Parasymp is not as important as Symp Angiotenin II & ADH (at high levels) cause general

    vasoconstriction of vascular smooth muscle

    Which increases resistance & BP

    Extrinsic Regulation of Blood Flowcontinued

    14-37

    i l i f l d l

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    36/57

    Paracrine Regulation of Blood Flow

    Endothelium produces several paracrine regulators

    that promote relaxation:

    Nitric oxide (NO),bradykinin,prostacyclin

    NO is involved in setting resting tone of vessels Levels are increased by Parasymp activity

    Vasodilator drugs such as nitroglycerin or Viagra act thru NO

    Endothelin 1 is vasoconstrictor produced by

    endothelium

    14-38

    Intrinsic Regulation of Blood Flow

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    37/57

    Intrinsic Regulation of Blood Flow

    (Autoregulation)

    Maintains fairly constant blood flow despite BP

    variation

    Myogenic control mechanisms occur in some tissues

    because vascular smooth muscle contracts when

    stretched & relaxes when not stretched

    E.g. decreased arterial pressure causes cerebral vessels to

    dilate & vice versa

    14-39

    n r ns c egu a on o oo ow

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    38/57

    Metabolic control mechanism matches blood flow to

    local tissue needs

    Low O2 or pH or high CO2, adenosine, or K+ fromhigh metabolism cause vasodilation which increases

    blood flow (= active hyperemia)

    n r ns c egu a on o oo ow(Autoregulation) continued

    14-40

    A bi R i f h H

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    39/57

    Aerobic Requirements of the Heart

    Heart (& brain) must receive adequate blood supplyat all times

    Heart is most aerobic tissue--each myocardial cell is

    within 10 m of capillaryContains lots of mitochondria & aerobic enzymes

    During systole coronary, vessels are occluded

    Heart gets around this by having lots ofmyoglobin Myoglobin is an 02 storage molecule that releases 02 to heart

    during systole

    14-41

    R l i f C Bl d Fl

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    40/57

    Regulation of Coronary Blood Flow

    Blood flow to heart is affected by Symp activity

    NE causes vasoconstriction; Epi causes vasodilation

    Dilation accompanying exercise is due mostly to

    intrinsic regulation

    14-42

    Ci l t Ch D i E i

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    41/57

    Circulatory Changes During Exercise

    At beginning of exercise, Symp activity causesvasodilation via Epi & local ACh release

    Blood flow is shunted from periphery & visceral to

    active skeletal muscles

    Blood flow to brain stays same

    As exercise continues, intrinsic regulation is major

    vasodilator Symp effects cause SV & CO to increase

    HR & ejection fraction increases vascular resistance

    14-44

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    42/57

    Fig 14.19

    14-45

    http://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    43/57

    Fig 14.20

    14-46

    C b l Ci l ti

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    44/57

    Cerebral Circulation

    Gets about 15% of total resting CO Held constant (750ml/min) over varying conditions

    Because loss of consciousness occurs after few secs of

    interrupted flow Is not normally influenced by sympathetic activity

    14-47

    C b l Ci l ti

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    45/57

    Cerebral Circulation

    Is regulated almost exclusively by intrinsicmechanisms

    When BP increases, cerebral arterioles constrict; when

    BP decreases, arterioles dilate (=myogenic regulation)

    Arterioles dilate & constrict in response to changes in

    C02 levels

    Arterioles are very sensitive to increases in local neural

    activity (=metabolic regulation) Areas of brain with high metabolic activity receive most blood

    14-48

    Cutaneous Blood Flow

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    46/57

    Cutaneous Blood Flow

    Skin serves as a heat

    exchanger forthermoregulation

    Skin blood flow is adjustedto keep deep-body at 37oC

    By arterial dilation orconstriction & activity ofarteriovenous anastomoseswhich control blood flowthrough surface capillaries

    Symp activity closes surfacebeds during cold & fight-or-flight, & opens them in heat &exercise

    Fig 14.22 14-50

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    47/57

    Blood Pressure

    14-51

    Blood Pressure (BP)

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    48/57

    Blood Pressure (BP)

    Arterioles play role in blood distribution & control of BP

    Blood flow to capillaries & BP is controlled by aperture of arterioles Capillary BP is decreased because they are downstream of high

    resistance arterioles

    Fig 14.23

    14-52

    Blood Pressure (BP)

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    49/57

    Blood Pressure (BP)

    Capillary BP is also low because of large total cross-

    sectional area

    Fig 14.24

    14-53

    Blood Pressure (BP)

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    50/57

    Blood Pressure (BP)

    Is controlled mainly by HR, SV, &peripheralresistance

    An increase in any of these can result in increased BP

    Sympathoadrenal activity raises BP via arteriolevasoconstriction & by increased CO

    Kidney plays role in BP by regulating blood volume& thus stroke volume

    14-54

    Baroreceptor Reflex

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swf
  • 8/2/2019 201 Circulation

    51/57

    Baroreceptor Reflex

    Is activated by changes in BPWhich is detected bybaroreceptors (stretch receptors)

    located in aortic arch & carotid sinuses

    Increase in BP causes walls of these regions to stretch,

    increasing frequency of APs Baroreceptors send APs to vasomotor& cardiaccontrol centers

    in medulla

    Is most sensitive to decrease & sudden changes in

    BP

    14-55

    Click here to playBaroreceptor Reflex

    RealMedia Movie

    http://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0061.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swf
  • 8/2/2019 201 Circulation

    52/57

    Fig 14.26 14-56

    http://media/anim0062.swfhttp://media/anim0062.swf
  • 8/2/2019 201 Circulation

    53/57

    Fig 14.27

    14-57

    Atrial Stretch Receptors

    http://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swf
  • 8/2/2019 201 Circulation

    54/57

    Atrial Stretch Receptors

    Are activated by increased venous return & act toreduce BP

    Stimulate reflex tachycardia (slow HR)

    Inhibit ADH release & promote secretion of ANP

    14-58

    Measurement of Blood Pressure

    http://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swf
  • 8/2/2019 201 Circulation

    55/57

    Measurement of Blood Pressure

    Is via auscultation (to examine by listening)

    No sound is heard during laminar flow (normal, quiet,smooth blood flow)

    Korotkoff sounds can be heard when sphygmomanometercuff pressure is greater than diastolic but lower than systolic

    pressure

    Cuff constricts artery creating turbulent flow & noise as blood

    passes constriction during systole & is blocked during diastole 1st Korotkoff sound is heard at pressure that blood is 1st able topass thru cuff; last occurs when can no long hear systole becausecuff pressure = diastolic pressure

    14-59

    Measurement of Blood Pressure i d

    http://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swf
  • 8/2/2019 201 Circulation

    56/57

    Measurement of Blood Pressure continued

    Blood pressure cuff is

    inflated above systolicpressure, occluding artery

    As cuff pressure islowered, blood flows onlywhen systolic pressure is

    above cuff pressure,producing Korotkoffsounds

    Sounds are heard until

    cuff pressure equalsdiastolic pressure, causingsounds to disappear

    Fig 14.29 14-60

    Pulse Pressure

    http://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swf
  • 8/2/2019 201 Circulation

    57/57

    Pulse Pressure

    Pulse pressure = (systolic pressure)(diastolicpressure)

    Mean arterial pressure (MAP) represents average

    arterial pressure during cardiac cycleHas to be approximated because period of diastole is

    longer than period of systole

    MAP = diastolic pressure + 1/3 pulse pressure

    http://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swfhttp://media/anim0062.swf