2007_tbe_en_Pages-403-500

98
403 Status 03/2006 5 Post-installed rebar connections with Injection mortar FIS V 5.1 Types ..................................................................................... 404 5.2 Applications ......................................................................... 405 5.3 Features and advantages ................................................. 406 5.4 Installation ........................................................................... 406 5.5 Design ................................................................................... 408 5.6 Design examples ................................................................ 414 5.7 Test results .......................................................................... 415 5.8 Design tables ...................................................................... 416

description

403-500

Transcript of 2007_tbe_en_Pages-403-500

Page 1: 2007_tbe_en_Pages-403-500

403Status 03/2006

5

Post-installed rebar connections with Injection mortar FIS V

5.1 Types ..................................................................................... 404

5.2 Applications ......................................................................... 405

5.3 Features and advantages ................................................. 406

5.4 Installation ........................................................................... 406

5.5 Design ................................................................................... 408

5.6 Design examples ................................................................ 414

5.7 Test results .......................................................................... 415

5.8 Design tables ...................................................................... 416

Page 2: 2007_tbe_en_Pages-403-500

Post-installed rebar connections with Injection mortar FIS V

404 Status 03/2006

5

5.1 Types

Injection mortar FIS V 360 S and FIS VS 360 S Injection mortar FIS V 950 S and FIS VS 950 S

Static mixer FIS S

Description

The fi scher injection mortar FIS V is a styrene-free hybrid mortar that consists of an organic binder (vinylester) and a mineral binder (cement).The two components are safely mixed toge-ther inside the static mixer FIS S.

Advantages over synthetic mortars

▯ Higher temperature resistance compared to epoxy, polyester and vinylester resins▯ Improved chemical resistance▯ Reduced shrinkage▯ Less sensitive to hole cleaning▯ Resin is alkaline, providing improved corrosion resistance▯ Higher and more consistent loadbearing capacity

Advantages over mineral mortars

▯ Shorter curing time▯ Easy installation due to cartridge form

Post-installed rebar connections with Injection mortar FIS V

Page 3: 2007_tbe_en_Pages-403-500

Post-installed rebar connections with Injection mortar FIS V

405Status 03/2006

5

5.2 Applications

Extension of cantilevered slabs and refurbish-ment of slab edges.

Bent reinforcement can be easily installed using FIS V.

Starter bars for extending concrete walls.

Starter bars for closing openings.

Anchoring of staircase landings.

Connection of a cantilevered slab to the edge of a concrete fl oor using spliced bars.

Starter bars for concrete columns.

Page 4: 2007_tbe_en_Pages-403-500

Post-installed rebar connections with Injection mortar FIS V

406 Status 03/2006

5

5.3 Features and advantages

▯ Time and cost savings compared to tradi-tional break-out and making good of conc-rete elements

▯ Subsequent fl exible planning resulting in easy change of use or easy extension of buildings

▯ Defi ned performance in accordance with assessments and approval documents

▯ Design in accordance with EC2 like cast-in rebars

▯ Resin is alkaline, providing improved corro-sion resistance

5.4 Installation

▯ Drilling processPosition of drill hole should be provided by the design engineer.

For precise drilling parallel to an existing sur-face a drilling aid is available from the fi scher range to ensure deviations ≦ 2 %.

▯ Blowing-out of the drill holeThe drill hole must be blown-out 3 times from the bottom of the hole using the compressed air lance from the fi scher range (oil free com-pressed air ≧ 6 bar).

▯ Brushing of the drill holeThe drill hole must be brushed out 3 times using the stainless steel brush from the fi scher range.

▯ Blowing-out of the drill holeThe drill hole must be blown-out 3 times from the bottom of the hole using the compressed air lance from the fi scher range (oil free com-pressed air ≧ 6 bar).

▯ Injection of the hybrid mortar FIS VFilling the drill hole from the bottom with FIS V.

The fi scher injection aid is attached to the end of the extension nozzle. Back pressure is crea-ted to avoid any air bubbles being present.

▯ Inserting the rebarWith strong pressure and simultanous twisting action the rebar is inserted into the hole.

After curing the rebar may be loaded.

Page 5: 2007_tbe_en_Pages-403-500

Post-installed rebar connections with Injection mortar FIS V

407Status 03/2006

5

For optimum installation fi scher off ers a com-prehensive range of equipment.

▯ System kit...contains all the important equipment for correct installation.

The system kit contains a drilling guide, exten-sions for the steel brush, injection aid, clea-ning lance, steel brushes and further useful equipment. It also contains the installation instructions and a check list for documenta-tion of the installation process.

▯ The drilling guide...is part of the system kit. It is an aid to ensure minimum deviation from the desired position (see fi rst fi gure of the installation instruc-tions).

▯ The brushes...ensure properly cleaned drill hole walls. The use of stainless steel brushes guarantees a perfect removal of the drill dust.

▯ Injection guns...guaranteed no-tiredness injection by off e-ring a hand operated gun for small jobs and a pneumatic gun for professional high volume use.

▯ The injection aid...makes it easy to fi ll the holes without air bubbles. The aid is attached to the end of the extension nozzle. Using this enables the back pressure to be felt easily.

▯ The FIS V extension nozzle...enables the hybrid mortar to be transferred to the bottom of the drill hole.

▯ The scabbler...is used to remove the carbonated concrete surface, in order to expose the aggregates to provide a good keying surface for transmitting shear loads.

Page 6: 2007_tbe_en_Pages-403-500

Post-installed rebar connections with Injection mortar FIS V

408 Status 03/2006

5

Table 5.1: Gelling time

Concrete temperature Setting time [min]

FIS V FIS VS

+ 5 °C 9 -

+ 10 °C 6 18

+ 15 °C 4 12

+ 20 °C 3 9

+ 25 °C 2.5 7

+ 40 °C *) 2 *) 4

*) With temperatures above 30 °C to 40 °C the cartridges have to be cooled down to 15 °C ... 20 °C (water bath or cool box).

Table 5.2: Curing time

Concrete temperature Curing time [min]

FIS V FIS VS

- 5 °C 360 -

0 °C 180 360

+ 5 °C 90 180

+ 10 °C 80 120

+ 15 °C 60 90

+ 20 °C 50 60

+ 25 °C 40 45

+ 30 °C 35 35

+ 40 °C 25 25

Required volume of resin

· (d - d ) · l = k · l V FIS V = 2π

4 02S v v

Where:

VFIS V = mortar volume [ml]

lv = anchorage length [cm]

d0 = drill diameter [mm]

ds = rebar diameter [mm]

Table 5.3: Factor k for calculation of the mortar volume V FIS V

Rebar diameter ds [mm] 8 10 12 14 16 20 25 28 32

Drill diameter d0 [mm] 12 14 16 18 20 25 30 35 40

Factor k for the required volume of resin [ml/cm] 0.63 0.75 0.88 1.01 1.13 1.77 2.16 3.46 4.52

Example:

A rebar with a diameter of ds = 20 mm should be installed with an anchorage length of 850 mm. The required volume of resin is:VFIS V = k · lv = 1.77ml/cm · 85 cm = 150.45 ml

5.5. Design5.5.1 Basics

For the assessment of post-installed rebars under tension two methods are available:

▯ Design in non-reinforced concrete (anchor theory) The loads are transmitted to the concrete using its tensile strength. Possible modes of failure are concrete failure, pull-out of the anchor from the drill hole and steel failure. The design can be done in accordance with the CC-Method (see Annex A).

▯ Design in reinforced concrete The load is transmitted to the existing rein-forcement by compression struts. The design is done similarly to the design of cast-in rebars. The following parts of this design guide deal exclusively with the design in reinforced conc-rete based on EC2.

The equations and the construction guidance are based on the assumption that the trans-mission of loads, e. g. to the supports, follows requirements of the reinforced concrete regu-lations. Possible national regulations have to be observed.

Extensive test series show that the bonding behaviour of post-installed rebars using fi scher FIS V in concrete with a strength class up to C30/37 does not diff er compared with cast-in rebars, provided that the installation of the rebars is done in accordance with the fi scher installation instructions.

Page 7: 2007_tbe_en_Pages-403-500

Post-installed rebar connections with Injection mortar FIS V

409Status 03/2006

5

Generally the design of post-installed rebars and lap splices can be done in accordance with EC2. There are some minor deviations regarding the condition of application, e.g. minimum anchorage length, behaviour under fi re and minimum concrete cover.

Design with higher bond strength than those recommended in the national regulations is not recommended because a signifi cant increase in displacement of the bar has to be expected.

5.5.2 Partial safety factors for actions

The partial safety factors for actions may be taken in accordance with EC2:

Table 5.4: Partial safety factor

Favourable(reducing of loading)

Unfavourable(increasing of loading)

Dead loads γG 1.0 1.35

Variable loads γQ 0 1.5

5.5.3 Steel values of resistance

The value of resistance of a rebar under ten-sion depends on the material properties (yield strength, tensile strength) and on the cross-sectional area of the bar.

· d · NRd,s = 2π4

fγs

yk

s (5.1)

Where:

NRd, s = design value of the tensile resis-tance for steel failure

ds = diameter of the rebar

fyk = yield strength of the rebar

γs = partial safety factor of the material

= 1.15

5.5.4 Bond strength - required ancho-rage length

5.5.4.1 Bond conditions

The bond strength of cast-in rebars depends mainly on the surface profi le of the bar, the dimensions of the structural component and the inclination of the bar during concreting.

Good bond conditions exist (EC2, Section 5.2.2.1):

a) When the rebar has an inclination of 45° to 90°.

Direction of concreting

b) When the rebar has an inclination of 0° to 45° and the thickness of the structural com-ponent in the direction of concreting is not greater than 250 mm.

Table 5.5: Design value NRd,s of the tensile resistance as a function of the nominal yield strength

Diameter of rebar ds [mm] 8 10 12 14 16 20 25 28 32 40

Design value NRd,s of the tensile resistance for steel failure [kN]

400 17.5 27.3 39.3 53.5 69.9 109.3 170.7 214.2 279.7 437.1

420 18.4 28.7 41.3 56.2 73.4 114.7 179.3 224.9 293.7 458.9

fyk [N/mm2] 460 20.1 31.4 45.2 61.6 80.4 125.7 196.3 246.3 321.7 502.7

500 21.9 34.1 49.2 66.9 87.4 136.6 213.4 267.7 349.7 546.4

550 24.0 37.6 54.1 73.6 96.2 150.3 234.8 294.5 384.6 601.0

Page 8: 2007_tbe_en_Pages-403-500

Post-installed rebar connections with Injection mortar FIS V

410 Status 03/2006

5

Direction of concreting

c) When the thickness of the structural com-ponent is greater than 250 mm and the rebar is located in the lower half of the component.

Direction of concreting

d) When the thickness of the structural com-ponent is greater than 600 mm and the rebar is located at least 300 mm from the upper surface of the component

Direction of concreting

Good bond conditions for rebars in thehatched areas.

Poor bond conditions for rebars in theun-hatched areas.

5.5.4.2 Design resistance of the bond strength

The load bearing capacity and the displace-ment behaviour of a post-installed rebar using FIS V is similar to that of a cast-in rebar up to a concrete compressive strength of 30 N/mm2, measured with cylinders.

= 2.25 η

1 · η

2 · f

ctdf bd (5.2)

Where:

η1 = 1.0 for good bonding conditions

= 0.7 for all other conditions

η2 = 1.0 for ds ≤ 32 mm

= (132 - ds)/100 for ds > 32 mm

fctd = (αct ∙ fctk,0.05/γc)

αct = influence of long-term perfor-mance

= 1.0

fctk, 0.05 = lower limit of characteristic ten-sile strength of concrete (5% frac-tile)

γc = safety coeffi cient for the concrete

= 1.5

With post-installed rebars the correct installa-tion (drilling, cleaning, injection, inserting the rebar) has a strong eff ect on the load bearing capacity and the displacement behaviour.

Table 5.6: Design values of the bond strength

Concrete strength class 1) C 12/15 C 16/20 C 20/25 C 25/30 C 30/37

Characteristic compressive strength (measured with cylinders) fck [N/mm2] 12 16 20 25 30

Lower limit of the characteristic concrete tensile strength fctk; 0.05 [N/mm2] 1.1 1.3 1.5 1.8 2.0

Design value of the bond strength (good bond conditions) 2) 3) [N/mm2] 1.6 2.0 2.3 2.7 3.0

1) Information on national parameters can be found in Section 2 „Basic principles of fixing technology“, table 2.22) For ribbed bars with a diameter ds ≤ 32 mm3) For poor bond conditions the values fbd shall be multiplied by 0.7

Page 9: 2007_tbe_en_Pages-403-500

Post-installed rebar connections with Injection mortar FIS V

411Status 03/2006

5

5.5.4.3 Basic value of the required anchorage length

The basic required anchorage length lb,rqd is needed to anchor the force (As · σsd) in a bar assuming constant bond stress. For σsd = fyd the maximum steel capacity can be gained. Thus steel failure is decisive and a further increase in anchorage length does not result in an increase in capacity.

= · l b, rqd

d4

s σf

sd

bd (5.3)

Where:

lb, rqd = basic value of the required ancho-rage length

ds = diameter of the rebar

σsd = design value of the tensile steel strength in the bar at the posi-tion from where the anchorage is measured from

fbd = design value of the bond strength (see Equation (5.2) and Table (5.6))

5.5.4.4 Anchorages5.5.4.4.1 Required anchorage length

The design value of the anchorage length is calculated as follows:

lbd

= α1

⋅ α2

⋅ α3

⋅ α4

⋅ α5

⋅ lb,rqd

≥ lb, min (5.4)

Where:

α1 = infl uence of the bar shape

α2 = infl uence of the concrete cover

c = concrete cover

α3 = infl uence of the transverse rein-forcement (not welded) ≤1

α4 = infl uence of the transverse rein-forcement (welded) ≤1

α5 = infl uence of transverse pressure ≤1

lb, rqd = basic value of anchorage length

lb, min = minimum anchorage length

Where: α2 · α3 · α5 · ≥0.7

Table 5.7: Values of α1, α2, α3, α3, α4 and α5 coeffi cients

Infl uence factor Type of anchorage Reinforcement barin tension in compression

Shape of bars

straight α1 = 1.0 α1 = 1.0other than straight (see pr EN 1992-1-1: 2003

fi gure 8.1 (b), (c) and (d))α1 = 0.7 if cd > 3 ds otherwise α1 = 1.0

(see pr EN 1992-1-1: 2003 fi gure 8.3 for values of cd)

α1 = 1.0

Concrete cover

straight α2 = 1 - 0.15 (cd - ds) / ds≥ 0.7≤ 1.0

α2 = 1.0

other than straight (see pr EN 1992-1-1: 2003 fi gure 8.1 (b), (c) and (d))

α2 = 1 - 0.15 (cd - 3 ds) / ds≥ 0.7≤ 1.0

(see pr EN 1992-1-1: 2003 fi gure 8.3 for values of cd)

α2 = 1.0

Confi nement by transverse reinforcement not welded to main reinforcement

all types α3 = 1 - Kλ≥ 0.7≤ 1.0

α3 = 1.0

Confi nement by welded transverse reinforcement

all types, position and size as specifi ed inpr EN 1992-1-1: 2003 fi gure 8.1 (e)

α4 = 0.7 α4 = 0.7

Confi nement by transverse pressure

all types α5 = 1 - 0.04 p≥ 0.7≤ 1.0

-

Legend see next page

Page 10: 2007_tbe_en_Pages-403-500

Post-installed rebar connections with Injection mortar FIS V

412 Status 03/2006

5

Where:

λ = (ΣAst - ΣAst, min)/AsΣAst = cross-sectional area of the trans-

verse reinforcement along the design anchorage length lbd

ΣAst, min = cross-sectional area of the mini-mum transverse reinforcement

= 0.25 As for beams and 0 for slabs

As = area of a single anchored bar with maximum bar diameter

Κ = values see pr EN 1992-1-1: 2003 in fi gure 8.4

p = transverse pressure [MPa] at ulti-mate limit state along lbd

Minimum anchorage length

- for rebars in tension

lb, min

> max {0.3 lb, rqd

; 10 ds ; 100 mm}

(5.4 a)

- for rebars in compression

lb, min

> max {0.6 lb, rqd

; 10 ds ; 100 mm}

(5.4 b)

Where:

lb, min = minimum anchorage length

lb, rqd = basic value of the required ancho-rage length (Equation (5.3))

ds = diameter of the rebar

5.5.4.4.2 Lap length

The spacing of the spliced rebars shall bes ≤ 4 · ds. For spacings s > 4 · ds the lap length lo shall be increased by s - 4 · ds.

l0 = α

1 ⋅ α

2 ⋅ α

3 ⋅ α

4 ⋅ α

5⋅ α

6 ⋅ l

b,rqd ≥ l

0, min (5.5)

Where:

l0 = required lap length

lb, rqd = basic value of the required ancho-rage length (Equation (5.4))

α1 = infl uence of the bar shape

α2 = infl uence of the concrete cover

α3 = infl uence of the transverse rein-forcement (not welded) ≤1

α5 = infl uence of transverse pressure ≤1

α4 = infl uence of the transverse rein-forcement (welded) ≤1

α6 = infl uence of the proportion of the overlapping bars ot the cross-sec-tion

= 1.5, if all bars are overlapping in cross-section

Minimum lap length

l0, min

> max {0.3 α6 l

b, rqd ; 15 d

s ; 200 mm}

(5.5 a)

Where:

l0, min = minimum lap length

α6 = infl uence of the proportion of the overlapping bars ot the cross-sec-tion

= 1.5, if all bars are overlapping in cross-section

lb,rqd = basic value of the required ancho-rage length (Equation (5.3))

ds = diameter of rebar

Page 11: 2007_tbe_en_Pages-403-500

Post-installed rebar connections with Injection mortar FIS V

413Status 03/2006

5

Table 5.8:

Percentage of lapped bars relative to the total cross-section area

< 25% 33% 50% > 50%

α6 1 1.15 1.4 1.5

Note: Intermediate values may be determined by intepolation.

5.5.5 Concrete cover5.5.5.1 Minimum concrete cover in

accordance with environmental conditions

Table 5.9: Minimum concrete cover according to environmental conditions

Exposure class 1) Minimumconcrete cover

c in mm 2)

1 Dry environment 15

2aHumid environment

without frost 20

2b with frost 25

3 Humid environment with frost and de-icing salts 40

4aSeawater environment

without frost 40

4b with frost 40

5a slightely 25

5b Aggressive chemical environment moderately 30

5c high 40

1) For detailed information see EC2, Tables 4.1 and 4.22) A reduction of 5 mm may be considered for slabs in the exposure classes 2 to 5

5.5.5.2 Minimum concrete cover accor-ding to the type of drilling

With post-installed rebars tolerances may occur depending on the tools used (drilling guide). These tolerances may be considered by increasing the minimum concrete cover. The following table gives values based on various test series.

Table 5.10: Minimum concrete cover according to the type of drilling

Type of drilling without drilling guide with drilling guideHammerdrilling

c = 30 mm + 0.06 · lv ≥ 2 · ds c = 30 mm + 0.02 · lv ≥ 2 · ds

Pneumatichammer drilling

c = 50 mm + 0.08 · lv ≥ 2 · ds c = 50 mm + 0.02 · lv ≥ 2 · ds

5.5.5.3 Load bearing capacity and mini-mum concrete cover in case of fi re

Table 5.23 gives the design values of resis-tance of a rebar in case of fi re as a function

of the position of the post-installed rebar. The table is valid for anchorages perpendicular to the surface of the concrete exposed to fi re. Table 5.24 gives the bond strength as a func-tion of the concrete cover in case of fi re for anchorages parallel to the surface of the conc-rete exposed to fi re.

5.5.6 Transverse reinforcement5.5.6.1 Required transverse reeinforce-

ment for anchorages of rebars (EC 2 section 5.2.3.3)

In beams transverse reinforcement should be provided:

▯ for anchorages of rebars in tension, if there is no transverse compression due to the support reaction (e.g. in case of indirect supports)

▯ for all anchorages of rebars in compres-sion

The minimum cross-sectional area of the transverse reinforcement must be 25 % of the area of one anchored rebar. The reinforcement should be evenly distributed along the ancho-rage length.

For rebars in compression, the transverse rein-forcement should surround the bars, being concentrated at the end of the anchorage and extend beyond it to a distance of at least 4 times the diameter of the anchored rebar.

5.5.6.2 Required transverse reinforce-ment for lap splices of rebars (EC2, Section 5.2.4.1.2)

With rebar diameters ≥16 mm the transverse reinforcement should have a total area of not less than the area As of one spliced bar.

Page 12: 2007_tbe_en_Pages-403-500

Post-installed rebar connections with Injection mortar FIS V

414 Status 03/2006

5

5.5.7 Design rules

General design rules for post-installed rebars

.

post-installed rebars

post-installed rebars

ds

c1= concrete cover of the face of the rebar concreted in

l0

l0

5.6 Design examples

Cantilevered slab

joint surface

additional reinforcement

lk = 1.50 m

lv

h =

16

.0 c

m

Conditions:

Cantilever lk = 1.50 m

Thickness of the slab h = 16.0 cm

Concrete cover c ≥ 2.5 cm

Eff ective depth d = 12.0 cm

Concrete strength class = C 20/25

→ fck = 20.0 N/mm2

Partial safety factor γc = 1.50

Rebar = BSt 500 S→ fyk = 500 N/mm2

Partial safety factor γs = 1.15

Load:

Variable load Q = 3.5 kN/m2

Partial safety factor γQ = 1.50

Dead load G1 = 4.0 kN/m2

Plaster G2 = 2.0 kN/m2

Σ G = 6.0 kN/m2

Partial safety factor γG = 1.35

Actions:

Shear loadVSd = (Q · γQ + ΣG · γG) · lk = (3.5 · 1.5 + 6.0 · 1.35) · 1.50

= 20.03 kN/m

Note: To transmit shear loads the joint shall be roughened. This must be proven seperately.

Bending moment

MSd = 2

(Q · γQ + ΣG · γG ) · lk2

= 2(3.5 · 1.5 + 6.0 · 1.35) · 1.502

= 15.02 kNm/m

Design per meter with non-dimensional fac-

Page 13: 2007_tbe_en_Pages-403-500

Post-installed rebar connections with Injection mortar FIS V

415Status 03/2006

5

tors in accordance with EC 2.

Usual reinforced concrete design procedure gives:

NSd = 131.89 kN/m

Determination of the required anchorage length in accordance with Table 5.15:

Chosen diameter of the rebar

ds = 10 mm; as = 15.0 cm

Interpolated from Table 5.15

lbd = 275 mm > lb, min

cmin = 36 mm

Volume = 176 ml

Table 5.11:

Diameter of rebar ds [mm] 8 10 12 14 16 20 25 28 32

Mean ultimate bond strengthfor lV = 10 · ds

τu, m [N/mm2] C 20/25C 30/37

8.812.4

8.812.4

8.512.1

8.111.5

7.911.3

6.99.7

5.98.3

5.47.6

5.07.1

5%-fractile of the bond stength τu, 5% [N/mm2] C 20/25C 30/37

6.38.9

6.38.9

6.18.7

5.98.3

5.78.1

5.07.2

4.25.9

3.85.4

3.65.1

Design value of the bond strength forgood bond conditions according to EC 2

fbd [N/mm2] C 20/25C 30/37

2.33.0

5.7 Test results

Table 5.11 gives the maximum characteristic tensile capacity in kN of a rebar with the cor-responding anchorage length. The fi gures are based on the 5 %-fractile of the bond strength τu,5% found in tests in concrete C 20/25 (fck = 20 N/mm2) and on the charcteristic tensile strength NRk,s of the rebar.

The values correspond to the maximum capacity (ultimate limit state) of a rebar post-installed with injection mortar FIS V with large edge distance and without consideration of safety factors. It is recommended to design post-installed rebars in accordance with sec-tion 5.5!

Page 14: 2007_tbe_en_Pages-403-500

Post-installed rebar connections with Injection mortar FIS V

416 Status 03/2006

5

Table 5.12:

Necessary anchorage length for characteristic tensile capacity [kN] of one rebar in concrete C 20/25ds fyk based on bond strength τu,5% (Test results) anchorage lengths lV [mm] NRk,s

[mm] [N/mm2] 80 100 120 140 160 200 220 240 250 280 300 320 400 500 600 700 800 900 1000 1100 1200 1250 [kN]

8

400 12,7 15,8 19,0 20,1 → 20,1420 12,7 15,8 19,0 21,1 → 21,1460 12,7 15,8 19,0 22,2 23,1 → 23,1500 12,7 15,8 19,0 22,2 25,1 → 25,1550 12,7 15,8 19,0 22,2 25,3 27,6 → 27,6

10

400 19,8 23,8 27,7 31,4 → 31,4420 19,8 23,8 27,7 31,7 33,0 → 33,0460 19,8 23,8 27,7 31,7 36,1 → 36,1500 19,8 23,8 27,7 31,7 39,3 → 39,3550 19,8 23,8 27,7 31,7 39,6 43,2 → 43,2

12

400 27,6 32,2 36,8 45,2 → 45,2420 27,6 32,2 36,8 46,0 47,5 → 47,5460 27,6 32,2 36,8 46,0 50,6 → 52,0500 27,6 32,2 36,8 46,0 50,6 55,2 56,5 → 56,5550 27,6 32,2 36,8 46,0 50,6 55,2 57,5 62,2 → 62,2

14

400 36,3 41,5 51,9 57,1 61,6 → 61,6420 36,3 41,5 51,9 57,1 62,3 64,7 → 64,7460 36,3 41,5 51,9 57,1 62,3 64,9 70,8 → 70,8500 36,3 41,5 51,9 57,1 62,3 64,9 72,7 77,0 → 77,0550 36,3 41,5 51,9 57,1 62,3 64,9 72,7 77,8 83,0 84,7 → 84,7

16

400 45,8 57,3 63,0 68,8 71,6 80,2 80,4 → 80,4420 45,8 57,3 63,0 68,8 71,6 80,2 84,4 → 84,4460 45,8 57,3 63,0 68,8 71,6 80,2 86,0 91,7 92,5 → 92,5500 45,8 57,3 63,0 68,8 71,6 80,2 86,0 91,7 100,5 → 100,5550 45,8 57,3 63,0 68,8 71,6 80,2 86,0 91,7 110,6 → 110,6

20

400 62,8 69,1 75,4 78,5 88,0 94,2 100,5 125,7 → 125,7420 62,8 69,1 75,4 78,5 88,0 94,2 100,5 125,7 131,9 → 131,9460 62,8 69,1 75,4 78,5 88,0 94,2 100,5 125,7 144,5 → 144,5500 62,8 69,1 75,4 78,5 88,0 94,2 100,5 125,7 157,1 → 157,1550 62,8 69,1 75,4 78,5 88,0 94,2 100,5 125,7 157,1 172,8 → 172,8

25

400 82,5 92,4 99,0 105,6 131,9 164,9 196,3 → 196,3420 82,5 92,4 99,0 105,6 131,9 164,9 197,9 206,2 → 206,2460 82,5 92,4 99,0 105,6 131,9 164,9 197,9 225,8 → 225,8500 82,5 92,4 99,0 105,6 131,9 164,9 197,9 230,9 245,4 → 245,4550 82,5 92,4 99,0 105,6 131,9 164,9 197,9 230,9 263,9 270,0 → 270,0

28

400 93,6 100,3 107,0 133,7 167,1 200,6 234,0 246,3 → 246,3420 93,6 100,3 107,0 133,7 167,1 200,6 234,0 258,6 → 258,6460 93,6 100,3 107,0 133,7 167,1 200,6 234,0 267,4 283,2 → 283,2500 93,6 100,3 107,0 133,7 167,1 200,6 234,0 267,4 300,8 307,9 → 307,9550 93,6 100,3 107,0 133,7 167,1 200,6 234,0 267,4 300,8 334,3 338,7 → 338,7

32

400 115,8 144,8 181,0 217,1 253,3 289,5 321,7 → 321,7420 115,8 144,8 181,0 217,1 253,3 289,5 325,7 337,8 → 337,8460 115,8 144,8 181,0 217,1 253,3 289,5 325,7 361,9 370,0 → 370,0500 115,8 144,8 181,0 217,1 253,3 289,5 325,7 361,9 398,1 402,1 → 402,1550 115,8 144,8 181,0 217,1 253,3 289,5 325,7 361,9 398,1 434,3 442,3 442,3

5.8 Design tablesDesign tables (tables 5.13 to 5.22) can be used as follows:

▯ Required anchorage length lbd ≥ lb, min

The minimum anchorage length lb, min of anchorages in general and of anchorages at an end support (indirect support) can be cal-culated in accordance with equation (5.4a)

for rebars in tension and (5.4b) for rebars in compression.

Example:

ds = 10 mm, design action NSd = 15.0 kN,basic value of the anchorage length lb, rqd = 473 mm, anchorage length lbd = 208 mm (Table 5.13)

Note:The values are based on the maximum characteristic tensile capacity of a rebar and on the 5%-fractile of the bond strength found in concrete C 20/25 (see Table: 5.10).

Page 15: 2007_tbe_en_Pages-403-500

Post-installed rebar connections with Injection mortar FIS V

417Status 03/2006

5

- Rebar in tension lb, min = 0.3 · lb,rqd = 0.3 · 473 mm

= 142 mm < lbd

lb, min = 10 · ds = 10 · 10 mm = 100 mm < lbd

lb, min = 100 mm < lbd

Anchorage length of the rebar lbd = 208 mm.

- Rebar in compression lb, min = 0.6 · lb, rqd = 0.6 · 473 mm

= 284 mm > lbd

lb, min = 10 · ds = 10 · 10 mm = 100 mm < lbd

lb, min = 100 mm < lbd

Anchorage length of the rebar lb, min = 284 mm.

▯ Required lap length l0The lap length l0 of spliced rebars can be cal-culated in accordance with section 5.5.4.4.2.

Example:

ds = 16 mm, design action NSd = 50.0 kN

basic value of the anchorage length lb, rqd = 756 mm, anchorage length lbd = 433 mm (Table 5.13)

- Rebar with 50% lapped bars

l0 = lbd · α6 = 433 mm · 1.4

= 606 mm

≥ l0, min

l0, min = 0.3 · α6 · lb, rqd = 0.3 · 1.4 · 756 = 317 mm

l0, min = 15 · ds = 15 · 16 mm = 240 mm

l0, min = 200 mm

Anchorage length of the rebar l0 = 606 mm.

▯ The transmission of the loads to the sup-ports of the concrete member should be given special consideration.

▯ Expertly done installation in accordance with the manufacturer’s installation instruc-tions with special consideration of exact drilling, proper cleaning of the drill hole and injection of resin without air bubbles.

▯ Yield strength of the steel fyk = 500 N/mm²

▯ Compressive strength of the concrete measured in cylinders fck = 20 N/mm²

Table 5.13 gives the following parameters depending on the diameter and the load of the rebar:

▯ Required anchorage length lbd

▯ Minimum concrete cover cmin (compare section 5.5.5.2, minimum concrete cover according to the type of drilling) for precise drilling parallel to an existing surface (deviati-ons ≤ 2 %)

▯ Required mortar volume

Tables 5.14 to 5.22 give the following para-meters depending on the diameter and the spacing of the rebars and the load per meter

▯ Required anchorage length lbd

▯ Minimum concrete cover cmin (compare section 5.5.5.2, minimum concrete cover according to the type of drilling) for precise drilling parallel to an existing surface (deviati-ons ≤ 2 %)

▯ Required mortar volume per meter

Page 16: 2007_tbe_en_Pages-403-500

Post-installed rebar connections with Injection mortar FIS V

418 Status 03/2006

5

Req

uire

d an

chor

age

len

gth

dep

endi

ng

on t

he

desi

gn v

alue

of

the

acti

onC

oncr

ete

C2

0/2

5: f

ck =

20

N/m

m2,

Stee

l: f y

k =

50

0 N

/mm

2

Tabl

e 5.

13:

Cond

ition

s of a

pplic

atio

n se

e se

ctio

n 5.

8: D

esig

n ta

bles

d sd 0

Inst

alla

tion

Desig

n va

lue

of th

e ac

tion

N Sd [k

N] (f

acto

red

load

)N Rd

,sl b,

rqd

c min

V FIS

Va s

A s

[mm

][m

m]

510

1520

2530

4050

6070

8090

100

120

140

160

180

200

230

260

300

340

[kN]

[mm

][m

m]

[ml]

[mm

][c

m²]

↓↓

↓↓

↓↓

↓↓

l bd

[mm

]87

173

260

346

--

--

--

--

--

--

--

--

--

812

c min

[m

m]

3234

3637

--

--

--

--

--

--

--

--

--

21.9

378

3831

500.

50

V FIS

V[m

l]7

1421

28-

--

--

--

--

--

--

--

--

-

l bd[m

m]

100

139

208

277

346

416

--

--

--

--

--

--

--

--

1014

c min

[m

m]

3233

3536

3739

--

--

--

--

--

--

--

--

34.1

473

4046

500.

79

V FIS

V[m

l]10

1420

2734

40-

--

--

--

--

--

--

--

-

l bd[m

m]

120

120

173

231

289

346

462

--

--

--

--

--

--

--

-

1216

c min

[m

m]

3333

3435

3637

40-

--

--

--

--

--

--

--

49.2

567

4264

601.

13

V FIS

V[m

l]14

1420

2633

3952

--

--

--

--

--

--

--

-

l bd[m

m]

140

140

149

198

248

297

396

495

594

--

--

--

--

--

--

-

1418

c min

[m

m]

3333

3334

3536

3840

42-

--

--

--

--

--

--

66.9

662

4485

701.

54

V FIS

V[m

l]18

1820

2632

3951

6477

--

--

--

--

--

--

-

l bd[m

m]

160

160

160

173

217

260

346

433

519

606

692

--

--

--

--

--

-

1620

c min

[m

m]

3434

3434

3536

3739

4143

44-

--

--

--

--

--

87.4

756

4610

980

2.01

V FIS

V[m

l]24

2424

2532

3850

6375

8810

0-

--

--

--

--

--

l bd[m

m]

200

200

200

200

200

208

277

346

416

485

554

623

692

831

--

--

--

--

2025

c min

[m

m]

4040

4040

4040

4040

4040

4243

4447

--

--

--

--

136.

694

549

213

100

3.14

V FIS

V[m

l]45

4545

4545

4763

7894

110

125

141

156

187

--

--

--

--

l bd[m

m]

250

250

250

250

250

250

250

277

333

388

443

499

554

665

776

886

997

1108

--

--

2530

c min

[m

m]

5050

5050

5050

5050

5050

5050

5050

5050

5053

--

--

213.

411

8154

325

125

4.91

V FIS

V[m

l]69

6969

6969

6969

7792

107

122

138

153

183

214

244

275

305

--

--

l bd[m

m]

280

280

280

280

280

280

280

280

297

346

396

445

495

594

692

791

890

989

1137

1286

--

2835

c min

[m

m]

5656

5656

5656

5656

5656

5656

5656

5656

5656

5656

--

267.

713

2357

584

140

6.16

V FIS

V[m

l]12

412

412

412

412

412

412

412

413

115

317

519

721

926

230

634

939

343

750

256

8-

-

l bd[m

m]

320

320

320

320

320

320

320

320

320

320

346

390

433

519

606

692

779

865

995

1125

1298

1471

3240

c min

[m

m]

6464

6464

6464

6464

6464

6464

6464

6464

6464

6464

6464

349.

715

1264

872

160

8.04

V FIS

V[m

l]18

518

518

518

518

518

518

518

518

518

520

022

525

029

935

039

944

949

957

464

874

884

8

↑↑

↑↑

↑↑

↑↑

↑d s

d 03.

67.

110

.714

.317

.921

.428

.635

.742

.950

.057

.164

.371

.485

.710

0.0

114.

312

8.6

142.

916

4.3

185.

721

4.3

242.

9N Rd

,sl b,

rqd

c min

V FIS

Va s

A s

[mm

][m

m]

Inst

alla

tion

Char

acte

ristic

valu

e of

the

actio

n N Sk

[kN]

(non

-fact

ored

load

)[k

N][m

m]

[mm

][m

l][m

m]

[cm

²]

d s ....

diam

eter

of t

he re

bar,

d0 ..

.. d

rill d

iam

eter

, N Rd

,s ....

des

ign

valu

e of

the

actio

n fo

r ste

el fa

ilure

, l b,

rqd ..

.. b

asic

valu

e of

the

requ

ired

anch

orag

e len

gth,

lbd

....

anc

hora

ge le

ngth

, c m

in ..

.. m

inim

um co

ncre

te co

ver,

VFI

S V ..

.. m

orta

r vol

ume,

a s ....

min

imum

axia

l spa

cing,

As ..

.. c

ross

sec

tiona

l are

a of

the

stee

l

Page 17: 2007_tbe_en_Pages-403-500

Post-installed rebar connections with Injection mortar FIS V

419Status 03/2006

5

Req

uire

d an

chor

age

len

gth

dep

endi

ng

on t

he

desi

gn v

alue

of

the

acti

on p

er m

eter

for

reb

ars

wit

h a

dia

met

er o

f 8

mm

Con

cret

e C

20

/25

, fck

= 2

0 N

/mm

2,

Stee

l: f y

k =

50

0 N

/mm

2

Tabl

e 5.

14:

Cond

ition

s of a

pplic

atio

n se

e se

ctio

n 5.

8: D

esig

n ta

bles

a sNu

mbe

rA s

Inst

alla

tion

Desig

n va

lue

of th

e ac

tion

N Sd [k

N/m

] (fa

ctor

ed lo

ad)

[cm

][n

/m]

[cm

2 /m]

3040

5060

7080

9010

011

012

014

016

018

020

523

025

528

030

533

035

538

040

543

0↓

↓↓

l bd[m

m]

8080

8080

8080

8080

8080

8091

103

117

131

145

160

174

188

202

216

231

245

520

10.0

5c m

in

[mm

]32

3232

3232

3232

3232

3232

3233

3333

3334

3434

3535

3535

V FIS

V[m

l/m]

128

128

128

128

128

128

128

128

128

128

128

146

165

188

210

232

256

279

301

324

346

370

392

l bd[m

m]

8080

8080

8080

8080

8082

9611

012

314

015

717

419

120

922

624

3-

--

616

.78.

38c m

in

[mm

]32

3232

3232

3232

3232

3232

3333

3334

3434

3535

35-

--

V FIS

V[m

l/m]

107

107

107

107

107

107

107

107

107

110

128

147

164

187

210

232

255

279

302

324

--

-

l bd[m

m]

8080

8080

8080

8080

8896

112

128

144

164

184

203

223

243

--

--

-

714

.37.

18c m

in

[mm

]32

3232

3232

3232

3232

3233

3333

3434

3535

35-

--

--

V FIS

V[m

l/m]

9292

9292

9292

9292

101

110

128

147

165

188

211

232

255

278

--

--

-

l bd[m

m]

8080

8080

8080

8291

101

110

128

146

164

187

210

232

--

--

--

-

812

.56.

28c m

in

[mm

]32

3232

3232

3232

3233

3333

3334

3435

35-

--

--

--

V FIS

V[m

l/m]

8080

8080

8080

8291

101

110

128

146

164

187

210

232

--

--

--

-

l bd[m

m]

8080

8080

8082

9310

311

312

314

416

418

521

023

6-

--

--

--

-

911

.15.

59c m

in

[mm

]32

3232

3232

3232

3333

3333

3434

3535

--

--

--

--

V FIS

V[m

l/m]

7272

7272

7273

8392

101

110

128

146

165

187

210

--

--

--

--

l bd[m

m]

8080

8080

8091

103

114

126

137

160

182

205

234

--

--

--

--

-

1010

5.03

c min

[m

m]

3232

3232

3232

3333

3333

3434

3535

--

--

--

--

-

V FIS

V[m

l/m]

6464

6464

6473

8392

101

110

128

146

164

188

--

--

--

--

-

l bd[m

m]

8080

8086

100

114

128

143

157

171

199

228

--

--

--

--

--

-

12.5

84.

02c m

in

[mm

]32

3232

3232

3333

3334

3434

35-

--

--

--

--

--

V FIS

V[m

l/m]

5252

5256

6473

8292

101

110

128

146

--

--

--

--

--

-

l bd[m

m]

8080

8610

312

013

715

417

118

820

523

9-

--

--

--

--

--

-

156.

73.

35c m

in

[mm

]32

3232

3333

3334

3434

3535

--

--

--

--

--

--

V FIS

V[m

l/m]

4343

4655

6474

8392

101

110

128

--

--

--

--

--

--

l bd[m

m]

8091

114

137

160

182

205

228

--

--

--

--

--

--

--

-

205

2.51

c min

[m

m]

3232

3333

3434

3535

--

--

--

--

--

--

--

-

V FIS

V[m

l/m]

3237

4655

6473

8292

--

--

--

--

--

--

--

-

l bd[m

m]

8611

414

317

119

922

8-

--

--

--

--

--

--

--

--

254

2.01

c min

[m

m]

3233

3334

3435

--

--

--

--

--

--

--

--

-

V FIS

V[m

l/m]

2837

4655

6473

--

--

--

--

--

--

--

--

-

↑↑

↑↑

[cm

][n

/m]

[cm

2 /m]

21.4

28.6

35.7

42.9

50.0

57.1

64.3

71.4

78.6

85.7

100.

011

4.3

128.

614

6.4

164.

318

2.1

200.

021

7.9

235.

725

3.6

271.

428

9.3

307.

1

a sNu

mbe

rA s

Inst

alla

tion

Char

acte

ristic

valu

e of

the

actio

n N Sk

[kN/

m] (

non-

fact

ored

load

)

a s ....

axia

l spa

cing,

As ..

.. cr

oss s

ectio

nal a

rea

of th

e st

eel,

l bd ..

.. re

quire

d an

chor

age

lengt

h, c

min

....

min

imum

conc

rete

cove

r, V

FIS

V ....

mor

tar v

olum

e

Page 18: 2007_tbe_en_Pages-403-500

Post-installed rebar connections with Injection mortar FIS V

420 Status 03/2006

5

Req

uire

d an

chor

age

len

gth

dep

endi

ng

on t

he

desi

gn v

alue

of

the

acti

on p

er m

eter

for

reb

ars

wit

h a

dia

met

er o

f 1

0 m

mC

oncr

ete

C2

0/2

5, f

ck =

20

N/m

m2,

Stee

l: f y

k =

50

0 N

/mm

2

Tabl

e 5.

15:

Cond

ition

s of a

pplic

atio

n se

e se

ctio

n 5.

8: D

esig

n ta

bles

a sNu

mbe

rA s

Inst

alla

tion

Desig

n va

lue

of th

e ac

tion

N Sd [k

N/m

] (fa

ctor

ed lo

ad)

[cm

][n

/m]

[cm

2 /m]

3040

5060

7080

9010

012

014

016

018

020

022

525

030

035

040

045

050

055

060

065

0↓

↓↓

l bd[m

m]

100

100

100

100

100

100

100

100

100

100

111

125

139

156

173

208

243

277

312

346

381

416

450

520

15.7

1c m

in

[mm

]32

3232

3232

3232

3232

3233

3333

3434

3535

3637

3738

3939

V FIS

V[m

l/m]

192

192

192

192

192

192

192

192

192

192

214

240

267

300

333

400

467

532

600

665

732

799

864

l bd[m

m]

100

100

100

100

100

100

100

100

100

117

133

150

167

187

208

250

291

333

374

416

457

--

616

.713

.09

c min

[m

m]

3232

3232

3232

3232

3233

3333

3434

3535

3637

3839

40-

-

V FIS

V[m

l/m]

160

160

160

160

160

160

160

160

160

188

213

240

268

300

333

400

466

533

599

666

732

--

l bd[m

m]

100

100

100

100

100

100

100

100

117

136

156

175

194

218

243

291

340

388

436

--

--

714

.311

.22

c min

[m

m]

3232

3232

3232

3232

3333

3434

3435

3536

3738

39-

--

-

V FIS

V[m

l/m]

138

138

138

138

138

138

138

138

161

187

214

240

267

299

334

400

467

533

598

--

--

l bd[m

m]

100

100

100

100

100

100

100

111

133

156

178

200

222

250

277

333

388

443

--

--

-

812

.59.

82c m

in

[mm

]32

3232

3232

3232

3333

3434

3435

3536

3738

39-

--

--

V FIS

V[m

l/m]

120

120

120

120

120

120

120

134

160

188

214

240

267

300

333

400

466

532

--

--

-

l bd[m

m]

100

100

100

100

100

100

113

125

150

175

200

225

250

281

312

374

436

--

--

--

911

.18.

73c m

in

[mm

]32

3232

3232

3233

3333

3434

3535

3637

3839

--

--

--

V FIS

V[m

l/m]

107

107

107

107

107

107

121

134

160

187

214

240

267

300

333

399

466

--

--

--

l bd[m

m]

100

100

100

100

100

111

125

139

167

194

222

250

277

312

346

416

--

--

--

-

1010

7.85

c min

[m

m]

3232

3232

3233

3333

3434

3535

3637

3739

--

--

--

-

V FIS

V[m

l/m]

9696

9696

9610

712

013

416

118

721

424

026

630

033

340

0-

--

--

--

l bd[m

m]

100

100

100

104

122

139

156

173

208

243

277

312

346

390

433

--

--

--

--

12.5

86.

28c m

in

[mm

]32

3232

3333

3334

3435

3536

3737

3839

--

--

--

--

V FIS

V[m

l/m]

7777

7780

9410

712

013

316

018

721

324

026

630

033

3-

--

--

--

-

l bd[m

m]

100

100

104

125

146

167

187

208

250

291

333

374

416

468

--

--

--

--

-

156.

75.

24c m

in

[mm

]32

3233

3333

3434

3535

3637

3839

40-

--

--

--

--

V FIS

V[m

l/m]

6464

6780

9410

712

013

416

018

721

424

026

730

0-

--

--

--

--

l bd[m

m]

100

111

139

167

194

222

250

277

333

388

443

--

--

--

--

--

--

205

3.93

c min

[m

m]

3233

3334

3435

3536

3738

39-

--

--

--

--

--

-

V FIS

V[m

l/m]

4854

6781

9410

712

013

316

018

721

3-

--

--

--

--

--

-

l bd[m

m]

104

139

173

208

243

277

312

346

416

--

--

--

--

--

--

--

254

3.14

c min

[m

m]

3333

3435

3536

3737

39-

--

--

--

--

--

--

-

V FIS

V[m

l/m]

4054

6780

9410

712

013

316

0-

--

--

--

--

--

--

-

↑↑

↑↑

[cm

][n

/m]

[cm

2 /m]

21.4

28.6

35.7

42.9

50.0

57.1

64.3

71.4

85.7

100.

011

4.3

128.

614

2.9

160.

717

8.6

214.

325

0.0

285.

732

1.4

357.

139

2.9

428.

646

4.3

a sNu

mbe

rA s

Inst

alla

tion

Char

acte

ristic

valu

e of

the

actio

n N Sk

[kN/

m] (

non-

fact

ored

load

)

a s ....

axia

l spa

cing,

As ..

.. cr

oss s

ectio

nal a

rea

of th

e st

eel,

l bd ..

.. re

quire

d an

chor

age

lengt

h, c

min

....

min

imum

conc

rete

cove

r, V

FIS

V ....

mor

tar v

olum

e

Page 19: 2007_tbe_en_Pages-403-500

Post-installed rebar connections with Injection mortar FIS V

421Status 03/2006

5

Req

uire

d an

chor

age

len

gth

dep

endi

ng

on t

he

desi

gn v

alue

of

the

acti

on p

er m

eter

for

reb

ars

wit

h a

dia

met

er o

f 1

2 m

mC

oncr

ete

C2

0/2

5, f

ck =

20

N/m

m2,

Stee

l: f y

k =

50

0 N

/mm

2

Tabl

e 5.

16:

Cond

ition

s of a

pplic

atio

n se

e se

ctio

n 5.

8: D

esig

n ta

bles

a sNu

mbe

rA s

Inst

alla

tion

Desig

n va

lue

of th

e ac

tion

N Sd [k

N/m

] (fa

ctor

ed lo

ad)

[cm

][n

/m]

[cm

2 /m]

4050

6070

8010

012

014

016

018

020

025

030

035

040

045

050

055

060

065

070

075

080

0↓

↓↓

l bd[m

m]

120

120

120

120

120

120

120

120

120

125

139

173

208

243

277

312

346

381

416

450

485

519

554

616

.718

.85

c min

[m

m]

3333

3333

3333

3333

3333

3334

3535

3637

3738

3939

4041

42

V FIS

V[m

l/m]

224

224

224

224

224

224

224

224

224

234

260

323

389

454

518

583

646

712

777

840

906

969

1035

l bd[m

m]

120

120

120

120

120

120

120

120

130

146

162

202

243

283

323

364

404

445

485

525

566

--

714

.316

.16

c min

[m

m]

3333

3333

3333

3333

3333

3435

3536

3738

3939

4041

42-

-

V FIS

V[m

l/m]

192

192

192

192

192

192

192

192

208

234

260

324

389

453

517

583

647

712

776

840

906

--

l bd[m

m]

120

120

120

120

120

120

120

130

148

167

185

231

277

323

370

416

462

508

554

--

--

812

.514

.14

c min

[m

m]

3333

3333

3333

3333

3334

3435

3637

3839

4041

42-

--

-

V FIS

V[m

l/m]

168

168

168

168

168

168

168

182

208

234

259

324

388

453

518

583

647

712

776

--

--

l bd[m

m]

120

120

120

120

120

120

125

146

167

187

208

260

312

364

416

468

519

--

--

--

911

.112

.57

c min

[m

m]

3333

3333

3333

3333

3434

3536

3738

3940

41-

--

--

-

V FIS

V[m

l/m]

150

150

150

150

150

150

156

182

208

233

259

324

389

453

518

583

646

--

--

--

l bd[m

m]

120

120

120

120

120

120

139

162

185

208

231

289

346

404

462

519

--

--

--

-

1010

11.3

1c m

in

[mm

]33

3333

3333

3333

3434

3535

3637

3940

41-

--

--

--

V FIS

V[m

l/m]

135

135

135

135

135

135

156

182

208

233

259

324

388

453

518

582

--

--

--

-

l bd[m

m]

120

120

120

120

120

127

153

178

203

229

254

318

381

445

508

--

--

--

--

119.

110

.28

c min

[m

m]

3333

3333

3333

3434

3535

3637

3839

41-

--

--

--

-

V FIS

V[m

l/m]

123

123

123

123

123

130

156

182

207

234

259

324

388

454

518

--

--

--

--

l bd[m

m]

120

120

120

120

120

145

173

202

231

260

289

361

433

505

--

--

--

--

-

12.5

89.

05c m

in

[mm

]33

3333

3333

3334

3535

3636

3839

41-

--

--

--

--

V FIS

V[m

l/m]

108

108

108

108

108

130

156

181

207

233

259

324

388

453

--

--

--

--

-

l bd[m

m]

120

120

120

122

139

173

208

243

277

312

346

433

519

--

--

--

--

--

156.

77.

54c m

in

[mm

]33

3333

3333

3435

3536

3737

3941

--

--

--

--

--

V FIS

V[m

l/m]

9090

9092

104

130

156

182

207

233

259

324

388

--

--

--

--

--

l bd[m

m]

120

120

139

162

185

231

277

323

370

416

462

--

--

--

--

--

--

205

5.65

c min

[m

m]

3333

3334

3435

3637

3839

40-

--

--

--

--

--

-

V FIS

V[m

l/m]

6868

7891

104

130

156

181

208

233

259

--

--

--

--

--

--

l bd[m

m]

120

145

173

202

231

289

346

404

462

519

--

--

--

--

--

--

-

254

4.52

c min

[m

m]

3333

3435

3536

3739

4041

--

--

--

--

--

--

-

V FIS

V[m

l/m]

5465

7891

104

130

156

181

207

233

--

--

--

--

--

--

-

↑↑

↑↑

[cm

][n

/m]

[cm

2 /m]

28.6

35.7

42.9

50.0

57.1

71.4

85.7

100.

011

4.3

128.

614

2.9

178.

621

4.3

250.

028

5.7

321.

435

7.1

392.

942

8.6

464.

350

0.0

535.

757

1.4

a sNu

mbe

rA s

Inst

alla

tion

Char

acte

ristic

valu

e of

the

actio

n N Sk

[kN/

m] (

non-

fact

ored

load

)

a s ....

axia

l spa

cing,

As ..

.. cr

oss s

ectio

nal a

rea

of th

e st

eel,

l bd ..

.. re

quire

d an

chor

age

lengt

h, c

min

....

min

imum

conc

rete

cove

r, V

FIS

V ....

mor

tar v

olum

e

Page 20: 2007_tbe_en_Pages-403-500

Post-installed rebar connections with Injection mortar FIS V

422 Status 03/2006

5

Req

uire

d an

chor

age

len

gth

dep

endi

ng

on t

he

desi

gn v

alue

of

the

acti

on p

er m

eter

for

reb

ars

wit

h a

dia

met

er o

f 1

4 m

mC

oncr

ete

C2

0/2

5, f

ck =

20

N/m

m2,

Stee

l: f y

k =

50

0 N

/mm

2

Tabl

e 5.

17:

Cond

ition

s of a

pplic

atio

n se

e se

ctio

n 5.

8: D

esig

n ta

bles

a sNu

mbe

rA s

Inst

alla

tion

Desig

n va

lue

of th

e ac

tion

N Sd [k

N/m

] (fa

ctor

ed lo

ad)

[cm

][n

/m]

[cm

2 /m]

5060

7080

9010

012

515

017

520

025

030

035

040

045

050

055

060

065

070

075

080

095

0↓

↓↓

l bd[m

m]

140

140

140

140

140

140

140

140

140

140

173

208

243

277

312

346

381

416

450

485

519

554

658

714

.321

.99

c min

[m

m]

3333

3333

3333

3333

3333

3435

3536

3737

3839

3940

4142

44

V FIS

V[m

l/m]

256

256

256

256

256

256

256

256

256

256

317

381

445

507

571

633

697

761

823

887

950

1014

1204

l bd[m

m]

140

140

140

140

140

140

140

140

140

159

198

238

277

317

356

396

435

475

515

554

594

633

-

812

.519

.24

c min

[m

m]

3333

3333

3333

3333

3334

3435

3637

3838

3940

4142

4243

-

V FIS

V[m

l/m]

224

224

224

224

224

224

224

224

224

255

317

381

444

508

570

634

696

760

824

887

951

1013

-

l bd[m

m]

140

140

140

140

140

140

140

140

156

178

223

267

312

356

401

445

490

534

579

623

--

-

911

.117

.10

c min

[m

m]

3333

3333

3333

3333

3434

3536

3738

3939

4041

4243

--

-

V FIS

V[m

l/m]

200

200

200

200

200

200

200

200

222

254

318

380

444

507

571

633

697

760

824

887

--

-

l bd[m

m]

140

140

140

140

140

140

140

149

173

198

248

297

346

396

445

495

544

594

643

--

--

1010

15.3

9c m

in

[mm

]33

3333

3333

3333

3334

3435

3637

3839

4041

4243

--

--

V FIS

V[m

l/m]

180

180

180

180

180

180

180

191

222

254

318

381

443

507

570

634

697

761

824

--

--

l bd[m

m]

140

140

140

140

140

140

140

164

191

218

272

327

381

435

490

544

599

653

--

--

-

119.

113

.99

c min

[m

m]

3333

3333

3333

3334

3435

3637

3839

4041

4244

--

--

-

V FIS

V[m

l/m]

163

163

163

163

163

163

163

191

223

254

317

381

444

507

571

634

698

760

--

--

-

l bd[m

m]

140

140

140

140

140

140

149

178

208

238

297

356

416

475

534

594

653

--

--

--

128.

312

.83

c min

[m

m]

3333

3333

3333

3334

3535

3638

3940

4142

44-

--

--

-

V FIS

V[m

l/m]

150

150

150

150

150

150

159

190

222

254

317

380

444

507

570

634

697

--

--

--

l bd[m

m]

140

140

140

140

140

140

155

186

217

248

309

371

433

495

557

618

--

--

--

-

12.5

812

.32

c min

[m

m]

3333

3333

3333

3434

3535

3738

3940

4243

--

--

--

-

V FIS

V[m

l/m]

144

144

144

144

144

144

159

191

223

254

317

380

444

507

571

633

--

--

--

-

l bd[m

m]

140

140

140

140

140

149

186

223

260

297

371

445

519

594

--

--

--

--

-

156.

710

.26

c min

[m

m]

3333

3333

3333

3435

3636

3839

4142

--

--

--

--

-

V FIS

V[m

l/m]

120

120

120

120

120

128

159

191

222

254

317

380

443

507

--

--

--

--

-

l bd[m

m]

140

140

140

159

178

198

248

297

346

396

495

594

--

--

--

--

--

-

205

7.70

c min

[m

m]

3333

3334

3434

3536

3738

4042

--

--

--

--

--

-

V FIS

V[m

l/m]

9090

9010

211

412

715

919

122

225

431

738

1-

--

--

--

--

--

l bd[m

m]

140

149

173

198

223

248

309

371

433

495

618

--

--

--

--

--

--

254

6.16

c min

[m

m]

3333

3434

3535

3738

3940

43-

--

--

--

--

--

-

V FIS

V[m

l/m]

7277

8910

211

512

715

919

022

225

431

7-

--

--

--

--

--

-

↑↑

↑↑

[cm

][n

/m]

[cm

2 /m]

35.7

42.9

50.0

57.1

64.3

71.4

89.3

107.

112

5.0

142.

917

8.6

214.

325

0.0

285.

732

1.4

357.

139

2.9

428.

646

4.3

500.

053

5.7

571.

467

8.6

a sNu

mbe

rA s

Inst

alla

tion

Char

acte

ristic

valu

e of

the

actio

n N Sk

[kN/

m] (

non-

fact

ored

load

)

a s ....

axia

l spa

cing,

As ..

.. cr

oss s

ectio

nal a

rea

of th

e st

eel,

l bd ..

.. re

quire

d an

chor

age

lengt

h, c

min

....

min

imum

conc

rete

cove

r, V

FIS

V ....

mor

tar v

olum

e

Page 21: 2007_tbe_en_Pages-403-500

Post-installed rebar connections with Injection mortar FIS V

423Status 03/2006

5

Req

uire

d an

chor

age

len

gth

dep

endi

ng

on t

he

desi

gn v

alue

of

the

acti

on p

er m

eter

for

reb

ars

wit

h a

dia

met

er o

f 1

6 m

mC

oncr

ete

C2

0/2

5, f

ck =

20

N/m

m2,

Stee

l: f y

k =

50

0 N

/mm

2

Tabl

e 5.

18:

Cond

ition

s of a

pplic

atio

n se

e se

ctio

n 5.

8: D

esig

n ta

bles

a sNu

mbe

rA s

Inst

alla

tion

Desig

n va

lue

of th

e ac

tion

N Sd [k

N/m

] (fa

ctor

ed lo

ad)

[cm

][n

/m]

[cm

2 /m]

7080

100

120

140

160

180

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

1000

↓↓

↓↓

l bd

[mm

]16

016

016

016

016

016

016

016

017

320

824

327

731

234

638

141

645

048

551

955

458

962

369

2

812

.525

.13

c min

[m

m]

3434

3434

3434

3434

3435

3536

3737

3839

3940

4142

4243

44

V FIS

V[m

l/m]

288

288

288

288

288

288

288

288

312

375

438

499

562

623

686

749

810

873

935

998

1061

1122

1246

l bd[m

m]

160

160

160

160

160

160

160

160

195

234

273

312

351

390

429

468

507

545

584

623

662

701

-

911

.122

.34

c min

[m

m]

3434

3434

3434

3434

3435

3637

3838

3940

4141

4243

4445

-

V FIS

V[m

l/m]

256

256

256

256

256

256

256

256

312

375

437

500

562

624

687

749

812

872

935

997

1060

1122

-

l bd[m

m]

160

160

160

160

160

160

160

173

217

260

303

346

390

433

476

519

563

606

649

692

736

--

1010

20.1

1c m

in

[mm

]34

3434

3434

3434

3435

3637

3738

3940

4142

4343

4445

--

V FIS

V[m

l/m]

231

231

231

231

231

231

231

250

313

375

437

499

562

624

686

748

811

873

935

997

1060

--

l bd[m

m]

160

160

160

160

160

160

172

191

238

286

334

381

429

476

524

571

619

667

714

--

--

119.

118

.28

c min

[m

m]

3434

3434

3434

3434

3536

3738

3940

4142

4344

45-

--

-

V FIS

V[m

l/m]

210

210

210

210

210

210

226

251

312

375

438

499

562

624

686

748

811

874

935

--

--

l bd[m

m]

160

160

160

160

160

167

187

208

260

312

364

416

468

519

571

623

675

727

--

--

-

128.

316

.76

c min

[m

m]

3434

3434

3434

3435

3637

3839

4041

4243

4445

--

--

-

V FIS

V[m

l/m]

192

192

192

192

192

201

225

250

312

375

437

500

562

623

686

748

810

873

--

--

-

l bd[m

m]

160

160

160

160

160

173

195

217

271

325

379

433

487

541

595

649

703

--

--

--

12.5

816

.08

c min

[m

m]

3434

3434

3434

3435

3637

3839

4041

4243

45-

--

--

-

V FIS

V[m

l/m]

185

185

185

185

185

200

225

250

313

375

437

499

562

624

686

748

810

--

--

--

l bd[m

m]

160

160

160

160

182

208

234

260

325

390

455

519

584

649

714

--

--

--

--

156.

713

.40

c min

[m

m]

3434

3434

3435

3536

3738

4041

4243

45-

--

--

--

-

V FIS

V[m

l/m]

154

154

154

154

175

200

225

250

312

375

437

499

561

624

686

--

--

--

--

l bd[m

m]

160

160

160

187

218

250

281

312

390

468

545

623

701

--

--

--

--

--

185.

611

.17

c min

[m

m]

3434

3434

3535

3637

3840

4143

45-

--

--

--

--

-

V FIS

V[m

l/m]

128

128

128

150

175

200

225

250

312

375

436

499

561

--

--

--

--

-

l bd[m

m]

160

160

173

208

243

277

312

346

433

519

606

692

--

--

--

--

--

-

205

10.0

5c m

in

[mm

]34

3434

3535

3637

3739

4143

44-

--

--

--

--

--

V FIS

V[m

l/m]

116

116

125

150

175

200

225

250

312

374

437

499

--

--

--

--

--

-

l bd[m

m]

160

173

217

260

303

346

390

433

541

649

--

--

--

--

--

--

-

254

8.04

c min

[m

m]

3434

3536

3737

3839

4143

--

--

--

--

--

--

-

V FIS

V[m

l/m]

9310

012

515

017

520

022

525

031

237

4-

--

--

--

--

--

--

↑↑

↑↑

[cm

][n

/m]

[cm

2 /m]

50.0

57.1

71.4

85.7

100.

011

4.3

128.

614

2.9

178.

621

4.3

250.

028

5.7

321.

435

7.1

392.

942

8.6

464.

350

0.0

535.

757

1.4

607.

164

2.9

714.

3

a sNu

mbe

rA s

Inst

alla

tion

Char

acte

ristic

valu

e of

the

actio

n N Sk

[kN/

m] (

non-

fact

ored

load

)

a s ....

axia

l spa

cing,

As ..

.. cr

oss s

ectio

nal a

rea

of th

e st

eel,

l bd ..

.. re

quire

d an

chor

age

lengt

h, c

min

....

min

imum

conc

rete

cove

r, V

FIS

V ....

mor

tar v

olum

e

Page 22: 2007_tbe_en_Pages-403-500

Post-installed rebar connections with Injection mortar FIS V

424 Status 03/2006

5

Req

uire

d an

chor

age

len

gth

dep

endi

ng

on t

he

desi

gn v

alue

of

the

acti

on p

er m

eter

for

reb

ars

wit

h a

dia

met

er o

f 2

0 m

mC

oncr

ete

C2

0/2

5, f

ck =

20

N/m

m2,

Stee

l: f y

k =

50

0 N

/mm

2

Tabl

e 5.

19:

Cond

ition

s of a

pplic

atio

n se

e se

ctio

n 5.

8: D

esig

n ta

bles

a sNu

mbe

rA s

Inst

alla

tion

Desig

n va

lue

of th

e ac

tion

N Sd [k

N/m

] (fa

ctor

ed lo

ad)

[cm

][n

/m]

[cm

2 /m]

120

140

160

180

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

1000

1100

1200

1300

↓↓

↓↓

l bd

[mm

]20

020

020

020

020

020

020

824

327

731

234

638

141

645

048

551

955

458

962

369

276

283

190

0

1010

.00

31.4

2c m

in

[mm

]40

4040

4040

4040

4040

4040

4040

4040

4142

4243

4446

4748

V FIS

V[m

l/m]

450

450

450

450

450

450

468

547

624

702

779

858

936

1013

1092

1168

1247

1326

1402

1557

1715

1870

2025

l bd[m

m]

200

200

200

200

200

200

229

267

305

343

381

419

457

495

533

571

609

647

686

762

838

914

-

119.

0928

.56

c min

[m

m]

4040

4040

4040

4040

4040

4040

4040

4142

4343

4446

4749

-

V FIS

V[m

l/m]

410

410

410

410

410

410

469

547

624

702

780

858

935

1013

1091

1168

1246

1324

1404

1559

1715

1870

-

l bd[m

m]

200

200

200

200

200

208

250

291

333

374

416

457

499

540

582

623

665

706

748

831

914

--

128.

3326

.18

c min

[m

m]

4040

4040

4040

4040

4040

4040

4041

4243

4445

4547

49-

-

V FIS

V[m

l/m]

375

375

375

375

375

390

469

546

625

702

780

857

936

1013

1092

1169

1247

1324

1403

1559

1714

--

l bd[m

m]

200

200

200

200

200

217

260

303

346

390

433

476

519

563

606

649

692

736

779

865

--

-

12.5

8.00

25.1

3c m

in

[mm

]40

4040

4040

4040

4040

4040

4142

4343

4445

4648

--

-

V FIS

V[m

l/m]

360

360

360

360

360

391

468

546

623

702

780

857

935

1014

1091

1169

1246

1325

1403

1557

--

-

l bd[m

m]

200

200

200

200

200

225

270

315

360

405

450

495

540

585

630

675

720

765

810

900

--

137.

6924

.17

c min

[m

m]

4040

4040

4040

4040

4040

4040

4142

4344

4546

4748

--

-

V FIS

V[m

l/m]

347

347

347

347

347

390

468

546

624

701

779

857

935

1013

1091

1169

1247

1325

1402

1558

--

-

l bd[m

m]

200

200

200

200

200

243

291

340

388

436

485

533

582

630

679

727

776

824

872

--

--

147.

1422

.44

c min

[m

m]

4040

4040

4040

4040

4040

4041

4243

4445

4647

48-

--

-

V FIS

V[m

l/m]

322

322

322

322

322

391

468

547

624

701

780

857

936

1013

1092

1169

1248

1325

1402

--

--

l bd[m

m]

200

200

200

200

208

260

312

364

416

468

519

571

623

675

727

779

831

883

935

--

-

156.

6720

.94

c min

[m

m]

4040

4040

4040

4040

4040

4142

4344

4546

4748

49-

--

-

V FIS

V[m

l/m]

300

300

300

300

312

390

468

546

624

702

779

857

935

1013

1091

1169

1247

1325

1403

--

--

l bd[m

m]

200

200

200

200

222

277

333

388

443

499

554

609

665

720

776

831

886

942

--

--

-

166.

2519

.63

c min

[m

m]

4040

4040

4040

4040

4040

4243

4445

4647

4849

--

--

-

V FIS

V[m

l/m]

282

282

282

282

313

390

469

546

623

702

780

857

936

1013

1092

1169

1246

1325

--

--

-

l bd[m

m]

200

200

222

250

277

346

416

485

554

623

692

762

831

900

--

--

--

--

-

205.

0015

.71

c min

[m

m]

4040

4040

4040

4040

4243

4446

4748

--

--

--

--

-

V FIS

V[m

l/m]

225

225

250

282

312

390

468

546

624

701

779

858

935

1013

--

--

--

--

-

l bd[m

m]

208

243

277

312

346

433

519

606

692

779

865

--

--

--

--

--

--

254.

0012

.57

c min

[m

m]

4040

4040

4040

4143

4446

48-

--

--

--

--

--

-

V FIS

V[m

l/m]

188

219

250

281

312

390

468

546

623

702

779

--

--

--

--

--

--

↑↑

↑↑

[cm

][n

/m]

[cm

2 /m]

85.7

100.

011

4.3

128.

614

2.9

178.

621

4.3

250.

028

5.7

321.

435

7.1

392.

942

8.6

464.

350

0.0

535.

757

1.4

607.

164

2.9

714.

378

5.7

857.

192

8.6

a sNu

mbe

rA s

Inst

alla

tion

Char

acte

ristic

valu

e of

the

actio

n N Sk

[kN/

m] (

non-

fact

ored

load

)

a s ....

axia

l spa

cing,

As ..

.. cr

oss s

ectio

nal a

rea

of th

e st

eel,

l bd ..

.. re

quire

d an

chor

age

lengt

h, c

min

....

min

imum

conc

rete

cove

r, V

FIS

V ....

mor

tar v

olum

e

Page 23: 2007_tbe_en_Pages-403-500

Post-installed rebar connections with Injection mortar FIS V

425Status 03/2006

5

Req

uire

d an

chor

age

len

gth

dep

endi

ng

on t

he

desi

gn v

alue

of

the

acti

on p

er m

eter

for

reb

ars

wit

h a

dia

met

er o

f 2

5 m

mC

oncr

ete

C2

0/2

5, f

ck =

20

N/m

m2,

Stee

l: f y

k =

50

0 N

/mm

2

Tabl

e 5.

20:

Cond

ition

s of a

pplic

atio

n se

e se

ctio

n 5.

8: D

esig

n ta

bles

a sNu

mbe

rA s

Inst

alla

tion

Desig

n va

lue

of th

e ac

tion

N Sd [k

N/m

] (fa

ctor

ed lo

ad)

[cm

][n

/m]

[cm

2 /m]

180

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

1000

1100

1200

1300

1400

1500

1700

↓↓

↓↓

l bd

[mm

]25

025

025

025

025

027

731

234

638

141

645

048

551

955

458

962

369

276

283

190

096

910

3811

77

138

39.2

7c m

in

[mm

]50

5050

5050

5050

5050

5050

5050

5050

5050

5050

5050

5154

V FIS

V[m

l/m]

550

550

550

550

550

610

687

762

839

916

990

1067

1142

1219

1296

1371

1523

1677

1829

1980

2132

2284

2590

l bd[m

m]

250

250

250

250

262

299

337

374

412

449

486

524

561

598

636

673

748

823

897

972

1047

1122

-

147.

436

.36

c min

[m

m]

5050

5050

5050

5050

5050

5050

5050

5050

5050

5050

5153

-

V FIS

V[m

l/m]

510

510

510

510

534

610

687

762

840

915

990

1068

1143

1219

1296

1371

1524

1677

1828

1980

2133

2286

-

l bd[m

m]

250

250

250

250

281

322

362

402

442

482

522

562

603

643

683

723

803

883

964

1044

1124

--

156.

933

.85

c min

[m

m]

5050

5050

5050

5050

5050

5050

5050

5050

5050

5051

53-

-

V FIS

V[m

l/m]

475

475

475

475

533

611

687

763

839

915

990

1066

1144

1220

1296

1372

1523

1675

1829

1980

2132

--

l bd[m

m]

250

250

250

258

301

344

387

430

472

515

558

601

644

687

730

773

859

944

1030

1116

--

-

166.

531

.67

c min

[m

m]

5050

5050

5050

5050

5050

5050

5050

5050

5050

5153

--

-

V FIS

V[m

l/m]

444

444

444

458

535

611

687

763

838

914

990

1067

1143

1219

1296

1372

1525

1675

1828

1980

--

-

l bd[m

m]

250

250

250

275

320

366

412

457

503

549

594

640

686

731

777

823

914

1005

1097

--

--

176.

129

.75

c min

[m

m]

5050

5050

5050

5050

5050

5050

5050

5050

5051

52-

--

-

V FIS

V[m

l/m]

417

417

417

459

534

610

687

762

839

915

990

1067

1144

1219

1295

1372

1524

1675

1829

--

--

l bd[m

m]

250

250

250

291

340

388

436

485

533

582

630

679

727

776

824

872

969

1066

1163

--

--

185.

728

.05

c min

[m

m]

5050

5050

5050

5050

5050

5050

5050

5050

5052

54-

--

-

V FIS

V[m

l/m]

393

393

393

458

535

610

686

763

838

915

990

1067

1143

1220

1295

1371

1523

1676

1828

--

--

l bd[m

m]

250

250

257

308

359

410

461

513

564

615

666

717

769

820

871

922

1025

1127

--

--

-

195.

426

.53

c min

[m

m]

5050

5050

5050

5050

5050

5050

5050

5050

5153

--

--

-

V FIS

V[m

l/m]

372

372

383

458

534

610

686

763

839

915

990

1066

1144

1219

1295

1371

1524

1676

--

--

l bd[m

m]

250

250

270

324

378

432

486

540

594

648

702

756

810

864

918

972

1080

--

--

--

205.

125

.17

c min

[m

m]

5050

5050

5050

5050

5050

5050

5050

5050

52-

--

--

-

V FIS

V[m

l/m]

353

353

381

457

534

610

686

762

838

914

990

1067

1143

1219

1295

1371

1524

--

--

--

l bd[m

m]

250

250

305

366

427

488

549

609

670

731

792

853

914

975

1036

1097

--

--

--

-

224.

522

.31

c min

[m

m]

5050

5050

5050

5050

5050

5050

5050

5152

--

--

--

-

V FIS

V[m

l/m]

313

313

382

458

534

610

687

762

838

914

990

1067

1143

1219

1295

1372

--

--

--

-

l bd[m

m]

250

277

346

416

485

554

623

692

762

831

900

969

1038

1108

1177

--

--

--

--

254

19.6

3c m

in

[mm

]50

5050

5050

5050

5050

5050

5051

5354

--

--

--

--

V FIS

V[m

l/m]

275

305

381

458

534

610

686

762

839

915

990

1066

1142

1219

1295

--

--

--

--

↑↑

↑↑

[cm

][n

/m]

[cm

2 /m]

128.

614

2.9

178.

621

4.3

250.

028

5.7

321.

435

7.1

392.

942

8.6

464.

350

0.0

535.

757

1.4

607.

164

2.9

714.

378

5.7

857.

192

8.6

1000

.010

71.4

1214

.3

a sNu

mbe

rA s

Inst

alla

tion

Char

acte

ristic

valu

e of

the

actio

n N Sk

[kN/

m] (

non-

fact

ored

load

)

a s ....

axia

l spa

cing,

As ..

.. cr

oss s

ectio

nal a

rea

of th

e st

eel,

l bd ..

.. re

quire

d an

chor

age

lengt

h, c

min

....

min

imum

conc

rete

cove

r, V

FIS

V ....

mor

tar v

olum

e

Page 24: 2007_tbe_en_Pages-403-500

Post-installed rebar connections with Injection mortar FIS V

426 Status 03/2006

5

Req

uire

d an

chor

age

len

gth

dep

endi

ng

on t

he

desi

gn v

alue

of

the

acti

on p

er m

eter

for

reb

ars

wit

h a

dia

met

er o

f 2

8 m

mC

oncr

ete

C2

0/2

5, f

ck =

20

N/m

m2,

Stee

l: f y

k =

50

0 N

/mm

2

Tabl

e 5.

21:

Cond

ition

s of a

pplic

atio

n se

e se

ctio

n 5.

8: D

esig

n ta

bles

a sNu

mbe

rA s

Inst

alla

tion

Desig

n va

lue

of th

e ac

tion

N Sd [k

N/m

] (fa

ctor

ed lo

ad)

[cm

][n

/m]

[cm

2 /m]

230

250

300

350

400

450

500

550

600

650

700

750

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1900

↓↓

↓↓

l bd

[mm

]28

028

028

028

028

031

234

638

141

645

048

551

955

462

369

276

283

190

096

910

3811

0811

7713

15

147.

143

.98

c min

[m

m]

5656

5656

5656

5656

5656

5656

5656

5656

5656

5656

5656

57

V FIS

V[m

l/m]

882

882

882

882

882

983

1090

1201

1311

1418

1528

1635

1746

1963

2180

2401

2618

2835

3053

3270

3491

3708

4143

l bd[m

m]

280

280

280

280

297

334

371

408

445

482

519

557

594

668

742

816

890

964

1038

1113

1187

1261

-

156.

741

.05

c min

[m

m]

5656

5656

5656

5656

5656

5656

5656

5656

5656

5656

5656

-

V FIS

V[m

l/m]

824

824

824

824

874

982

1091

1200

1309

1418

1526

1638

1747

1964

2182

2400

2617

2835

3052

3273

3490

3708

-

l bd[m

m]

280

280

280

280

317

356

396

435

475

515

554

594

633

712

791

870

949

1029

1108

1187

1266

--

166.

338

.48

c min

[m

m]

5656

5656

5656

5656

5656

5656

5656

5656

5656

5656

56-

-

V FIS

V[m

l/m]

772

772

772

772

874

982

1092

1199

1310

1420

1527

1638

1745

1963

2181

2398

2616

2837

3054

3272

3490

--

l bd[m

m]

280

280

280

295

337

379

421

463

505

547

589

631

673

757

841

925

1009

1093

1177

1261

--

-

175.

936

.22

c min

[m

m]

5656

5656

5656

5656

5656

5656

5656

5656

5656

5656

--

-

V FIS

V[m

l/m]

727

727

727

766

875

984

1093

1202

1311

1419

1528

1637

1746

1964

2182

2400

2618

2836

3054

3272

--

-

l bd[m

m]

280

280

280

312

356

401

445

490

534

579

623

668

712

801

890

979

1068

1157

1246

--

--

185.

634

.21

c min

[m

m]

5656

5656

5656

5656

5656

5656

5656

5656

5656

56-

--

-

V FIS

V[m

l/m]

686

686

686

765

873

983

1091

1201

1309

1419

1527

1637

1745

1963

2181

2399

2617

2835

3053

--

--

l bd[m

m]

280

280

282

329

376

423

470

517

564

611

658

705

752

846

940

1034

1127

1221

1315

--

--

195.

332

.41

c min

[m

m]

5656

5656

5656

5656

5656

5656

5656

5656

5656

57-

--

-

V FIS

V[m

l/m]

650

650

655

764

873

982

1091

1200

1310

1419

1528

1637

1746

1964

2182

2400

2616

2835

3053

--

--

l bd[m

m]

280

280

297

346

396

445

495

544

594

643

692

742

791

890

989

1088

1187

1286

--

--

-

205

30.7

9c m

in

[mm

]56

5656

5656

5656

5656

5656

5656

5656

5656

56-

--

--

V FIS

V[m

l/m]

618

618

655

763

874

982

1092

1200

1310

1418

1526

1637

1745

1963

2181

2400

2618

2836

--

--

-

l bd[m

m]

280

280

312

364

416

468

519

571

623

675

727

779

831

935

1038

1142

1246

--

--

--

214.

829

.32

c min

[m

m]

5656

5656

5656

5656

5656

5656

5656

5656

56-

--

--

-

V FIS

V[m

l/m]

588

588

656

765

874

983

1090

1200

1309

1418

1527

1636

1746

1964

2180

2399

2617

--

--

--

l bd[m

m]

280

280

327

381

435

490

544

599

653

707

762

816

870

979

1088

1197

1305

--

--

--

224.

527

.99

c min

[m

m]

5656

5656

5656

5656

5656

5656

5656

5656

57-

--

--

-

V FIS

V[m

l/m]

562

562

656

764

872

983

1091

1201

1309

1418

1528

1636

1744

1963

2181

2400

2616

--

--

--

l bd[m

m]

285

309

371

433

495

557

618

680

742

804

865

927

989

1113

1236

--

--

--

--

254

24.6

3c m

in

[mm

]56

5656

5656

5656

5656

5656

5656

5656

--

--

--

--

V FIS

V[m

l/m]

503

546

655

764

874

983

1091

1200

1309

1419

1526

1636

1745

1964

2181

--

--

--

--

↑↑

↑↑

[cm

][n

/m]

[cm

2 /m]

164.

317

8.6

214.

325

0.0

285.

732

1.4

357.

139

2.9

428.

646

4.3

500.

053

5.7

571.

464

2.9

714.

378

5.7

857.

192

8.6

1000

.010

71.4

1142

.912

14.3

1357

.1

a sNu

mbe

rA s

Inst

alla

tion

Char

acte

ristic

valu

e of

the

actio

n N Sk

[kN/

m] (

non-

fact

ored

load

)

a s ....

axia

l spa

cing,

As ..

.. cr

oss s

ectio

nal a

rea

of th

e st

eel,

l bd...

. re

quire

d an

chor

age

lengt

h, c

min

....

min

imum

conc

rete

cove

r, V

FIS

V ....

mor

tar v

olum

e

Page 25: 2007_tbe_en_Pages-403-500

Post-installed rebar connections with Injection mortar FIS V

427Status 03/2006

5

Req

uire

d an

chor

age

len

gth

dep

endi

ng

on t

he

desi

gn v

alue

of

the

acti

on p

er m

eter

for

reb

ars

wit

h a

dia

met

er o

f 3

2 m

mC

oncr

ete

C2

0/2

5, f

ck =

20

N/m

m2,

Stee

l: f y

k =

50

0 N

/mm

2

Tabl

e 5.

22:

Cond

ition

s of a

pplic

atio

n se

e se

ctio

n 5.

8: D

esig

n ta

bles

a sNu

mbe

rA s

Inst

alla

tion

Desig

n va

lue

of th

e ac

tion

N Sd [k

N/m

] (fa

ctor

ed lo

ad)

[cm

][n

/m]

[cm

2 /m]

300

350

400

450

500

550

600

650

700

750

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2100

↓↓

↓↓

l bd

[mm

]32

032

032

032

034

638

141

645

048

551

955

462

369

276

283

190

096

910

3811

0811

7712

4613

1514

54

166.

350

.27

c min

[m

m]

6464

6464

6464

6464

6464

6464

6464

6464

6464

6464

6464

64

V FIS

V[m

l/m]

1152

1152

1152

1152

1246

1372

1498

1620

1746

1869

1995

2243

2492

2744

2992

3240

3489

3737

3989

4238

4486

4734

5235

l bd[m

m]

320

320

320

331

368

405

442

478

515

552

589

662

736

809

883

956

1030

1103

1177

1250

1324

1397

-

175.

947

.31

c min

[m

m]

6464

6464

6464

6464

6464

6464

6464

6464

6464

6464

6464

-

V FIS

V[m

l/m]

1085

1085

1085

1122

1247

1373

1498

1620

1745

1871

1996

2244

2494

2742

2992

3240

3490

3738

3988

4236

4487

4734

-

l bd[m

m]

320

320

320

351

390

429

468

507

545

584

623

701

779

857

935

1013

1090

1168

1246

1324

1402

1480

-

185.

644

.68

c min

[m

m]

6464

6464

6464

6464

6464

6464

6464

6464

6464

6464

6464

-

V FIS

V[m

l/m]

1024

1024

1024

1124

1248

1373

1498

1623

1744

1869

1994

2244

2493

2743

2992

3242

3488

3738

3988

4237

4487

4736

-

l bd[m

m]

320

320

329

370

411

452

494

535

576

617

658

740

822

904

987

1069

1151

1233

1315

1397

1480

--

195.

342

.33

c min

[m

m]

6464

6464

6464

6464

6464

6464

6464

6464

6464

6464

64-

-

V FIS

V[m

l/m]

971

971

998

1122

1246

1371

1498

1622

1747

1871

1995

2244

2492

2741

2993

3241

3490

3738

3987

4236

4487

--

l bd[m

m]

320

320

346

390

433

476

519

563

606

649

692

779

865

952

1038

1125

1211

1298

1384

1471

--

-

205

40.2

1c m

in

[mm

]64

6464

6464

6464

6464

6464

6464

6464

6464

6464

64-

--

V FIS

V[m

l/m]

922

922

997

1124

1248

1371

1495

1622

1746

1870

1993

2244

2492

2742

2990

3240

3488

3739

3986

4237

--

-

l bd[m

m]

320

320

364

409

455

500

545

591

636

682

727

818

909

1000

1090

1181

1272

1363

1454

--

--

214.

838

.30

c min

[m

m]

6464

6464

6464

6464

6464

6464

6464

6464

6464

64-

--

-

V FIS

V[m

l/m]

878

878

999

1122

1248

1372

1495

1622

1745

1871

1995

2244

2494

2743

2990

3240

3489

3739

3989

--

--

l bd[m

m]

320

334

381

429

476

524

571

619

667

714

762

857

952

1047

1142

1237

1333

1428

--

--

-

224.

536

.56

c min

[m

m]

6464

6464

6464

6464

6464

6464

6464

6464

6464

--

--

-

V FIS

V[m

l/m]

838

875

998

1124

1247

1372

1495

1621

1747

1870

1996

2244

2493

2742

2990

3239

3491

3739

--

--

-

l bd[m

m]

320

349

398

448

498

548

597

647

697

747

796

896

995

1095

1194

1294

1393

1493

--

--

-

234.

334

.97

c min

[m

m]

6464

6464

6464

6464

6464

6464

6464

6464

6464

--

--

-

V FIS

V[m

l/m]

802

875

997

1122

1248

1373

1496

1621

1746

1871

1994

2244

2492

2743

2991

3241

3489

3739

--

--

-

l bd[m

m]

320

364

416

468

519

571

623

675

727

779

831

935

1038

1142

1246

1350

1454

--

--

--

244.

233

.51

c min

[m

m]

6464

6464

6464

6464

6464

6464

6464

6464

64-

--

--

-

V FIS

V[m

l/m]

768

874

999

1124

1246

1371

1496

1620

1745

1870

1995

2244

2492

2741

2991

3240

3490

--

--

--

l bd[m

m]

325

379

433

487

541

595

649

703

757

811

865

974

1082

1190

1298

1406

--

--

--

-

254

32.1

7c m

in

[mm

]64

6464

6464

6464

6464

6464

6464

6464

64-

--

--

--

V FIS

V[m

l/m]

749

874

998

1123

1247

1371

1496

1620

1745

1869

1993

2245

2493

2742

2991

3240

--

--

--

-

↑↑

↑↑

[cm

][n

/m]

[cm

2 /m]

214.

325

0.0

285.

732

1.4

357.

139

2.9

428.

646

4.3

500.

053

5.7

571.

464

2.9

714.

378

5.7

857.

192

8.6

1000

.010

71.4

1142

.912

14.3

1285

.713

57.1

1500

.0

a sNu

mbe

rA s

Inst

alla

tion

Char

acte

ristic

valu

e of

the

actio

n N Sk

[kN/

m] (

non-

fact

ored

load

)

a s ....

axia

l spa

cing,

As ..

.. cr

oss s

ectio

nal a

rea

of th

e st

eel,

l bd ..

.. re

quire

d an

chor

age

lengt

h, c

min

....

min

imum

conc

rete

cove

r, V

FIS

V ....

mor

tar v

olum

e

Page 26: 2007_tbe_en_Pages-403-500

Post-installed rebar connections with Injection mortar FIS V

428 Status 03/2006

5

Des

ign

val

ue o

f re

sist

ance

in t

he

case

of

fi re

Reb

ar c

onne

ctio

n pe

rpen

dicu

lar t

o th

e su

rfac

e ex

pose

d to

fi re

Tabl

e 5.

23:

Desig

n va

lue

of re

sista

nce

in th

e ca

se o

f fi re

Desig

n va

lue

of re

sista

nce

in th

e ca

se o

f fi re

Desig

n va

lue

of re

sista

nce

in th

e ca

se o

f fi re

d sd 0

max

NRd

,s,T

l VN Rd

,s,T [k

N]d s

d 0m

ax N

Rd,s,

Tl V

N Rd,s,

T [kN]

d sd 0

max

NRd

,s,T

l VN Rd

,s,T [k

N]

[mm

][m

m]

[kN]

[mm

]Fi

re re

sista

nce

class

ifi ca

tion

[mm

][m

m]

[kN]

[mm

]Fi

re re

sista

nce

class

ifi ca

tion

[mm

][m

m]

[kN]

[mm

]Fi

re re

sista

nce

class

ifi ca

tion

↓↓

↓↓

F 30

F 60

F 90

F120

F180

↓↓

↓↓

F 30

F 60

F 90

F120

F180

↓↓

↓↓

F 30

F 60

F 90

F120

F180

80

4.7

2.0

0.8

0.4

-14

033

.319

.710

.77.

83.

625

014

1.1

116.

910

0.0

88.2

47.8

120

14.3

6.8

3.8

2.6

0.9

210

59.4

48.9

39.4

32.7

14.3

300

178.

215

4.0

137.

212

5.3

84.9

160

21.9

16.1

10.7

7.0

3.6

230

66.9

57.2

47.8

41.0

18.8

350

213.

419

1.2

174.

316

2.3

122.

0

812

21.9

190

-21

.917

.814

.06.

314

1868

,926

0-

66.9

59.4

53.5

31.1

2530

213.

438

0-

213.

419

6.6

184.

514

4.3

210

--

21.9

18.8

8.6

280

--

66.9

59.4

39.3

410

--

213.

420

6.8

166.

6

230

--

-21

.911

.530

0-

--

66.9

43.5

420

--

-21

3.4

174.

0

280

--

--

21.9

350

--

--

66.9

480

--

--

213.

4

10

011

.94.

92.

61.

50.

316

047

.532

.121

.314

.07.

228

018

3.1

155.

913

7.0

123.

778

.4

150

26.7

17.1

10.4

6.9

3.5

240

77.6

70.1

59.3

51.7

25.9

340

232.

920

5.7

187.

017

3.5

128.

4

180

34.1

26.1

19.3

14.4

6.6

250

87.4

74.9

64.1

56.4

30.6

390

267.

724

7.3

228.

421

5.1

170.

0

1014

34.1

210

-34

.127

.823

.410

.316

2087

,428

0-

87.4

77.6

70.6

44.8

283.

526

7.7

420

-26

7.7

253.

424

0.0

194.

8

240

--

34.1

32.3

16.9

300

--

87.4

77.6

54.4

440

--

267.

725

6.6

211.

5

250

--

-34

.119

.432

0-

--

87.4

63.9

460

--

-26

7.7

228.

2

310

--

--

34.1

370

--

--

87.4

510

--

--

267.

7

12

021

.510

.15.

53.

91.

420

082

.863

.650

.140

.217

.828

018

3.1

155.

913

7.0

123.

778

.4

180

42.8

3.2

23.1

17.4

8.0

240

106.

486

.974

.364

.832

.734

023

2.9

205.

718

7.0

173.

512

8.4

200

49.2

38.3

30.2

24.4

10.8

280

136.

611

1.5

98.8

89.1

57.2

390

267.

724

7.3

228.

421

5.1

170.

0

1216

49,2

240

-49

.244

.438

.719

.420

2513

6,6

310

-13

6.6

114.

910

6.0

74.3

3240

267.

742

0-

267.

725

3.4

240.

019

4.8

260

--

49.2

45.9

26.6

350

--

136.

612

9.3

97.6

440

--

267.

725

6.6

211.

5

270

--

-40

.230

.136

0-

--

136.

610

4.0

460

--

-26

7.7

228.

5

330

--

--

49.2

420

--

--

136.

651

0-

--

-26

7.7

↑↑

↑↑

F 30

F 60

F 90

F120

F180

↑↑

↑↑

F 30

F 60

F 90

F120

F180

↑↑

↑↑

F 30

F 60

F 90

F120

F180

[mm

][N/

mm

2 ][k

N][m

m]

Fire

resis

tanc

e cla

ssifi

catio

n[m

m][

N/m

m2 ]

[kN]

[mm

]Fi

re re

sista

nce

class

ifi ca

tion

[mm

][N/

mm

2 ][k

N][m

m]

Fire

resis

tanc

e cla

ssifi

catio

n

d sd 0

max

NRd

,s,T

l VDe

sign

valu

e of

resis

tanc

e in

the

case

of fi

red s

d 0m

ax N

Rd,s,

Tl V

Desig

n va

lue

of re

sista

nce

in th

e ca

se o

f fi re

d sd 0

max

NRd

,s,T

l VDe

sign

valu

e of

resis

tanc

e in

the

case

of fi

re

N Rd,s,

T [kN]

N Rd,s,

T [kN]

N Rd,s,

T [kN]

d s ....

diam

eter

of t

he re

bar,

d0 ..

.. d

rill d

iam

eter

, N Rd

,s,T ..

.. D

esig

n va

lue

of re

sista

nce

in th

e ca

se o

f fi re

, l V ..

.. re

quire

d an

chor

age

lengt

h

l v

Page 27: 2007_tbe_en_Pages-403-500

Post-installed rebar connections with Injection mortar FIS V

429Status 03/2006

5

Bon

d st

ren

gth

dep

endi

ng

on t

he

con

cret

e co

ver

in t

he

case

of

fi re

Reb

ar c

onne

ctio

n pa

ralle

l to

the

surf

ace

expo

sed

to fi

reTa

ble

5.24

:

Bond

stre

ngth

in th

e ca

se o

f fi re

Requ

ired

proo

f:

N Rd,s,

T ≤

(l v - c1) ·

ds ·

p · f

bd,T

with

: (l v - c

1) ≥

l s

≤ 80

· d s

N Rd,s,

T De

sign

valu

e of

resis

tanc

e in

the

case

of fi

re(l v -c

1) An

chor

age

lengt

hd s

Diam

eter

of t

he re

bar

f bd,T

Bo

nd st

reng

th in

the

case

of fi

rel s

Lap

lengt

h of

the

splic

e

cm

ax f bd

,Tf bd

,T [N

/mm

2 ]c

[mm

][N

/mm

2 ]Fi

re re

sista

nce

class

ifi ca

tion

[mm

][m

m]

↓↓

F 30

F 60

F 90

F120

F180

30

3.0

1.9

0.3

--

-30

352.

30.

5-

--

35

402.

60.

9-

--

40

453.

01.

4-

--

45

50-

1.6

0.5

--

50

55-

1.9

0.7

--

55

60-

2.3

0.9

0.4

-60

65-

2.6

1.2

0.7

-65

70-

3.0

1.6

0.9

-70

75-

-1.

91.

1-

75

80-

-2.

31.

40.

380

85-

-2.

41.

80.

485

90-

-2.

72.

00.

790

95-

-3.

02.

30.

895

100

--

-2.

60.

910

0

105

--

-3.

01.

210

5

110

--

--

1.6

110

115

--

--

1.9

115

120

--

--

2.2

120

125

--

--

2.3

125

130

--

--

2.6

130

135

--

--

2.8

135

140

--

--

3.0

140

↑↑

F 30

F 60

F 90

F120

F180

[mm

][N

/mm

2 ]Fi

re re

sista

nce

class

ifi ca

tion

[mm

][m

m]

cm

ax f bd

,TBo

nd st

reng

th in

the

case

of fi

rec

f bd,T

[N/m

m2 ]

c ....

conc

rete

cove

r of t

he p

ost-i

nsta

lled

reba

rf bd

,T ..

.. b

ond

stre

ngth

in th

e ca

se o

f fi re

l v

c 1

c

Page 28: 2007_tbe_en_Pages-403-500

Notes

430 Status 03/2006

5

Page 29: 2007_tbe_en_Pages-403-500

431Status 03/2006

6

Fire Safety in the Fixing Technology

6.1 Introduction ......................................................................... 432

6.2 Why there will always be fi res ........................................ 432

6.3 Prevention through structural and operational fi re protection ..................................................................... 433

6.4 Fire safety measures in the building regulations ........ 433

6.5 Fire behavior of building materials and structural members and their designation ...................................... 435

6.6 Fire development and temperature/time curves ........ 436

6.7 Fire Test ................................................................................ 439

6.8 Fire behavior of fasteners and anchors: the current state of technology ............................................................ 442

6.9 Anchor applications (examples) ..................................... 444

6.10 Overview of certifi ed fasteners and anchors .............. 445

6.11 References ........................................................................... 450

Page 30: 2007_tbe_en_Pages-403-500

Fire Safety in the Fixing Technology

432 Status 03/2006

6

6.1 Introduction

Fasteners and anchors play an important role not only with regard to connection of buil-ding elements, but also where durability and maintaining capacity and safety is concerned. Often the stability of structural components in a fi re will depend on the fastening element. The stability of structural components is essential for insuring that escape is possible and that escape routes remain intact. For this reason fi scher has been working for years in collaboration with research institutes and material testing institutes in the area of “pas-sive fi re protection”.

Through their intensive involvement in this area, fi scher contributes to the development of fastening technology for anchors exposed to extreme fi re conditions.

In addition, we see it as an important contri-bution to safety, when those responsible for design and specifi cation of building projects avail themselves of our experience. By choo-sing today‘s best solutions for preventive fi re protection it helps to limit damage and save lives.

6.2 Why there will always be fi res

In spite of the most stringent fi re prevention measures, the possible outbreak of fi re can never be excluded when the following conditi-ons preside at the same time:

▯ Flammable material

▯ Oxygen or an oxidizing agent

▯ Suffi ciently high temperature, or a source of ignition

Fires can occur at any stage in the life of a building. Examples are:

▯ New construction - through welding and work involving open fl ames.

▯ Normal operation - through handling fl am-mable materials, short circuits in defective electric cables, cable fi res through overloaded electrical circuits, incorrect handling of machi-nes and household devices.

▯ Maintenance and demolition - sources of fi re can arise when working with grinders which produce red hot particles, or the drip-ping of burning material.

Figure 6.1: Restaurant fi re in Hamburg 1997 [1]Building: Mainly wood construction, single-fl oor, timber pile foundationCause of fi re: Technical defect in the electrical installation, pro-bably a result of material fatigueBuilding damage: Total destruction down to the pile foundation and grating of timbersCost of damage: app. 0.5 million EUR

Figure 6.2:Tunnel fi re test 2001 in a Brenner Motorway tunnel in coopera-tion with the Autostrada del Brennero S.P.A. Institute for Construc-tive Civil Engineering, Santa Automation Instruments and fi scher fi xing systems [2]

Page 31: 2007_tbe_en_Pages-403-500

Fire Safety in the Fixing Technology

433Status 03/2006

6

6.3 Prevention through structural and operational fi re protection

The fi rst objective of fi re protection is to pre-vent fi res. If, in spite of this a fi re occurs, then the second objective is to minimize the con-sequences. Fastening elements can make essential contributions towards the realization of both objectives. In Germany the State Buil-ding Ordinances („Landesbauordnung“ LBO), the Employers Liability Association Directives and Regulations („Berufsgenossenschaftliches Vorschriften- und Regelwerk“ BGVR), as well as the “Association of Insurers VdS“ („Verband der Sachversicherer” VdS), specify measures for structural and operational fi re prevention.

In the U. S. but also in many countries in Asia requirements of Factory Mutual (FM), an inter-national group of insurance companies in the U. S., must be observed. The regulations of VdS and FM are required particulary for the design and installation of sprinkler systems. Anchors with VdS- or FM-Certifi cate are listed in section 6.10. Several directives of particular importance are listed below:

Preventative structural fi re protection inclu-des the following:

▯ Compliance with fi re regulations. (e.g. the layout and structure of the property, use of heating and electrical systems and storage of fl ammable or explosive materials).

▯ Use of fi re rated and fi re retardant materials.

▯ Measures to maintain the structural stability of the main structural components during the fi re, to enable escape and rescue of people. This can be achieved by selecting building members with a suitable fi re rating, which should be specifi ed according to the intended use of the building and in accor-dance with the building regulations.

▯ Suitable design of structural units such as walls, ceilings, stairs, elevator shafts and services.

▯ Sectioning of the building into diff erent fi re protection areas through the installation of fi re resistant dividing walls (F 90), or fi re walls and partitions.

▯ Installation of smoke extraction, thermal extraction and air supply units.

▯ Provisions of safe escape and rescue routes as well as fume extraction systems.

▯ Design and maintenance of access routes so that fi re engines can get to the target area at any time without obstruction, and that par-king areas are insured for fi re fi ghting equip-ment.

▯ Lightning protection.

Operational fi re safety includes the following measures and facilities:

▯ Fire alarm systems (smoke, thermal, and fl ame alarms, manual alarms).

▯ Gas warning sensors.

▯ Fire department key boxes, key depots.

▯ Permanent fi re extinguishing installations, such as sprinkler systems, wall hydrants, fi re department feed points and fi re extinguis-hers.

▯ Fire safety coordination, emergency plans.

▯ Signage for fi re extinguishers and fi re exits.

▯ Adaption of furnishing for fi re-loads.

▯ Regular maintenance of fi re resistant shut-ters (doors, gates).

6.4 Fire safety measures in the buil-ding regulations

Within the framework of urban planning and building laws the state creates the prerequisi-tes to insure public safety and to prevent risk through fi re hazard.

Page 32: 2007_tbe_en_Pages-403-500

Fire Safety in the Fixing Technology

434 Status 03/2006

6

6.4.1 Building Ordinance in Germany

The Building Ordinance (MBO) is the basis for many building code regulations including those relative to fi re safety measures. The State Building Ordinances (LBO) of the indivi-dual states supplement the MBO. (Fig. 6.3).

Paragraph 17 of the MBO states the follo-wing:

“Structural facilities are to be arranged and equipped, such that the development and spreading of fi re is prevented, in the interest of avoiding hazards to life and health of people and animals, and that in case of fi re, eff ective extinguishing work and the rescue of people and animals are possible.“

The required tests are specifi ed in the fi re safety standard DIN 4102. It regulates the classifi cation of building materials, structural components and special components into diff erent fi re ratings.

6.4.2 State Building Ordinances in Ger-many

The specifi cations of the Building Ordinance (MBO) have been transformed into applicable law. The details diff er from state to state.

Figure 6.3: Requirements that must be fulfi lled by building members with regard to eff ective fi re safety /3/

6.4.3 Application related rules and regu-lations

Supplemental to the State Building Ordi-nances there are other laws or directives that regulate additional measures for special types of buildings:

▯ Construction Ordinance relating to places of public assembly

▯ Retail Construction Ordinance

▯ School Construction Guidelines

▯ Garage Construction Ordinance

▯ Restaurant Construction Ordinance

▯ Hospital Construction Ordinance

▯ High rised buildings Construction Ordi-nance

▯ Industrial building Guidelines

6.4.4 Fire safety measures in internati-onal urban planning and building law

Because no generally applicable international guidelines are available, in each individual case, design and execution of fi re safety measures are to be oriented on country-speci-fi c directives. The standard temperature/time curve (ISO 834) however is recognised world-wide. Fire analysis and results that are derived from this standard can therefore be applied in many cases to solve technical fi re safety pro-blems in other countries.

Basic Requirements

Public safety, particularly life or healthmay not be endangered

The development of fi re must be prevented, and the rescue of people and animals,as well as eff ective extinguishing work, must be successful.

Individual Requirements

Layout on the property and layoutrelative to neighbouring buildings,

fi re fi ghting

Fire behavior of building materialsand building components

Size, position and protectionof the fi re partitions

Location and designof the rescue passages

Limitations on size, requirements for limiting structural components (fi rewalls),closure of openings in fi rewalls, equivalent measures for large fi re partitions

(smoke warning alarms + sprinklers)

Page 33: 2007_tbe_en_Pages-403-500

Fire Safety in the Fixing Technology

435Status 03/2006

6

6.5 Fire behaviour of building materi-als and structural members and their designation

DIN 4102 diff erentiates between building materials and structural members. Building materials correspond to a certain material (concrete, timber, steel…) and as a result they diff er in terms of their combustion. That is why they are diff erentiated according to their fi re behaviour regardless of their external form (Table 6.1).

Structural members can consist of diff erent building materials. They are evaluated as an entity, and classifi ed according to their dura-tion of fi re resistance.

6.5.1 Duration of fi re resistance

The duration of fi re resistance indicates the resistance to fi re over a certain period of time.

Example: F 30

Explanation:

The structural member has, under the conditi-ons referred to by the standard temperature/time curve, a fi re resistance duration of 30 minutes. For F 30 the term fi re retardant is used. Structural members starting from F 90 and higher are designated as fi reproof.The fi re rating is classifi ed with regard to the minimum resistance of 30, 60, 90, 120, or 180 minutes.

Table 6.1: Building material classes according to DIN 4102 part 1

Building material class Offi cial designation

AA 1A 2

Non-fl ammable building materials

B

B 1B 2B 3

Flammable building materials

Flame retardant building materialsNormal fl ammable building materialsEasily fl ammable building materials

6.5.2 Fire behaviour

Letters printed next to the fi re rating, desig-nate the fi re behaviour of a structural member (Tab. 6.1). A fi re retardant structural compo-nent made of non-fl ammable building materi-als with a fi re rating class F 30 is designated accordingly with F 30 A. The designation AB stands for the combination of non-fl ammable and fl ammable materials.

6.5.3 Designation and classifi cation of fasteners and anchors

The fi re rating class for fasteners and anchors is specifi ed, for example F 90.

The use of fasteners and anchors is regulated through approvals. These fastener and anchor approvals do not contain information concer-ning fi re resistance in minutes. Exceptions are the German Approvals for the anchorage of light ceiling claddings, for example: fi scher Nail anchor FNA, fi scher Zykon hammerset anchor FZEA, fi scher Hammerset anchor EA (see table 6.2).

If anchors are required for other applications, where they must maintain their function in case of fi re or higher temperature, then expert information about the specifi c fi re behaviour is provided (compare section 6.10).

Table 6.2: fi scher Hammerset anchor EA /4/

Type EAM8x40

EAM10

EAM12

perm. load fi re resistance duration 90 min 0.8

per anchor fi re resistance duration 120 min 0.7 0.8

Spacing s ≧ [cm] 40

Edge distance c ≧ [cm] 10 20

Min. member thickness h ≧ [cm] 10

Permissible loads - only for axial tension and only for anchors made of zinc plated steel with screws or threaded rods of minimum strength class 5.6 - as well as anchor characteristics and member dimensions for the anchorage of ligth ceiling claddings and sub-ceilings according to DIN 18168 in concrete, strength class ≧ B 25 and ≦ B 55 under fire effect.

Page 34: 2007_tbe_en_Pages-403-500

Fire Safety in the Fixing Technology

436 Status 03/2006

6

For structural components in Germany anchors shall be selected that are approved and covered by an independent expert infor-mation. Fixings of fi re resistant doors are cove-red by DIN 18093.

6.5.4 Special components

Other structural members such as cable systems, ventilation ducts, and fi re safety enclosures are tested for their fi re rating class according to special specifi cations. In the case of fi re resistance Table 6.3 shows the diff erent classes. All structural fi xings must demon-strate at least the required fi re resistance of the element being fi xed. If, for example, a fi re rating of L 90 is required for ventilation ducts, then an anchor with a certifi ed class of at least F 90 must be used.

With systems consisting of diff erent parts (e. g. cable and cable clamp or door frame and fi xing), that have been tested at a unit, no part must be replaced by a diff erent component. Otherwise the approval is not longer valid.

Table 6.3: Fire resistance classes

Class F General application, bearing or non-bearing walls, beams, and joists

Class W Fire walls, non-bearing external walls including railings and skirting

Class E Maintaining function of electrical cabling systems

Class T Fire safety enclosures

Class G Special glass for fi re safety enclosures

Class L Ventilation duct

Class K Blocking fi xtures in ventilation ducts

Class S Cable partitions

Class R Encased pipelines

Class I Installation shafts and channels

6.5.5 Future European standard

International fi re safety experience has been summarized in the future standard E DIN EN 13501 - part 1. This standard will replace the existing fi re standard DIN 4102 part 1 further to fi nal agreement and publication. Following this, the building materials classes will change according to table 6.4 /5/. The letters s and d indicate the criteria smoke (s) and droplets (d).

6.6. Fire development and tempera-ture/time curves

In order to assess anchors under infl uence of fi re, reproducible simulation tests are required.

Table 6.4: Classifi cation of the fi re behavior of building materials (except fl oor coverings) /5/

Offi cial construction require-ments

Additional requirements European class according to DIN EN 13501-1

Class according to DIN 4102-1

No smoke no burning particles/or

burning droplets

Fireproof X X A1 A1

At least X X A2 s1 d0 A2

Hardly fl ammable

X X B, C -s1 d0

B1

XA2 -s2 d0

A2, B, C -s3 d0

XA2, B, C -s1 d1

A2, B, C -s1 d2

At least A2, B, C -s3 d2

Normal fl ammable

X

D -s1 d0

-s2 d0

-s3 d0

E B2D -s1 d2

-s2 d2

-s3 d2

At least E -d2

Easily fl ammable

F B3

Page 35: 2007_tbe_en_Pages-403-500

Fire Safety in the Fixing Technology

437Status 03/2006

6

6.6.1 Real fi re development

Fires proceed according to the principle rep-resented in fi gure 6.4. There are two distinct phases “developing fi re“ and “fully developed fi re“. In the case of the developing fi re there is diff erentiation between the ignition phase and the smouldering phase, in the case of fully developed fi re there is diff erentiation between heating-up phase and cool-down phase. Thus the building material class according to DIN 4102 part 1 (for example A, A1, B3) is the decisive factor for the developing fi re. In the case of a full-fi re, after fl ashpoint, the decisive factor is the fi re resistance of the structural member (e.g. F 90).

6.6.2 Standard fi re tests according to the standard temperature/time curve

Fire eff ect relative to temperature and elapsed time is defi ned in the standard temperature/time curve (ETK) (Fig. 6.5) according to DIN 4102 and ISO 834. The curve is characte-rised by a fl at increase in temperature up to 1090 °C after 120 minutes. It is accepted world-wide as a basis for evaluation. Thus fi re test results can be applied throughout the world.

The temperature/time curve is the basis for all standard fi re tests. Offi cial building authorities do not legislate on the cool-down phase. That is why it is not considered in the standard time/temperature curve. The increase in tem-perature and the maximum temperature are selected such that testing in accordance with the standard temperature/time curve creates eff ects that are similar to those resulting from a real fi re.

Figure 6.4: Fire phases, fi re temperatures (diagram) and fi re hazards [6]

Page 36: 2007_tbe_en_Pages-403-500

Fire Safety in the Fixing Technology

438 Status 03/2006

6

6.6.3 Temperature curves for special applications

Besides the standard temperature/time curve further temperature curves are accepted for special applications. The hydrocarbon curve describes fi re damage with fl ammable liquids. In Germany tunnel fi res are simulated accor-ding to the RABT/ZTV Tunnel curve. In the Netherlands they are simulated according to the Rijkswaterstaat Tunnel curve (Fig. 6.5).

The RABT/ZTV Tunnel curve is characte-rised by an increase in temperature up to1200 °C within 5 minutes. An even more severe temperature action is required in accor-dance with the Rijkswaterstaat-Tunnelcurve: 1200 °C over a time of 120 minutes.

6.6.4 Fire tests under real conditions

The fi scher group of companies collaborates in international research projects on fi re beha-viour. In addition to analytical experiments and modelling calculations there is also a focus here on executing fi re tests under real conditi-ons. In this regard, the spectrum extends from small fi re analysis of room fi res and house fi res to the fi re test in a Brenner Motorway tunnel (Fig. 6.2). This fi re test took place in July 2001 as part of a catastrophe-training program near Brixen, Italy.

Three objectives were paramount during the execution of this trial: Determination of the temperature depending on the distance to the concrete surface (Fig. 6.6), the load bearing capacity of the anchors during and after the fi re.

Figure 6.7 shows the test set up. Bergmeister and Rieder published the results of this fi re test /7/.

Figure 6.5: Time/temperature curves [7] ——— (ETK), ——— Hydrocarbon curve, ——— RABT Tunnel curve, ——— Riikswaaterstaat Tunnel curve

Measuring point I → hef Measuring point III → mouth of the hole

Measuring point II → hef/2

Figure 6.6:Temperature measurement on the fi scher Anchor bolt FAZ depen-ding on the distance to the concrete surface

Page 37: 2007_tbe_en_Pages-403-500

Fire Safety in the Fixing Technology

439Status 03/2006

6

Figure 6.7:Setup for the test in the Brenner Motorway tunnel /2/

6.7 Fire test

All standard tests to determine the load bea-ring capacity of anchors are executed in a furnace.

6.7.1 Test set up and test procedure

The spatial enclosure of the furnace consists of either a C20/25 reinforced concrete slab, or of masonry. The anchors are set into these building materials, loaded as defi ned and then exposed to fl ames. The duration of fi re resis-tance indicates the time, an anchor can resist without failure. As the load bearing capacity of an anchor essentially depends on its diameter, the elapsed time to failure is a function of the diameter. The results are on the conservative side, as the tests are executed without protec-tion of the fi xture.

The temperature development must corres-pond to the standard temperature/time curve or to other curves (e.g. fi gure 6.5).

6.7.2 Safety concept

Permissible anchor loads specifi ed in offi cial approvals, only show a fraction of the anchor‘s failure load. This means that variations caused by irregularities in the building material, inac-curate assembly and unforeseen stresses in the structural member are accounted for.

In the fi re test, the failure load is determined under fi re conditions. Here the permissible load is determined from this failure load using a safety factor ≧1.

As diff erent safety concepts are permitted for offi cial fastener and anchor approvals and for fi re test evaluation, it is possible that the permissible load determined for fi re may be higher than that specifi ed by the fastener or anchor approval. Nevertheless the prescri-bed maximum permissible load stated in the anchor approval must be respected.

6.7.3 Modes of failure

At high fi re temperatures, tensile strength and yield strength of the steel and the compressive strength and tensile strength of the concrete are signifi cantly reduced. During fi re tests, using anchors installed in concrete, three dif-ferent modes of failure can occur.

6.7.3.1 Steel failure of fasteners and anchors

As the temperature rises, the strength of the steel is reduced. As soon as the ultimate strength has been reached steel failure occurs outside the base material (Fig. 6.8c). Figure 6.9 illustrates how temperature changes the load-bearing capacity of structural steels. At a temperature of 500 °C the yield strength cor-responds to only 58% of the value measured at ambient temperature.

Two types of steel failure can be observed: steel failure within the cross section and the

Page 38: 2007_tbe_en_Pages-403-500

Fire Safety in the Fixing Technology

440 Status 03/2006

6

“shearing“ of threads of the threaded rod and/or the nut.

Test results /10/ reveal that the steel failure load depends upon the type of steel (carbon steel or stainless steel) and the diameter of the anchor. Accordingly stainless steels perform signifi cantly better at comparable fi re stresses than carbon steels. Anchors with smaller dia-meters fail more quickly than those with large diameters.

6.7.3.2 Concrete failures

The diff erent coeffi cients of expansion of the concrete components (aggregates, cement, water, reinforcement) as well as the high temperature diff erences between the fl amed surface and the deeper layers produce strong stresses. In addition water, physically bound in concrete, vaporizes and thus stresses the concrete. This means particularly that spalling-off can occur in the layers close to the surface (Fig. 6.10).

Spalling-off is strongly infl uenced by the location and size of the reinforcement. The spalling behaviour is signifi cantly aff ected by the reinforcement. A dense reinforcement of

thin bars is more unfavourable than thicker reinforcement bars placed at greater distances from each other. The draft of the German regu-lation ZTV-DNG, part 5, section 4, requires a minimum embedment depth of 65 mm to allow for spalling of the concrete.

As is illustrated in Figure 6.11, the tempera-ture in the concrete decreases with increasing distance from the surface. Thus, the concrete cover represents a temperature protection for the reinforcement. If the concrete cover spalls off , then reinforcement failure should be expected.

New research results /10/ demonstrate that failure due to concrete break-out (Fig. 6.8b) of approved anchors with embedment depths > 40 mm is negligible. Exceptions are anchors that operate on the deformation-controlled principle via the setting of a cone (for example fi scher Hammerset anchor EA). This type of anchors is only approved for anchoring light ceiling claddings and for applications in non-cracked concrete. However in the case of fi re, cracks occur in the concrete. Because of the lack of post expansion capacity, these anchors show a large displacement in cracked conc-rete. Hence the embedment depth is reduced to the extent that concrete break-out of the remaining concrete cover must be taken into consideration.Figure 6.8:

Modes of failure under tension load

Figure 6.9:Behavior of steel depending on the temperature, derived from/9/

Page 39: 2007_tbe_en_Pages-403-500

Fire Safety in the Fixing Technology

441Status 03/2006

6

6.7.3.3 Pull-out / pull-through of metal expansion and undercut anchors

In fi res of long duration, cracks will occur in the interior of the concrete that will run through the drill hole of the anchor. For torque-controlled anchors, suitable for use in cracked concrete, like the fi scher Anchor bolt FAZ, it has been identifi ed that pull-out can only be observed shortly before failure of the concrete member. This is due to the fact that these anchors have a so called post-expansion behaviour: if the drill hole is enlarged by a crack, then the load acting on the anchor pulls the expansion cone deeper into the expansion sleeve and thus the transferable load remains high and a large displacement, as in the case of a deformation-controlled anchor, does not occur.

The same applies for undercut anchors like the fi scher Zykon anchor FZA. The part of the anchor placed in the conical undercut of the drill hole has a signifi cantly larger diameter than that within the cylindrical drill hole. Thus this type of anchor reacts for the most part with no sensitivity to crack formation.

Fire-induced cracks can become larger during or after cool down. In this case, post fi re pull-out failure is possible.

6.7.3.4 Bond failures of chemical anchor systems

In the case of chemical anchor systems, both capsule and injection systems, the mortar softens at high temperature which leads to a bond failure.

Hybrid systems based on vinyl ester resins as used by the fi scher group of companies (fi scher Highbond anchor FHB, Upat UMV Vario injection anchor, Upat UPM 44 Injection mortar or fi scher injection mortar FIS V) reach a maximum short term use temperature of 120 °C. Products based on vinyl ester resins only (Upat UMV multicone, Upat UKA 3 resin anchor or fi scher resin anchor R (Eurobond)) may be used up to a short term temperature of 80 °C. For polyester resin mortar this tem-perature is also 80 °C.

Further studies have shown that in the direct fl aming of bonded anchors that are installed in concrete slabs, the heat advances only slowly along the embedment depth /7/. Figure 6.12 demonstrates how the temperature in the mortar develops depending on the distance to the concrete surface and the fi re duration.

Tests with the bonded expansion system, fi scher Highbond anchor FHB, prove that the

Figure 6.10:Spalling-off of the concrete cover /2/

Figure 6.11:fi scher Anchor bolt FAZ A4 - temperatures over the length of the drill hole after 15 minutes of fi re exposure /2/

Page 40: 2007_tbe_en_Pages-403-500

Fire Safety in the Fixing Technology

442 Status 03/2006

6

load-bearing capacity is only slightly reduced due to the supplemental expansion forces and that the steel failure is decisive. Thus with modern bonded expansion anchors, in the case of fi re, loads similar to that for steel anchors can be applied.

6.7.3.5 Steel failure at temperatures up to 400 °C

In cases where the fastening is exposed to temperatures up to 400 °C, a reduction of steel strength should be considered in the design procedure. This is covered by the draft of the tunnel regulation ZTV-DNG. Relatively high temperatures occur in the vicinity of the source of fi re. Nevertheless equipment such as fans or fume extraction systems must remain usable. This is guaranteed by consideration of higher temperatures for both, the equipment as well as the anchors. Table 6.5 shows the reduction of the yield strength of diff erent stainless steels as a function of the tempera-ture. Corresponding numbers for carbon steel may be found in fi gure 6.9.

6.8 Fire behaviour of fasteners and anchors: the current state of tech-nology

The appropriate values for loads and fi re resistance, depending on the anchor type and application, are specifi ed in the offi cial appro-vals or fi re tests.

6.8.1 Anchors for the anchorage oflightweight suspended ceiling

The fi scher Nail anchor FNA, fi scher Zykon hammerset anchor FZEA, fi scher Hammerset anchor EA and Upat EXA Express anchor are typical anchors for suspended ceilings and comparable redundant systems, for example ventilation ducts and pipe lines. For these applications the load under normal tempera-ture conditions is limited to 0.3 - 1.5 kN per anchor in accordance with the German appro-vals. The permissible load in the case of fi re is given in section 6.10.1.3

6.8.2 Test results for approved heavy duty anchors

The following anchors have been tested for their fi re behaviour: fi scher High performance anchor FH, fi scher Anchor bolt FAZ, fi scher Bolt FBN, fi scher Zykon anchor FZA, fi scher Zykon hammerset anchor FZEA, fi scher Hollow-ceiling anchor FHY, fi scher High-bond anchor FHB, fi scher Injection mortar FIS V, Upat UPM 44 Chemical mortar, Upat UMV Vario injection anchor and Upat EXA

Table 6.5:

Minimum yield strengths [N/mm2] of stainless steels as a func-tion of the temperature /11/

Material 20 °C 100 °C 200 °C 300 °C 400 °C

1.4401 200 175 145 127 115

1.4404 200 165 137 119 108

1.4571 200 185 165 145 135

1.4529 300 230 190 170 160

Figure 6.12:Temperature in the area of the mortar of chemical anchors during a fi re test (Upat UKA 3 Chemical anchor and fi scher Resin anchor R)

Page 41: 2007_tbe_en_Pages-403-500

Fire Safety in the Fixing Technology

443Status 03/2006

6

Express anchor. In the respective tablesshown in section 6.10 the load bearing capacity is listed depending on fi re resistance, anchor diameter and steel quality.

Generally stainless steel off ers more safety in case of fi re than carbon steels. For this reason the classifi cation for anchors produced from stainless steel can be applied without testing from results with carbon steel. The results are conservative. This is exemplifi ed by the test results listed in table 6.6 for Upat UPM 44 Chemical mortar with ASTA M 16 and fi scher Zykon anchor FZA M 12 for the fi re rating class F 90.

Table 6.6: Infl uence of the type of steel on the load capacity (examples for F90)

Designation UPM 44 + ASTA M 16 FZA 18x80 M12

Zinc plated steel [kN] 4.0 2.0

Stainless steel [kN] 5.8 5.0

6.8.3 Evaluation of metal anchors during occurence of fi re according EOTA Technical Report TR 020

In their Technical Report TR 020 the EOTA defi ned a fi re rating guideline for metal anchors. Following ETAG 001 also in TR 020 initially the load directions axial tension and shear are proved separately and after that in combination.

On the one hand TR 020 gives you a pure cal-culational method whose results are clearly on the safe side but do not use the whole capa-city of the anchors.

On the other hand the calculational values can be increased enormously by making fi re rating tests. These values are evaluated in a test report. For the fi rst time such a test report was issued for the fi scher Anchor bolt FAZ II.

Furthermore it should be mentioned that in these test reports the terminology for the fi re resistance classifi cation has been adapted to

European standards. Instead of the old terms F 60, F 90 etc. now the terms R 60, R 90 etc. are to be used.

6.8.4 Test results for approved nylon frame-fi xings with zinc-plated screws

It can be shown in tests that nylon frame-fi xings (Ø 10 mm, screw 7 mm, hef ≥ 50 mm, Fperm ≤ 0.8 kN) made from polyamide PA 6 embedded in the concrete have a fi re resis-tance of at least F 90.

6.8.5 Insulation fi xings and fi xings for external thermal insulation com-posite systems

With regard to the application of insulation fi xings made of plastic they basically do not contribute to fi re spreading due to their spacing in between each other. Following the require-ments of § 26 MBO (Building Ordinance) the minimum requirements for ”normal fl amable building materials” have to be respected [12]. In some cases the applications in escape routes and fi re protecting walls require metal insulation fi xings.

Offi cial Approvals for ETICS (external thermal insulation composite systems) also include the fi xing elements. The use with regard to fi re resistance is only allowed in accordance with the determined conditions of the Approval.

Page 42: 2007_tbe_en_Pages-403-500

Fire Safety in the Fixing Technology

444 Status 03/2006

6

6.9. Anchor applications (examples)

Application suitable fi xing or anchor

Ventilation ducts and ventilation dampers fi scher Nail anchor FNAfi scher Zykon hammerset anchor FZEAfi scher Anchor bolt FAZfi scher Hammerset anchor EAfi scher Concrete screw FBSfi scher Hollow ceiling anchor FHYfi scher Ceiling nail FDN

Lightweight suspended ceilings and similar systems in the intermediate ceiling area

fi scher Zykon hammerset anchor FZEAfi scher Hammerset anchor EAfi scher Nail anchor FNAfi scher Hollow ceiling anchor FHYfi scher Ceiling nail FDNfi scher Concrete screw FBS

Sprinkler systems fi scher Zykon anchor FZAfi scher Zykon hammerset anchor FZEAfi scher Anchor bolt FAZfi scher High performance anchor FHfi scher Hollow ceiling anchor FHYfi scher Hammerset anchor EAUpat EXA Express anchor

Facade sub-constructions made of wood or metal fi scher Universal frame fi xing FURfi scher Long-shaft fi xing SXSfi scher Frame fi xing S-Rfi scher Frame fi xing S-H-R

Insulation fasteners in the area of ventilated facades fi scher Metal retaining disc FATMVfi scher Metal retaining disc FATMAfi scher Insulation support DHMfi scher Fatec Clip combination FAKA Afi scher Insulation support DHK

Cable race ways and heavy pipelines fi scher Anchor bolt FAZfi scher High performance anchor FHfi scher Zykon hammerset anchor FZEAfi scher Highbond anchor FHBfi scher Zykon anchor FZAfi scher Injection mortar FIS VUpat EXA Express-AnkerUpat UMV Vario Injection anchor

Steel constructions fi scher Anchor bolt FAZfi scher Bolt FBNfi scher High performance anchor FHfi scher Highbond anchor FHBfi scher Zykon anchor FZAfi scher Injection mortar FIS VUpat EXA Express anchorUpat UMV Vario injection anchor

Anchorage in masonry fi scher Injection-System FIS VUpat UPM 44 chemical mortar

Page 43: 2007_tbe_en_Pages-403-500

Fire Safety in the Fixing Technology

445Status 03/2006

6

6.10. Overview of certifi ed fasteners and anchors6.10.1 Fire testing according to DIN 41026.10.1.1Applications in cracked concrete

Designation Anchor type Material Max. permissible loads in case of fi re [kN] Test report approval No. *

Certifi cate Application

zincplated

A4 C(1.4529)

F 30 F 60 F 90 F 120 VDS FM

fi scher Highbond anchor FHB ** FHB 10x60 X X 5.0 1.5 - - 3038/8141-1(02.05.2001)

cracked andnon-

cracked concrete

FHB 12x80 X X 7.0 4.0 2.5 -

FHB 12x100 X X 7.0 4.0 2.5 -

FHB 16x125 X X 15.0 7.0 5.0 4.0

FHB 20x170 X X 20.0 9.5 7.0 5.0

FHB 24x220 X X 25.0 12.0 9.5 7.5Upat UMV Vario injection anchor UMV Vario 60 M10 X X 5.0 1.5 - - 3253/02911-1

(02.05.2001)cracked

andnon-

cracked concrete

UMV Vario 80 M12 X X 7.0 4.0 2.5 -

UMV Vario 100 M12 X X 7.0 4.0 2.5 -

UMV Vario 125 M16 X X 15.0 7.0 5.0 4.0

UMV Vario 170 M20 X X 20.0 9.5 7.0 5.0

UMV Vario 220 M24 X X 25.0 12.0 9.5 7.5fi scher Zykon bolt anchor FZA FZA M6 X 1.0 0.5 0.35 0.25 3277/0531-1

(23.11.2001)cracked

andnon-

cracked concrete

FZA M8 X 1.5 0.8 0.5 0.4 X

FZA M10 X 4.5 2.2 1.3 0.9 X X

FZA M12 X 8.5 3.5 2.0 1.5 X X

FZA M16 X 13.5 6.5 4.0 3.0 X X

FZA M6 A4/C X X 2.1 1.2 0.85 0.7

FZA M8 A4/C X X 10.0 4.0 1.8 1.0 X

FZA M10 A4/C X X 18.0 7.0 3.5 2.0 X X

FZA M12 A4/C X X 22.0 9.0 5.0 3.5 X X

FZA M16 A4/C X X 24.0 12.0 7.5 6.0 X Xfi scher Zykon through anchor FZA-D FZA M8 D X 1.5 0.8 0.5 0.4 3277/0531-1

(23.11.2001)X cracked

andnon-

cracked concrete

FZA M10 D X 4.5 2.2 1.3 0.9 X X

FZA M12 D X 8.5 3.5 2.0 1.5 X X

FZA M16 D X 13.5 6.5 4.0 3.0 X X

FZA M8 D A4/C X X 10.0 4.0 1.8 1.0 X

FZA M10 D A4/C X X 18.0 7.0 3.5 2.0 X X

FZA M12 D A4/C X X 22.0 9.0 5.0 3.5 X X

FZA M16 D A4/C X X 24.0 12.0 7.5 6.0 X X

* Detailed information about test reports and approvals please refer to: www.fischer.de/Befestigungssysteme/Produkte/Produktgruppe ... (Download possible)** The fire rating test report for the fischer Highbond anchor FHB II is in progress. Please contact the responsible fischer representation in your country (see chapter

“Service/Contact” page 462 et seqq.

Page 44: 2007_tbe_en_Pages-403-500

Fire Safety in the Fixing Technology

446 Status 03/2006

6

Designation Anchor type Material Max. permissible loads in case of fi re [kN] Test report approval

No. *

Certifi -cate

Application

zincplated

A4 C(1.4529)

F 30 F 60 F 90 F 120 VDS FM

Tension load

Shear load

Tension load

Shear load

Tension load

Shear load

Tension load

Shear load

fi scher Zykon internally threaded anchor FZA-I

FZA M6 I X 1.0 - 0.5 - 0.35 - 0.25 - 3277/0531-1(23.11.2001)

cracked andnon-

cracked concrete

FZA M8 I X 1.5 - 0.8 - 0.5 - 0.4 - X

FZA M10 I X 4.5 - 2.2 - 1.3 - 0.9 - X X

FZA M12 I X 8.5 - 3.5 - 2.0 - 1.5 - X X

FZA M6 I A4/C X X 2.1 - 1.2 - 0.85 - 0.7 -

FZA M8 I A4/C X X 10.0 - 4.0 - 1.8 - 1.0 - X

FZA M10 I A4/C X X 18.0 - 7.0 - 3.5 - 2.0 - X X

FZA M12 I A4/C X X 22.0 - 9.0 - 5.0 - 3.5 - X Xfi scher Zykon hammerset anchor FZEA FZEA 10x40 M8 X X - - 0.7 - - 23 0663 6

95-1(vom

11.11.1996und

14.09.1999)

X cracked andnon-

cracked concrete

FZEA 10x40 M10 X X - - 1.0 - - X X

FZEA 10x40 M12 X X - - 1.5 - - X

fi scher Anchor bolt FAZ FAZ 8 II X 1.25 1.8 1.2 1.6 0.9 1.3 0.8 1.2 PB III / B-05-001 of

10.02.05

X cracked andnon-

cracked concrete

FAZ 10 II X 2.25 3.6 2.25 2.9 1.9 2.2 1.6 1.9 X X

FAZ 12 II X 4.0 6.3 4.0 4.9 3.2 3.5 2.8 2.8 X X

FAZ 16 II X 9.4 11.7 7.7 9.1 6.0 6.6 5.2 5.3 X X

FAZ 8 A4/C X X 1.7 - 1.7 - 1.7 - 1.7 - PB III/B-02-316

(31.01.2003)

X cracked andnon-

cracked concrete

FAZ 10 A4/C X X 2.5 - 2.5 - 2.5 - 2.5 - X X

FAZ 12 A4/C X X 4.5 - 4.5 - 4.5 - 4.5 - X X

FAZ 16 A4/C X X 8.0 - 8.0 - 8.0 - 8.0 - X Xfi scher High performance anchor FH FH 10 B / S / H X 0.4 - 0.4 - 0.4 - - 3355/0530-2

(25.05.2000)cracked

andnon-

cracked concrete

FH 12 B / S / H / SK X 0.6 - 0.6 - 0.6 - - X X

FH 15 B / S / H / SK X 1.5 - 1.5 - 1.5 - - X X

FH 18 B / S / H X 2.0 - 2.0 - 2.0 -- - X X

FH 24 B / S / H X 4.5 - 4.5 - 4.0 -- - X Xfi scher Concrete screw FBS FBS 8 X - - 0.8 - 0.8 - 902 070 000

(25.06.2002)cracked

andnon-

cracked concrete

FBS 10 X - - 1.0 - 1.0 -

FBS 10 A4/C X X - - 1.5 - 1.5 -

fi scher Hollow-ceiling anchor FHY FHY M6 X 1.0 - 0.45 - 0.28 - 0.2 - 3566/3321(21.06.2002)

only for prestressed hollow-core

concrete slabs

FHY M9 X 1.6 - 1.0 - 0.75 - 0.6 - X

FHY M10 X 2.5 - 1.65 - 1.3 - 1.1 - X

* Detailed information about test reports and approvals please refer to: www.fischer.de/Befestigungssysteme/Produkte/Produktgruppe ... (Download possible)

Page 45: 2007_tbe_en_Pages-403-500

Fire Safety in the Fixing Technology

447Status 03/2006

6

6.10.1.2 Applications in non-cracked concrete further anchor types compare section 6.1.1.1

Designation Anchor type Material Max. permissible loads in case of fi re [kN] Test report approval No. *

Certifi cate Application

zincplated

A4 C(1.4529)

F 30 F 60 F 90 F 120 VDS FM

fi scher Bolt FBN FBN 8 X 0.5 0.5 0.5 - 3355/0530-4(23.06.2000)

non-cracked concrete

FBN 10 X 1.3 1.3 1.3 -

FBN 12 X 1.8 1.8 1.8 -

FBN 16 X 4.0 4.0 4.0 -

FBN 20 X 7.0 7.0 7.0 -Upat EXA Express anchor EXA M8 X 0.8 0.8 0.7 0.5 3268/1095-3

(21.02.1996)X non-

cracked concrete

EXA M10 X 0.8 0.8 0.8 0.8 X

EXA M12 X 0.8 0.8 0.8 0.8 XUpat UPM 44 Chemical mortar UPM 44 M8 X 1.9 0.8 0.3 0.15 3253/0291-3

(10.01.2002)non-

cracked concrete

UPM 44 M10 X 4.5 2.1 1.0 0.6

UPM 44 M12 X 8.5 3.6 2.1 1.5

UPM 44 M16 X 13.5 6.4 4.0 3.0

UPM 44 M20 X 21.0 10.0 6.0 4.5

UPM 44 M24 X 30.0 14.0 9.0 6.5

UPM 44 M30 X 45.0 22.0 14.0 10.0

UPM 44 M8 A4/C X X 4.3 0.8 0.3 0.15

UPM 44 M10 A4/C X X 7.5 2.1 1.0 0.6

UPM 44 M12 A4/C X X 11.0 5.7 3.9 3.0

UPM 44 M16 A4/C X X 25.0 10.0 5.8 4.0

UPM 44 M20 A4/C X X 32.0 15.0 9.0 6.0

UPM 44 M24 A4/C X X 45.0 22.0 13.0 9.0

UPM 44 M30 A4/C X X 70.0 35.0 20.0 14.0fi scher Injection mortar FIS V FIS G M8 X 1.9 0.8 0.3 0.15 3038/8141-3

(10.01.2002)non-

cracked concrete

FIS G M10 X 4.5 2.1 1.0 0.6

FIS G M12 X 8.5 3.6 2.1 1.5

FIS G M16 X 13.5 6.4 4.0 3.0

FIS G M20 X 21.0 10.0 6.0 4.5

FIS G M24 X 30.0 14.0 9.0 6.5

FIS G M30 X 45.0 22.0 14.0 10.0

FIS G M8 A4/C X X 4.3 0.8 0.3 0.15

FIS G M10 A4/C X X 7.5 2.1 1.0 0.6

FIS G M12 A4/C X X 11.0 5.7 3.9 3.0

FIS G M16 A4/C X X 25.0 10.0 5.8 4.0

FIS G M20 A4/C X X 32.0 15.0 9.0 6.0

FIS G M24 A4/C X X 45.0 22.0 13.0 9.0

FIS G M30 A4/C X X 70.0 35.0 20.0 14.0fi scher Universal frame fi xing FUR FUR 10 1) X X 1.6 - 0.8 - 3705/4711

(23.11.2001)non-

cracked concrete

FUR 10 2) X X 1.6 - 1.4 0.8

FUR 10 3) X X 1.6 - 1.6 0.8

* Detailed information about test reports and approvals please refer to: www.fischer.de/Befestigungssysteme/Produkte/Produktgruppe ... (Download possible)1) Angle of load 10°2) Angle of load 70°3) Angle of load 90°

Page 46: 2007_tbe_en_Pages-403-500

Fire Safety in the Fixing Technology

448 Status 03/2006

6

6.10.1.3 Fixings for lightweight suspended ceilings or statically comparable redundant applications

Designation Anchor type Material Max. permissible loads in case of fi re [kN] Test report approval No. *

Certifi cate Application

zincplated

A4 C(1.4529)

F 30 F 60 F 90 F 120 VDS FM

fi scher Concrete screw FBS FBS 5 X - - 0.2 0.2 902 070 000(25.06.2002)

Suspended ceilingsFBS 6 X - - 0.5 0.3

FBS 8 X - - 0.8 0.8fi scher Ceiling nail FDN FDN 6/35 X - 0.4 0.25 Z-21.1-1731

(05.07.2002)Suspended

ceilingsFDN 6/65 X - 0.4 0.25

fi scher Nail anchor FNA FNA 6x30 X X X - - 0.25 0.25 Z-21.1-606(03.04.2002)

Suspended ceilingsFNA 6x30 M6 X X X - 0.35 0.25 -

FNA 6x30 M8 X X X - 0.35 0.25 -

FNA 6x40 M6 X X X - 0.5 0.25 -

FNA 6x40 M8 X X X 0.5 0.25 -fi scher hammerset anchor EA EA M6 1) X - - - 0.1 Z-21.1-1619

(01.01.1998)Suspended

ceilings and non-cracked concrete

EA M8x40 X - - 0.8 0.7 X

EA M10 X - - 0.8 0.8 X X

EA M12 X - - 0.8 0.8 X X

* Detailed information about test reports and approvals please refer to: www.fischer.de/Befestigungssysteme/Produkte/Produktgruppe ... (Download possible)1) GU III/B-02-035 (vom 12.08.2002)

6.10.1.4 Fixings for masonry

Designation Anchor type Material Max. permissible loads in case of fi re [kN] Test report approval No. *

Certifi cate Application

zincplated

A4 C(1.4529)

F 30 F 60 F 90 F 120 VDS FM

fi scher Injection mortar FIS V FIS V M8 X X 1.91) 0.81) 0.51) 0.41) 3355/0530-5(21.05.2001)

Masonry

FIS V M10 X X 4.01) 1.81) 1.01) 0.71)

FIS V M12 X X 5.01) 2.71) 1.51) 1.01)

Upat UPM 44 Chemical mortar UPM 44 M8 X X 1.91) 0.81) 0.51) 0.41) 3354/0520-5(21.05.2001)

Masonry

UPM 44 M10 X X 4.01) 1.81) 1.01) 0.71)

UPM 44 M12 X X 5.01) 2.71) 1.51) 1.01)

* Detailed information about test reports and approvals please refer to: www.fischer.de/Befestigungssysteme/Produkte/Produktgruppe ... (Download possible)

Page 47: 2007_tbe_en_Pages-403-500

Fire Safety in the Fixing Technology

449Status 03/2006

6

6.10.2 Fixings for claddings

Designation Anchor type Material Max. permissible loads in case of fi re [kN] Test report approval No. *

Certifi cate Application

zincplated

A4 C(1.4529)

F 30 F 60 F 90 F 120 VDS FM

fi scher Universal frame fi xing FUR FUR 8 X X - - 0.8 - Z-21.2-1204(10.04.2000)

Claddings

FUR 10 X X - - 0.8 -

fi scher Longshaft fi xing SXS SXS 10 X X - - 0.8 - Z-21.2-1695(23.03.2001)

Claddings

fi scher Frame fi xing S-R S 8 R X X - - 0.51) - Z-21.2-9(02.08.2000)

Claddings

S 10 R X X - - 0.81) -

S 12 R X X - - 1.01) -

S 14 R X X - - 1.21) -fi scher Frame fi xing S-H-R S 10 H-R X X - - 0.42) - Z-21.2-9

(02.08.2000)Claddings

S 14 H-R X X - - 0.62) -

* Detailed information about test reports and approvals please refer to: www.fischer.de/Befestigungssysteme/Produkte/Produktgruppe ... (Download possible)1) Values valid for concrete: for other materials refer to approval certificate2) Values valid for hollow calcium silicate bricks (KSL): for other materials refer to approval certificate

6.10.3 Fire test according to ZTV-Tunnel

Designation Anchor type Material Max. centric tensile load Test report approval No. *

Certifi cate Application

zincplated

A4 C(1.4529) [kN]

VDS FM

fi scher Highbond anchor FHB C FHB 12x100 C X 2.0 3038/8141-2(12.10.2001)

cracked andnon-

cracked concrete

FHB 16x125 C X 5.0

Upat UMV Vario injection anchor UMV Vario 100 M12 S

X 2.03253/0291-2(12.10.2001)

cracked andnon-

cracked concrete

UMV Vario 125 M16 S

X 5.0

fi scher Anchot bolt FAZ FAZ 8C X 1.2 PB III/B-04-289(04.08.2003)

cracked andnon-

cracked concrete

FAZ 10C X 2.3

FAZ 12C X 3.2

FAZ 16C X 6.2fi scher Nail anchor FNA FNA 6x30 A4 X 0.25 3439/5843

(04.08.2003)fi re-

proofi ng panels

6.10.4 Post-installed rebar connections with Injection mortar FIS VFor detailed information see pages 430 and 431.

Page 48: 2007_tbe_en_Pages-403-500

Fire Safety in the Fixing Technology

450 Status 03/2006

6

6.11. References

/1/ 25. VDS- Brandschutzseminar (Seminar Fire protection), 24./25. 3. 1998 in Cologne (in German)

/2/ Tunnelbrandversuch (Tunnel fi re test 2001), unpublished presentation, fi scher group of companies (in German)

/3/ VdS Fachtagung „Brandschutz aktuell“ (Seminar „Fire Protection Actual“), 21.10.97 in Cologne (in German)

/4/ Allgemeine bauaufsichtliche Zulassung fi scher Einschlaganker (German Appro-val for fi scher Hammerset anchor EA), Z-21.1-16-19 (in German)

/5/ Herzog, I.: DIBt, Informationen zur Ein-führung des europäischen Klassifi zie-rungssystems für den Brandschutz (im nichtamtlichen Teil der Bauregelliste) (Information on the introduction of the European classifi cation system for the fi re protection (in non-offi cial part of the construction regulatory list)) (in German)

/6/ Nause, P.: INK-Bau-Fachtagung 153 (IBK-Building-Seminar 153), 14./15. 10. 1992 (in German)

/7/ Bergmeister K., Rieder A.,: Behaviour of post-installed anchors in case of fi re. Connections between steel and conc-rete, Stuttgart, 12.09.2001

/8/ fi scher, Technical Handbook, 4. edition 2001

/9/ DIN 4102 Teil 4, Ausgabe 1994 (in German)

/10/ Reick, M.: Brandverhalten von Befes-tigungen mit großem Randabstand in Beton bei zentrischer Zugbeanspru-chung (Fire behaviour of fastenings with large edge distance in concrete under tensionload), Mitteilungen des Instituts für Werkstoff e im Bauwesen der Universität Stuttgart, 2001/4 (in German)

/11/ Euronorm EN 10088-3d

/12/ Sgodzai, H. (2003) Schreiben vom 07.02.2003 an den Fachverband Baustoff e und Bauteile für vorgehängte, hinterlüftete Fassaden e. V.

Fire Safety in the Fixing Technology

Page 49: 2007_tbe_en_Pages-403-500

451Status 03/2006

7

Corrosion

7.1 Basic principles ................................................................... 452

7.2 Types of corrosion .............................................................. 452

7.3 Corrosion protection ......................................................... 453

Page 50: 2007_tbe_en_Pages-403-500

Corrosion

452 Status 03/2006

7

7.1 Basic principles

With the exception of noble metals such as gold, silver and platinium, all metal materials subjected to various atmospheric conditions react with oxygen. As a result of this reaction two phenomena occur.

1. The products of this reaction form an ini-tial oxydized layer on the surface preventing further corrosion. Thus forming a passivated layer protecting the material from further negative infl uencees. Due to this mechanism metals with a less noble characteristic are very quickly oxydized through contact with the air and therefore have a very good long term durability. Typical examples are aluminium, chromium and titanium.

2. The products of this reaction are porous and do not form a protective layer against oxygen, water or carbon dioxide. This results in a continuing corrosion process which leads to complete break down of the material. An example of this mechanism is rust due to cor-rosion of iron in the air.

Metals referring to 1. do not require additional corrosion protection. Carbon steels as descri-bed in 2. require additional protection against atmospheric attack in order to sustain their long term performance.

7.2 Types of corrosion

I. Surface corrosion

The material‘s surface is continually in contact with the corrosive medium and corrodes at

a constant rate. The rate of corrosion can be estimated over a certain duration of time and therefore can be considered in the overall life expectancy of the material. The best kown example of this type of corrosion is zinc and air.

II. Load corrosion - pitting and crevice cor-rosion

Pitting occurs when the surface passivation (e. g. aluminium or stainless steel) is damaged. In the region of the initial attack very aggressive zones are formed from which further damage of the material occurs. Also as in the above example when cracks or deposits are found localized electrolytes lead to very extreme corrosion.

III. Bimetallic corrosion

Bimetallic corrosion may occur when the dissimilar metals (Table 7.1) are in electrical contact in a common electrolyte (e. g. rain, condensation etc.). If a current fl ows between the two, the less noble metal (the anode) cor-rodes at a faster rate than would have occured if the metals were not in contact.

Alternativelly nobler metals can be protected from corrosion by connecting them electri-cally conductive to a less noble metal (typical examples are aluminium anodes for steel parts).

IV. Stress corrosion cracking

With stress corrosion cracking the agressive medium is insuffi cient for the products of

Table 7.1 Potential (in [V]) of various metals

Aluminium Titanium Zinc Chromium Iron Tin Copper Silver Gold

–1.66 –0.95 –0.76 –0.74 –0.41 –0.14 +0.34 +0.80 +1.50

Page 51: 2007_tbe_en_Pages-403-500

Corrosion

453Status 03/2006

7

corrosion to occur. A simultaneous presence of tensile stresses and specifi c environmental factors are required for this process to occur. The stresses can be due to external or internal imposed loading. Stress corrosion cracking is extremely dangerous as visible indication is not possible and therefore can lead to a spon-taneous failure. A common form of this type of corrosion is where austenitic stainless steel is found in chlorine contaminated atmospheres such as indoor swimming pools.

7.3 Corrosion protection

Two basic measures are available for the pro-tection of materials which may be subjected to corrosion.

1. With suitable surface treatments of the material an attack of the corrosive medium is prevented. Examples of corrosion protections of steel are coatings and zinc plating or hot-dip galvanising. These methods are examples of economical protective coatings. The long term protection can only be achieved so long as no surface damage occurs.

2. Choosing materials that prevent the onset of corrosion is more eff ective than additional protective coatings. A popular measure is to add chromium or molybdenium. These addi-tional materials insure long term performance even in severe conditions.

Subject to the installation environment steel anchors may be protected from corrosion by various means. fi scher uses two standard protective coatings and further corrosion prohibitive materials which are suffi cient for diff erent applications. Should other national regulations exist in your country these must be taken into consideration as well.

I. Zinc plating

Due to the atmospheric conditions zinc forms a dense layer on the surface which provides further protection. In the electro-potential

table (compare Table 7.1) zinc is found to have a considerably higher negative potential than iron i. e. zinc is the lesser noble of the two materials. These two phenomena make zinc an ideal corrosion protection partner for iron (technical: steel). This dense coating prevents the direct contact of the corrosive medium on steel. The lesser noble character of zinc off ers a so-called cathodic protection with a self „healing“ eff ect. Suffi cient corrosion pro-tection is achieved even with small areas of damage of the coating.

a) Galvanised zinc plating

Galvanising is carried out by an electro-chemi-cal process where a thin zinc layer is attached to the steel component. By controlling certain reaction parameters (e. g. pH-Value, tempera-ture, concentration...) a defi nite characteristic in particular the coating thickness is possible. The type of passivation dictates the long term stability of the total coating. The darker the colour the better the protection.

fi scher products have a minimum zinc plating 5 µm and yellow or blue passivation. This pro-vides suffi cient protection for transportation even in unfavourable conditions, also for long term protection for internal applications.

b) Hot-dip galvanising

Electro-chemical galvanising produces thick-nesses of maximum 15 to 20 µm. For greater thicknesses where higher corrosion protec-tion is required, further processes should be considered.

Generally to provide greater coating thickness (up to 80 µm, in certain cases more) the steel componets are dipped into liquid zinc (mel-ting point 420 °C). Further treatments are not required and therefore the product may be used for the application. In certain cases due to capilliary action, zinc is collected in areas such as threads <10 mm which may infl uence the functioning of the anchor. For these situ-

Page 52: 2007_tbe_en_Pages-403-500

Corrosion

454 Status 03/2006

7

ations mechanical zinc plating (e. g. sheradi-zing, Mc-Dermid-method) is used. Using this process provides similar coating thickness and thus similar protection as hot-dip galvanising. Negative collection of zinc by using this pro-cess is avoided. Hot-dip galvanised products can be used for external applications with reduced corrosion requirements. This provides an economical alternative to stainless steels.

All fi scher products with hot-dip galvanising have a minimum coating thickness of 40 µm.

II. Corrosion resistant steels

a) Austenetic stainless steels As long term corrosion-free material the construction industry uses a stainless steel grade 316 (A4) such as the material number 1.4401 or 1.4571 and 1.4404 (Table 7.2) off ering optimum corrosion protection for general environmental conditons and also industrial atmospheres.

fi scher standard products in stainless steel are available in the material number 1.4401 (grade 316, classifi cation A4, DIN EN10 088). Further stainless steels are available on request, e. g. material number 1.4571 and 1.4404.

The materials described above are not sui-table for chlorine contaminated atmospheres or off -store applications.

b) Special alloying metals

Should austenetic standard stainless steels not provide suffi cient corrosion protection, special materials may be considered. Examples of where the previously described A4 stainless steels are unsuitable are chlorine contamina-ted atmospheres, traffi c tunnels, power sta-tions or water works. For applications such as these the fi scher Technical services department can provide specifi c details for special applications. Examples are solutions for fi xings in indoor swimming pools (chlorine contaminated atmosphere), using the follo-wing material numbers 1.4529 or 1.4565 or titanium anchors for power stations.

Table 7.2:Alloying constituents of selected austenic stainless steels (all values in percentages)

Cr Ni Mo Ti N

1.4401 X5 Cr Ni Mo 17 12 2 16.5 – 18.5 10.5 – 13.5 2 – 2.5 – —

1.4404 X2 Cr Ni Mo 17 13 2 16.5 – 18.5 11 – 14 2 – 2.5 – —

1.4571 X6 Cr Ni Mo Ti 17 12 2 16.5 – 18.5 10.5 – 13.5 2 – 2.5 <0.8 —

1.4529 X1 Cr Ni Mo Cu N 25 206 19 – 20 24 – 26 6 – 7 – 0.1 – 0.25

1.4565 X2 Cr Ni Mo N 23 17 64 21 – 25 15 – 18 3 – 4.5 — 0.3 – 0.5

Page 53: 2007_tbe_en_Pages-403-500

455Status 03/2006

8

Service / Contact

International Technical Service (Support) ............................... 456

CC-COMPUFIX ................................................................................ 457

SaMontec ........................................................................................ 458

ACT .................................................................................................... 459

Contact ............................................................................................. 460

Page 54: 2007_tbe_en_Pages-403-500

Service / Contact

456 Status 03/2006

8

International Technical Service (Support)

This Technical Manual gives you some insight into fi xing engineering in general, and into the special products by fi scherwerke in detail. The Technical Data will show you the effi ciency of the products when selected properly and when used under the defi ned parameters and ambient conditions.

Besides their COMPUFIX design software, fi scherwerke also off er you their world-wide application service. Our engineers will be ple-ased to help you to solve your special appli-cation problems. If you need support just contact our local fi scher representation. In case of a special application problem please contact the International Technical Service in Germany.

We also off er training seminars which, suited to your individual needs and requirements, are designed to back your confi dence in fi scher products.

Contact us:

fi scherwerkeArtur FischerGmbH & Co.KG

Phone +49 74 43 12-41 99Fax +49 74 43 12-89 89 e-mail: intsupport@fi scher.de

Page 55: 2007_tbe_en_Pages-403-500

Service / Contact

457Status 03/2006

8

CC-COMPUFIXDesign Software for anchors

▯ For design of steel and nylon anchors based on the CC-Method according to the fi scher Technical Handbook and European Technical Approvals

▯ For predominantly static and dynamic loads (pulsating and alternating)

▯ Takes into account torsion moments on anchor groups close to an edge

▯ Considers single anchors and groups of two to six anchors

▯ Allows the design of asymmetrical con-nections

▯ Permits bending of the anchors

▯ Covers design of zinc plated and passiva-ted steel, stainless steel A4 (grade 316) and highly corrosion-resistant steel (mate-rial no 1.4529)

▯ Allows the design of the fi xture (steel plate) for diff erent steel types considering various types of profi les

▯ Gives information on installation details and makes the full text of European Tech-nical Approvals available

▯ Generates a detailed printout including a scaled drawing of anchors and steel plate

▯ Off ers the most up-to-date version through LifeUpdate

System requirements:

▯ IBM compatible PC, recommended: Pen-tium processor

▯ RAM: 32 MB

▯ Graphics board: True colour (24 bit)

▯ Minimum screen size: 800 x 600 pixel

▯ CD-Rom drive

▯ Operating system: Windows 98/2000, XP, Windows NT 4.0 (SP6), Internet Explorer 4

Page 56: 2007_tbe_en_Pages-403-500

Service / Contact

458 Status 03/2006

8

Ins tal lat ionsys tems

Pipe support system for the installati-on and mounting of pipes in commer-cial, industrial and residential buildings

Channels

Installationgrid

Pipe clamps

fi scher SaMontec 3.1 design software

▯ Calculations for the complete installation of pipe work systemes

▯ Accurate dimension calculations for diff erent applications

▯ Technical installation dimensions for the fi scher SaMontec system (pipe clips, bars etc.)

▯ All the entered data is processed using the actual values

▯ Continuous backround calculations are permanently

carried out to ensure overall accuracy

▯ An individual project directory available

▯ Live internet access facility to update current programmes

▯ Multi-language facility to calculate in one language and print in another

fi scher Installation Grid System –Flexible installation choices for positioning machinery and equipment

▯ By using the fi scher SaMontec Grid, a separate installation level can be constructed above the work space

▯ Fast installation, low assembly costs

▯ Highly fl exible choices and options for changing machine layout

▯ User friedly media

▯ New viewing facility to aid optical designs

▯ Designed to support future alternations to the existing grid systm

▯ Design, planning and creation is supported by qualifi ed engineers from the technical sales support departement

Page 57: 2007_tbe_en_Pages-403-500

Service / Contact

459Status 03/2006

8

fi scher ACT system – the key to new façade aesthetics

With its ACT System (Advanced Curtain wall Technique), fi scher off ers architects and spe-cifi ers an innovative, high-quality, all-inclusive system for fi xing ventilated claddings of natu-ral stone, cast stone, ceramic, fi ne stoneware, HPL, fi bre cement as soon as point-fi xed glass facades.

Apart from technical and fi nancial advantages, the ACT System also provides a

particularly extensive scope for architectural design. For example, ACT allows the use of facade natural stone panels from 20 mm in thickness, free positioning of the anchor anywhere on the back face of the panel and easy replacement of all or individual panels. Even reveal panels can be attached with ease and in many diff erent ways. ACT’s aesthetic highlight is its undercut technology combi-

ned with the FZP fi scher zykon panel, which ensures that there are no visible fi xing ele-ments at the joint. Small fi xing point diameter without penetration of cladding.

Complete service from a single source The ACT System is not restricted to innovative fi xing products

– this is only the start. Fixing specialists at the ACT Competence Centres off er architects, specifi ers and crafts-men comprehensive support, from the plan-ning stage and static calculations through to on-time delivery to the site. Their service also includes provision of design software and instruction for users, as well as advice in selecting the appropriate fi scher drilling machines.

ACT Service:fi scherwerke Artur Fischer GmbH & Co. KGWerk Salzstetten · Wolfäcker 1D-72178 Waldachtal · GermanyTel. +49 74 43 12-45 53 Fax +49 74 43 12-49 07act@fi scher.de · www.fi scher.de

A C TAdvanced Curtain wall Technique

Page 58: 2007_tbe_en_Pages-403-500

Service / Contact

460 Status 03/2006

8

fi scherwerkeArtur Fischer GmbH & Co. KGD – 72178 WaldachtalTel. +49 74 43 12 – 0 Fax +49 74 43 12 – 42 22www.fi scherwerke.com

AFGHANISTANIngenieurbüro Kabiri, Kehl (Germany)Tel. +49 78 51 48 23 44 Fax +49 78 51 48 39 43e-mail: [email protected]

ALBANIAin the area of responsibility from fi scher Austria GmbH

ALGERIAHaddad Equipment Professional, AlgierHaddad Equipment Professional, AlgierTel.: +21 3 21 85 49 05Tel.: +21 3 21 85 49 05

ARGENTINAfi scher Argentina S. A., Buenos AiresTel. +54 11 47 62 27 78 Fax +54 11 47 56 13 11e-mail: soledadlessi@fi scher.com.ar

AUSTRALIAMetabo Pty Ltd., ScoresbyTel. +61 3- 97 65 01 99 Fax +61 3 97 65 01 89e-mail: [email protected]

AUSTRIAfi scher Austria GmbH, TraiskirchenTel. +43 2 25 25 37 30 Fax +43 2 25 25 31 45e-mail: birgit.magdits@fi scher.at

BAHAMASM. + R. Herzog, NassauTel. +12 4 23 25 05 07 Fax +12 4 23 2 48 92

BAHRAINM.H. Al Mahroos BSC (c)Tel. +97 3 17 40 80 60 Fax +97 3 17 40 43 23e-mail: [email protected]

BANGLADESHAbedin Equipment Ltd., DhakaTel. +88 02 9 55 96 31 Fax +88 02 9 56 06 80e-mail: [email protected]

BARBADOSD.B.W. Incorporated, BridgetownTel. +12 4 64 29 40 83 Fax +12 4 64 30 47 01

BELGIUMfi scher cobemabel s. a., MechelenTel .+32 15 28 47 00 Fax +32 15 28 47 10e-mail: info@fi scherbelgium.be

BOSNIA-HERZEGOVINAin the area of responsibility from fi scher Austria GmbH

BRAZILfi scher brasil, Rio de JaneiroTel. +55 21 24 67 87 96 Fax +55 21 24 67 11 30e-mail: soledadlessi@fi scher.com.ar

Böllhoff Service Center Ltda., Sao PauloTel. +55 11 69 71 59 00 Fax +55 11 69 71 59 40e-mail: markus.bollhoff @netpoint.com.br

BULGARIAin the area of responsibility from fi scher Austria GmbH

CANADACanadian Fasteners Hegedus Ltd., MontrealTel. +15 14 3 81 34 31 Fax +15 14 3 81 36 88e-mail: [email protected]

Wm. P. Sommerville Ltd., BurnabyTel. +16 0 42 98 36 22 Fax +16 0 42 98 59 26

CHILEAmerican screw de Chile S.A., SantiagoTel.: +56 24 40 70 40 Fax: +56 24 40 70 42e-mail: [email protected]

Page 59: 2007_tbe_en_Pages-403-500

Service / Contact

461Status 03/2006

8

CHINAfi scher (Taicang) fi xings Co. Ltd., ShanghaiTel. +86 21 65 15 64 76 Fax +86 21 61 22 15 89e-mail: fi cn@fi scher.com.cn

CROATIAin the area of responsibility from fi scher Austria GmbH

CYPRUSPhanos N. Epiphaniou Ltd., Pallouriotissa NicosiaTel. +35 7 22 79 33 33 Fax +35 7 22 43 15 34e-mail: [email protected]

CZECH REPUBLICfi scher international s.r.o., Brandýs nad LabemTel. +42 03 26 90 46 01 Fax +42 03 26 90 46 00e-mail: josef.sirinek@fi scherwerke.cz

fi scher Vyskov spol. s.r.o., Ivanovice na HaneTel. +42 05 17 36 39 25 Fax +42 05 17 36 31 68e-mail: info@fi scher-vyskov.cz

DENMARKfi scher a/s, RoskildeTel. +45 46 32 02 20 Fax +45 46 36 67 72e-mail: fi dk@fi scher-skandinavien.dk

ESTONIAIndustek AS, TallinTel. +37 26 14 02 60 Fax +37 26 14 02 61e-mail: [email protected]

Satter AS, TallinTel. +37 26 51 76 41 Fax +37 26 56 34 75e-mail: [email protected]

Rautakesko AS, TallinTel. +37 26 74 79 35 Fax +37 26 74 79 10e-mail: [email protected]

EGYPTModern Machines & Materials Co., Cairo-CityTel. +20 23 03 02 51 Fax +20 27 49 34 36e-mail: [email protected]

FINLANDfi scher Suomi sivulike, EspooTel. +35 8 94 52 01 00 Fax +35 89 45 20 10 20e-mail: jorma.makkonen@fi scherfi nland.fi

FRANCEfi scher S.A.S., Strasbourg–CedexTel. +33 3 88 39 18 67 Fax +33 3 88 39 80 44e-mail: info@fi scher.fr

GREAT BRITAINFischer fi xings UK Ltd., WallingfordTel. +44 14 91 82 79 00 Fax +44 14 91 82 79 53e-mail: info@fi scher.co.uk

GREECEFilpro Anthopoulos S. A., PiraeusTel. +30 21 04 81 10 64 Fax +30 21 04 81 26 88e-mail: anthopoulus@fi lpro.gr

Antzoulatos Group of Companies, PatraTel. +30 26 10 52 51 07 Fax +30 26 10 52 54 85e-mail: [email protected]

GUATEMALAFijaciones S.A. Tel.: +50 23 60 74 06 Fax.: +50 23 32 23 02 e-mail: [email protected]

HONDURASPrecursora Comercial, S. de R.L., San Pedro SulaTel. +50 45 59 73 84 e-mail: [email protected]

HONG KONGInfrascan Limited, Chai WanTel. +85 2 28 98 26 68 Fax +85 2 28 98 23 38e-mail: [email protected]

HUNGARYfi scherwerke Artur Fischer GmbH & Co. KG, BudapestTel. +36 12 80 83 31 Fax +36 12 80 83 29e-mail: fi scher.ma@fi scherhungary.axelero.net

Page 60: 2007_tbe_en_Pages-403-500

Service / Contact

462 Status 03/2006

8

ICELANDByko, KopavogurTel. +35 45 15 40 88 Fax +35 45 15 40 99e-mail: [email protected]

INDIAMotor Industries Co. Ltd., BangaloreTel. +91 8 02 99 21 38 Fax +91 8 02 21 37 06e-mail: [email protected]

INDONESIAPt. Bersama Bangun Persada, JakartaTel. +62 21 46 82 70 16 Fax +62 21 46 83 47 70e-mail: [email protected]

IRANAbzarsara Co., TeheranTel. +98 21-8 82 84 20 Fax +98 21-8 30 14 86e-mail: [email protected]

IRELANDMasonry Fixing Servervices Ltd., DublinTel. +35 3 16 26 83 91 Fax +35 3 16 26 34 93e-mail: bryan@masonryfi xings.ie

ISRAELLedico Ltd., HolonTel. +97 2 39 63 00 00 Fax +97 2 39 63 00 55e-mail: [email protected]

ITALYfi scher italia S . R. L., Padova - Z. I. Sud Tel. +39 04 98 06 31 11 Fax +39 04 98 06 33 95e-mail: debora.sinnone@fi scheritalia.it

JAPANMinegishi Co. Ltd., OsakaTel. +81 6 64 58 71 61 Fax +81 6 64 58 71 65e-mail: [email protected]

JORDANIzzat Marji & Sons Co., AmmanTel. +96 2 65 52 02 84 Fax +96 2 65 52 02 94e-mail: [email protected]

KAZAKHSTANZentr. Krepyoshnych Materialov, AlmatyTel. +73 2 72 59 74 84 Fax +73 2 72 59 74 85e-mail: [email protected]

Lamed Ltd., AlmatyTel. +73 2 72 49 26 00 Fax +73 2 72 49 65 60e-mail: [email protected]

KOREAfi scher Korea Co., Ltd., SeoulTel. +82 2 37 80 46 92 Fax +82 27 96 46 92e-mail: fi [email protected]

KUWAIT M/S Safi na Al Najjat Co., SafatTel. +96 54 81 87 86 Fax +96 54 81 83 85e-mail: safi [email protected]

LATVIASia Indutek LV, RigaTel. +37 17 80 49 49 Fax +37 17 80 49 48e-mail: [email protected]

LEBANONTeam-Pro S. A. L., BeirutTel. +96 11 24 90 88 Fax +96 11 24 90 98e-mail: [email protected]

LITHUANIAUAB Augrika, VilniusTel. +37 0 52 64 06 00 Fax +37 0 52 68 57 49e-mail: [email protected]

LUXEMBOURGHilger-Interfer, S.A., HowaldTel. +35 24 84 81 51 Fax +35 24 84 84 23 50e-mail: [email protected]

Page 61: 2007_tbe_en_Pages-403-500

Service / Contact

463Status 03/2006

8

MALAYSIARobert Bosch (SEA) Pte. Ltd.Tel. +60 9 03 79 50 57 58 Fax +60 9 03 79 58 38 38e-mail: [email protected]

MALTANVC Trading, SiggiewiTel. +35 6 21 46 53 84 Fax +35 6 21 46 23 37e-mail: [email protected]

MAROKKOOUTIPRO, CasaTel. +24 77 21 24 36 34 Fax +24 77 21 40 82 34e-mail: [email protected]

MAZEDONIAin the area of responsibility from fi scher Austria GmbH

MEXICOUrrea Herramientas Profesionales S. A. de C. V., El SaltoTel. +52 33 36 88 01 60 Fax +52 3 33 68 80 64 45e-mail: [email protected]

Proset Mexicana S. A. de C. V., TlalnepantlaTel. +52 55 53 94 56 44 Fax +52 55 53 94 56 25e-mail: [email protected]

NETHERLANDSfi scher Benelux B.V., NaardenTel. +31 03 56 95 66 66 Fax +31 03 56 95 66 99e-mail: verkoop@fi scher.nl

NEW ZEALANDMetabo Pty. Ltd., ScoresbyTel. +61 3 97 65 01 99 Fax +64 13 97 65 01 89 e-mail: [email protected]

NORWAYBrenna A/S, OsloTel.: +47 22 60 62 95 Fax: +47 22 56 87 69 e-mail: [email protected]

OMANTechnical Supplies Est., Wadi Al KabirTel. +96 87 73 70 65 Fax +96 87 73 10 66e-mail: [email protected]

PAKISTANMunaf International, KarachiTel. +92 2 17 77 43 83 Fax +92 2 17 73 38 26e-mail: [email protected]

PERUFixa S.A., Callad Tel. +51 14 52 44 87 Fax +51 14 52 16 88 e-mail: fi [email protected]

PHILIPPINESBiondis International Trading, Sta Cruz - ManilaTel. +63 27 42 80 54 Fax +63 27 42 90 56e-mail: [email protected]

E.C. Daughson, Inc., Chezon CityTel. +63 29 27 35 70 Fax +63 29 27 35 67e-mail: [email protected]

POLANDfi scher Polska sp.z.o.o., KrakówTel. +48 1 22 90 08 80 Fax +48 1 22 90 08 88e-mail: pawel.Turek@fi scherpolska.pl

PORTUGALNeoparts, Lisboa Tel. +35 1 21 85 58 30 00 Fax +35 12 18 55 83 20 email: [email protected]

QATARGulf Incon W. L. L., DohaTel. +97 44 68 35 11 Fax +97 44 68 40 65e-mail: ganesh@gulfi ncon.com

ROMANIAS.C. Profi x S.R.L., Cluj-Napoca Tel. +40 2 64 26 66 73 Fax +40 26 41 30 30 03 e-mail.: fi [email protected]

Page 62: 2007_tbe_en_Pages-403-500

Service / Contact

464 Status 03/2006

8

RUSSIAProfmontech, MoskvaTel. +70 9 59 55 28 05 Fax +70 9 59 55 28 06e-mail: [email protected]

Montech, MoskvaTel. +70 9 51 05 35 35 Fax +70 9 51 05 35 36e-mail: [email protected]

OOO Profstroikomplekt, MoskvaTel. +70 9 51 87 17 36 Fax +70 9 57 60 54 50e-mail: [email protected]

Zentr. Krepyoshnych Materialov, MoskvaTel. +70 9 57 87 47 74 Fax +70 9 52 86 08 59e-mail: zykon@fi scherwerke.ru

OOO AVIS, St. PetersburgTel. +78 1 27 71 15 65 Fax +78 1 23 27 04 67e-mail: [email protected]

SAUDI ARABIAE.A. Juff ali & Brothers, JeddahTel. +96 62 66 72 22 Fax +96 6 26 67 63 08e-mail: [email protected]

SERBIA-MONTENEGROin the area of responsibility from fi scher Austria GmbH

SINGAPURfi scher systems Asia Pte. Ltd., SingaporeTel. +65 67 88 69 55 Fax +65 67 88 63 55e-mail: enquiry@fi scherasia.com.sg

Patton Enterprise Pte. Ltd., SingaporeTel. +65 68 42 75 22 Fax +65 68 42 76 22e-mail: [email protected]

SLOVAKIAin the area of responsibility from fi scher located in the Czech Republic

SOUTH AFRICAUpat S.A. (Pty) Ltd., TroyevilleTel. +27 1 16 24 67 00 Fax +27 1 14 02 68 07e-mail: [email protected]

SPAINfi scher Ibérica S.A., Mont-Roig del CampTel. +34 9 77 83 87 11 Fax +34 9 77 83 87 70e-mail: tacos@fi scher.es

SWEDEN Essve Produkter AB, Ulricehamn Tel. +46 86 23 61 00 Fax +46 8 96 04 95 e-mail: [email protected]

Nordisk Kartro AB, Karlskoga Tel. +46 8 57 89 30 00 Fax +46 8 57 89 30 42 e-mail: [email protected]

SWITZERLANDSFS unimarket AG, HeerbruggTel. +41 7 17 27 51 91 Fax +41 7 17 27 54 99e-mail: [email protected]

SYRIAChahda for Trade, DamascusTel. +96 3 94 26 01 85 Fax +96 31 12 11 26 04e-mail: [email protected]

TAIWANSpeed United Corp., TaipeiTel. +88 62 22 90 02 60 Fax +88 62 22 98 44 99e-mail: [email protected]

Yih Sui Metals & Tools Corp., TaipeiTel. +88 62 25 92 25 76 Fax +88 62 25 95 46 75e-mail: [email protected]

THAILAND

Sri Siam Mongkol Co. Ltd., BangkokTel. +66 22 25 00 78 Fax +66 22 25 39 88e-mail: [email protected]

Page 63: 2007_tbe_en_Pages-403-500

Service / Contact

465Status 03/2006

8

TUNISIA

TEG Tunisienne Èquipement General, TunisTel. +21 61 80 02 97 Fax +21 61 79 27 39e-mail: [email protected]

TURKEYBosch Sanayi ve Ticaret A.S., IstanbulTel. +90 21 23 35 06 90 Fax +90 21 23 46 00 48e-mail: [email protected]

UKRAINEfi scher fi xing systems Ltd., KievTel. +38 05 06 56 75 50 Fax +38 05 03 56 80 12e-mail: maikl@fi scherwerke.com.ua

UNITED ARABIC EMIRATESAl Naesar Trading, DubaiTel. +97 1 43 33 86 11 Fax +97 1 43 33 93 70e-mail: [email protected]

Metallic Building Materials L. L. C., DubaiTel. +97 1 42 89 43 94 Fax +97 1 42 89 40 14e-mail: [email protected]

USAfi scher America Inc., Auborn HillsTel. +1 24 82 76 19 40 Fax +1 24 82 76 19 41e-mail: ptrick@fi scherus.com

U.S. Anchor Corp., Pampano Beach FLTel. +1 95 47 82 22 21 Fax +1 95 47 82 24 99e-mail: [email protected]

Jack Moore Assoc., Worcester MATel. +1 50 88 53 39 91 Fax +1 50 87 93 98 64e-mail: [email protected]

UZBEKISTANSerikum Group,Ltd., TaschkentTel. +99 87 11 44 33 57 Fax +99 7 11 44 33 57e-mail: [email protected]

VENEZUELA77 Fixing Systems C.A., Caracas Tel. +58 21 25 76 63 08 Fax +58 21 29 19 81 62

Page 64: 2007_tbe_en_Pages-403-500

Notes

466 Status 03/2006

8

Page 65: 2007_tbe_en_Pages-403-500

467Status 03/2006

A

Design of anchors in accordance with the CC-Method

1 Introduction ......................................................................... 470

2 Scope of application .......................................................... 470

3 Basic principles ................................................................... 471

4 Partial safety factors ......................................................... 472

5 Tension load ........................................................................ 472

6 Shear load ............................................................................ 476

7 Combined tension and shear load .................................. 480

8 Additional requirements to substantiate the concrete component‘s capacitiy .................................... 481

References ........................................................................... 482

N

N

N

Page 66: 2007_tbe_en_Pages-403-500

Design of anchors in accordance with the CC-Method

468 Status 03/2006

A

1. Introduction

The load bearing capacity of fi xings is infl u-enced by numerous parameters. The most important of these is the concrete strength, the spacing to adjacent anchors and to free structural component edges and also the condition of the anchor substrate (non-cracked or cracked). Depending upon the direction of the acting load (tension load, shear load, combined tension and shear load), the eff ect of these can vary greatly. So, for example, the load capacity of anchors with no edge infl uence under axial tension load may be reduced to a greater extent due to cracks than with anchors subjected to shear loading. On the other hand a free edge has a greater eff ect on the capacity under shear load than under axial tension load.

Rather than individual parameters infl uencing the anchors‘ performance, a combination of these factors is decisive. This shall be empha-sized in the following example. With anchors installed with large axial spacings in high strength concrete subjected to tensile loads, normally steel failure occurs. Should the axial spacing be reduced, in the fi rst instance no noticeable eff ect occurs and the axial spacing has no eff ect on the load bearing capacity. However, when the axial spacing of adjacent

anchors becomes so small that the concrete failure load due to the intersecting of the break-out cones regardless of the high strength con-crete is less than the steel failure load, concrete failure occurs due to the reduction of spacing.

In order to gain optimum performance of the anchors and at the same time an economical design, it is necessary to distinguish between the load direction and mode of failure. The CC-Method (Concrete Capacity-Method) intro-duced in the following is based on a proposal in /1, 2/. It is described in detail in /3, 4/ and has been published in /5, 6/. Further dis-cussion has taken place in a task group of the CEB (Comité Euro-International du Béton) and has been published in a Bulletin d‘Information /7/. The current discussions suggest that this design concept will be internationally recogni-zed und used. For this reason it is introduced into the fi scher Technical Handbook.

2. Scope of application

The CC-method is recommended in the fi scher Technical Handbook for all undercut, torque-controlled steel expansion and resin bonded anchors. It can be used for single anchors, pairs and groups with 3, 4 or 6 anchors (fi xings with a substantial distance from the edge) as well as for single anchors,

a) b) c)

d) e)

Steel plate

Anchor

c<

10h1

ef

c 2 < 10 hef

c<

10h

1ef

<

Figure 1a: Fixings with substantial distance from the edge (all edge spacings ≧10 hef), that are covered by the CC-method

Figure 1b:Fixings close to the edge ( edge spacing > 10 hef), that are covered by the CC-method

Page 67: 2007_tbe_en_Pages-403-500

Design of anchors in accordance with the CC-Method

469Status 03/2006

A

pairs and groups of 4 anchors (fi xings close to an edge). When at least one anchor has an edge spacing of less than 10 times the anchorage depth hef a close edge spacing exists (compare fi gures 1a and 1b).

3. Basic principles

The design for the limit state of resistance (load bearing capacity) can be done according to the following equation:

Sd ≦ Rd (1)

Where Sd is the value for the design action and Rd is the value of the design resistance. The load bearing capacity of the fi xing is suf-fi cient if the design action is equal or lower than the design resistance.

The design actions and the design resistance can be calculated in accordance with equati-ons (2) and (3).

Sd = γF ∙ S (2)

Rd = Rk / γM (3)

Where:S = Action (axial tension or shear)Rk = Characteristic load bearing capa-

city (5%-fractile) (e.g. characteristic tensile capacity NRk or characteris-tic shear capacity VRk)

γF = Partial safety factor for the loadγM = Partial safety factor for the material

propertiesWith axial tension, Sd is the design action NSd of the tensile load and with shear it is the design action VSd of the shear load. The design action of the tensile load (NSd) and shear load (VSd) respectively can be calcula-ted according to equation (2) by multiplying the acting tensile load (N) and shear load (V) respectively by the partial safety factor γF for

the load. For combined loading (tensile and shear load) the design according to equation (1) should be observed for both load direc-tions (tensile and shear) and additionally, an interaction equation must be used (equation (11), (11a) or (11b)).

The design resistances of the capacity are cal-culated for axial tension (NRd) and for shear load (VRd) for all modes of failure. They can be calculated according to equation (3) from the characteristic load bearing capacity (5%-fractile) divided by the partial safety factors for the material properties (γMs, γMc).

The characteristic load bearing capacities (5%-fractiles) are either given in the tables of Annex B or they can be calculated using the equations in the sections 5 and 6. The follo-wing characteristic load bearing capacities must be observed:

▯ Axial tension: - Characteristic load bearing capacity at

steel failure NRk,s - Characteristic load bearing capacity at

concrete failure NRk,c - Characteristic load bearing capacity at

splitting NRk,sp - Characteristic load bearing capacity at

pull-out / pull-through NRk,p

▯ Shear load: - Characteristic load bearing capacity at

steel failure VRk,s - Characteristic load bearing capacity at

concrete edge failure VRk,c - Characteristic load bearing capacity at

pryout failure VRk,cp

The proof of the local transmission of the anchor loads to the concrete is delivered by equation (1). The further transmission of the anchor loads to the supports of the concrete element must be proved additionally. Additional proof to ensure the safety of the concrete member may be necessary (compare section 8).

Page 68: 2007_tbe_en_Pages-403-500

Design of anchors in accordance with the CC-Method

470 Status 03/2006

A

The tensile forces in the anchors shall be calculated from the tensile and compressive forces and the bending moments acting on the anchor plate in accordance with the theory of elasticity under the following assumptions:

▯ The steel plate has a suffi cient stiff ness and is fi xed to the concrete or to a levelling layer of mortar on its entire area.

▯ All anchors have equal stiff ness. It should be taken as the steel stiff ness.

▯ The ratio of the moduli of elasticity of steel and concrete is 7.

The shear forces in the anchors are calculated under the assumption that all anchors contri-bute to the transmission of the shear loading (exceptions compare sections 6).

4. Partial safety factors

In the latest standards for the design of reinforced concrete elements, partial safety factors are used instead of global factors /8/, /9/. This method will be used for the design of steel anchors. It allows for special conside-rations such as installation safety.

In absence of national regulations the follo-wing partial safety factors γF for the load are recommended:

γF = 1.35 (dead load) (4a) γF = 1.50 (variable load) (4b)

The partial safety factors for the material pro-perties depend upon the mode of failure. They are given in the tables of Annex B.

5. Tension load

a) Steel failure The characteristic load bearing capacity NRk,s for steel failure is given in the tables of Annex B. Should, within a group, the tensile load act in an eccentric manner, the proof should be provided for the anchor subjected to the maximum load.

b) Concrete cone failure The characteristic load bearing capacity NRk,c for concrete cone failure is calculated in accor-dance with equation (5):

Where:N0

Rk,c = 7.2 · √fcc,150 · hef1.5/1000 [kN]

(fcc,150 [N/mm2], hef [mm]) (5a)

A0c,N = surface area of idealised concrete

failure body for single anchors with large axial and edge spacings sub-jected to axial tension (see fi gure 2)

Ac,N = existing surface area of idealised concrete failure body for single anchors or groups (see fi gure 3)

NRk,c = No

Rk,c ·Ac,N

Aoc,N

· Ψs,N · Ψec1,N · Ψec2,N · Ψre,N · Ψucr,N [kN] (5)

Page 69: 2007_tbe_en_Pages-403-500

Design of anchors in accordance with the CC-Method

471Status 03/2006

A

Ψs,N = reduction factor to consider the disturbance of radially symmetric stress distribution due to one or more edges

= 0.7 + 0.3 · c/ccr,N (5b)

≦ 1

c = existing edge spacing; with infl u-ence from more than one edge, therefore, the smallest edge spa-cing must be used

ccr,N = characteristic edge spacing (com-pare tables of Annex B)

Ψeci,N = reduction factor to consider the eccentricity of the resulting anchor forces in relation to the anchors‘ centre of gravity

1

1 + 2 · ei,N / scr,N ≤ 1=

(5c)

(i=1,2)

ei,N = eccentricity of the resulting anchor forces in direction i, in relation to the anchors‘ centre of gravity(i = 1,2) (see fi gure 4)

scr,N = characteristic axial spacing (com-pare tables of Annex B)

Ψre,N = reduction factor taking into account a negative infl uence of dense rein-forcement

= 0.5 +

hef [mm]200

≤ 1 (5d)

► applications in concrete with dense reinforcement

= 1.0

► applications in non-reinforced and normally reinforced concrete

Ψucr,N = factor for taking into account the condition of the anchor substrate (cracked or non-cracked concrete)

= 1.0

► applications in cracked concrete

≥ 1.4

► applications in non-cracked conc-rete (compare tables of Annex B)

Normally reinforced concrete is conside-red if the spacing s of the reinforcement iss ≥ 150 mm independent of the diameter of the reinforcement bar or s ≥ 100 mm for bar diameters ≤ 10 mm.

scr,N

N

scr,Nscr,N

A0c,N = scr,N · scr,N

Figure 2: Idealised concrete cone surface area A0

c,N for a single anchor with large axial and edge spacings subjected to a tension load

Page 70: 2007_tbe_en_Pages-403-500

Design of anchors in accordance with the CC-Method

472 Status 03/2006

A

N

scr,Nc10.5.scr,N

Ac,N = (c1 + 0.5 scr,N) · scr,Nc1 ≤ ccr,N

N

N

Ac,N = (c1 + s1 + 0,5 scr,N) · (c2 + s2 + 0,5 scr,N)s1 ; s2 ≤ scr,N und c1 ; c2 ≤ ccr,N

0.5.scr,N

s2

c2

0.5.scr,N

c1s1

Ac,N = (0.5 scr,N + s1 + 0,5 scr,N) · scr,Ns1 ≤ scr,N

0.5.scr,Nscr,N s1

0.5.scr,N

a) Single anchor close to an edge

b) Pair of anchors with large edge distances

c) Group of four anchors in a corner

Equation (5) is to be used only for the anchors within a group that are subjected to tensile forces. If the tensile loaded anchors do not show a rectangular pattern (e.g. with groups under bi-axial bending) the group can be resolved into a group with rectangular pattern and the design value NRk,c can be calculated in accordance with equation (5). This can be explained by referring to fi gures 4c and 4d. In the example shown in fi gure 4c the tensile loaded anchors No. 2 - 6 do not show a rec-tangular pattern. Therefore, they are resolved into a suitable rectangle.

The eccentricity of the resulting anchor forces is calculated in relation to the centre of gravity G of the rectangular group (anchor No. 1 - 6). The same is valid for the example in fi gure 4d where only the anchors No. 3, 5 and 6 are tensile loaded. Again the eccentricity of the resulant anchor forces is calculated in relation to the centre of gravity G of the group resolved into a rectangular pattern (anchor No. 2, 3, 5 and 6).

Figure 3: Examples of existing surface areas of the idealised concrete failure cone for various positions of anchors under tensile load

Page 71: 2007_tbe_en_Pages-403-500

Design of anchors in accordance with the CC-Method

473Status 03/2006

A

Figure 4: Examples of anchors subjected to eccentric tension load

c)

a)

b)

Neutral axis

s 2

e1,N

G LCompressionzone

⊕ x

⊕x

s1 s1

0,5s1M2

N

M2

N

M1

M2

N

M1

M2

N

M1

M2

N

M1

d)

e)

1 2 3

4 5 6

G L

1 2 3

4 5 6e1,N

e2

,N

Neutral axis

GL

1 2 3

4 5 6e1,N

e2

,N

Neutral axis

GL

1 2 3

4 5 6e1,N

e2

,N

Neutral axis

G L

1 2 3

4 5 6

e1,N

Neutral axis

e2,N = 0

e2,N = 0

Compressionzone

Compressionzone

Compressionzone

Compressionzone

0,5s1

Tensile loaded anchor G ⊕ Centre of gravity of the tensile loaded anchors (possibly resolved into a rectangular pattern)

L x Position Position of the resulting force of the tensile loaded anchors

Not-loaded anchor

⊕x

⊕x

⊕ x

Fixings infl uenced by 3 or more edges with an edge spacing cmax ≦ ccr,N (with cmax = largest edge spacing) equation (5) produces results on the safe side. For increased and realistic results, when calculating the capa-city N0

Rk,cthe anchorage depth hef should

be replaced by the value in accordance with equation (6).

When calculating the surface areas A0c,N

and Ac,N and also in the equations (5b) and (5c) the spacings scr,N and ccr,N should be replaced by the values s‘cr,N = 2 · cmax and c‘cr,N = cmax respectively.

c) Splitting failure

Splitting due to tensile forces needs only to be considered, if the following conditions exist:

- Edge spacing c < 1.0 · ccr,sp(single anchors)

- Edge spacing c < 1.5 · ccr,sp(groups of anchors)

The characteristic load bearing capacity NRk,sp for splitting can be calculated in accor-dance with equation (7):

Where:

N0Rk,c , A

0c,N , Ac,N , Ψs,N , Ψec1,N , Ψec2,N ,

Ψre,N , Ψucr,N in accordance with equation (5), where scr, N and ccr,N are replaced byscr, sp und ccr, sp (compare the tables of Annex B).

Ψh, sp = factor to consider the infl uence of the thickness h of the structural component

= ( ) h

2/3

2 · hef ≤ 1.5

..............(7a)

with h = component thickness

NRk,sp = No

Rk,c ·Ac,N

Aoc,N

· Ψs,N · Ψec1,N · Ψec2,N · Ψre,N · Ψucr,N · Ψh,sp [kN]

(7)

h'ef =

c max

ccr,N

· h ef (6)

Page 72: 2007_tbe_en_Pages-403-500

Design of anchors in accordance with the CC-Method

474 Status 03/2006

A

d) Pull-out /pull-through failure

The charcteristic load bearing capacity N0Rk,p

for pull-out / pull-through is given in the tables of Annex B. The characteristic capacity NRk,p can be calculated by multiplying N0

Rk,p with factor Ψucr,p .

Ψucr,p = 1.0 applications in cracked conc-rete

≥ 1.0 applications in non-cracked concrete (compare tables of Annex B)

Should, within a group, the tensile load act in an eccentric manner, the proof should be provided for the anchor subjected to the maxi-mum load.

e) Required proofs

The required proofs are given in table 1. The proof for splitting is required only if the condi-tions in accordance with c) exist.

Where:NSd = Design action of the acting tensile

load

NhSd = Design action on the acting tensile

load of an anchor subjected to the maximum load within a group

NgSd = Design action of the acting tensile

load of a group

6. Shear load

a1) Steel failure without lever arm

The charcteristic load bearing capacity VRk,s for steel failure without lever arm is given in the tables of Annex B. For anchor groups this should be reduced by a factor of 0.8 (excep-tion: steel with a elongation at rupture ≥ 8%). For eccentrically loaded anchors within the group, the anchor subjected to the maximum load within a group must be proven.

a2) Steel failure with lever arm

Bending of the anchor must be considered when a non-loadbearing layer with a thick-ness > 3 mm immediately below the anchor is available or when the clearance hole in the attachement is larger than stipulated. The maximum clearance hole can be found for the respective anchor families in the Technical Handbook, tables „Anchor characteristics“.

The characteristic load bearing capacityVRk,s for steel failure with bending of the anchor can be calculated in accordance with equation (8):

VRk,s = αM · MRk,s / l (8)

Where:αM = factor to consider the restraint of

the anchor

= 1.0 for unrestricted rotation (com-pare fi gure 5a)

= 2.0 for complete restraint (compare fi gure 5b)

Single anchors Groups of anchors

Steel failure NSd ≦ NRk,s / γMs NhSd ≦ NRk,s / γMs

Concrete cone failure NSd ≦ NRk,c / γMc NgSd ≦ NRk,c / γMc

Splitting failure NSd ≦ NRk,sp / γMc NgSd ≦ NRk,sp / γMc

Pull-out / pull-through failure NSd ≦ NRk,p / γMc NhSd ≦ NRk,p / γMc

Table 1: Reqiured proofs for tensile loads

Page 73: 2007_tbe_en_Pages-403-500

Design of anchors in accordance with the CC-Method

475Status 03/2006

A

MRk,s = M0RK,s · (1 - NSd / NRd,s) [Nm]

M0Rk,s = compare the tables of Annex B

NSd = design action of the acting tensile load

NRd,s = NRk,s / γMsNRk,s = compare the tables of Annex B

γMs = compare the tables of Annex B

l = lever arm of the acting shear load

= a3 + e1a3 = 0.5 d

d = diameter of the anchor bolt or thread

e1 = distance between the acting shear force and the surface of the conc-rete

With anchor groups NSd in equation (8a) must be replaced by Nh

Sd.

b) Concrete edge failure

The characteristic load bearing capacity VRk,c for concrete edge failure can be calculated in accordance with equation (9):

Where:dnom = nominal diameter of the anchor

(compare tables of Annex B)

lf = eff ective anchor length (compare tables of Annex B)

A0cV = surface area of idealised concrete

failure body on the side surface of the structural element for single anchor with large axial spacing and large spacings to further edges (see fi gure 9)

= 4.5 · c12

Ac,V = existing surface area of idealised concrete failure body on the side surface of the structural element (examples, see fi gure 10)

Ψs,V = factor to consider the disturbance of the stress distribution through further edges

= 0.7 + 0.3 · c2/(1.5 · c1) ≦ 1 (9b)

c1 = edge spacing in direction of the load

c2 = edge spacing perpendicular to the load. In a narrow component the least of the two edge spacings should be used.

Figure 5: Degree of anchor restraint

0.45 · √d · ( ) · √f V Rk,c =o 1.5l f

d nom· c /10001 [kN]nom cc,150

0.2

(9a)

V Rk,c = V o

Rk,c ·Ac,V

Aoc,V

· Ψs,V · Ψh,V · Ψec,V · ΨαV · Ψucr,V [kN]

(9)

Page 74: 2007_tbe_en_Pages-403-500

Design of anchors in accordance with the CC-Method

476 Status 03/2006

A

Ψh,V = factor to consider the thickness of structural component

= (1.5 · c1 / h)⅓ ≥ 1 (9c)

h = structural component thickness

Ψec,V = factor to consider eccentricity of the shear load (see fi gure 6)

1

1 + 2 · eV / (3 c1) ≤ 1= (9d)

eV = eccentricity of the resulting shear forces, in relation to the anchor‘s centre of gravity

Ψα,V = factor to consider the direction of the shear load (see fi gure 7)

= 1.0 (area1: 0° ≦ αV ≦ 55°) (9e) = 1.0 / (cos αV + 0.5 sin αV) (area2: 55° < αV ≦ 90°) (9f) = 2.0 (area3: 90° < αV ≦ 180°) (9g)

Ψucr,V = factor to consider the conditions of concrete and reinforcement

= 1.0 (cracked concrete without edge reinforcement)

= 1.2 (cracked concrete with edge reinforcement ≥ Ø 12 mm)

= 1.4 (cracked concrete with edge reinforcement ≥ 12 mm and stir-rups with a spacing ≦ 10 cm or welded reinforcement mesh ≥ 8 mm with a spacing ≥ 10 cm)

= 1.4 (non-cracked concrete)

For a pair of anchors perpendicular to an edge in equation (9) the edge spacing c1 of the anchor positioned in the closest proximity of the edge is used. The same also applies for determining the surface aera Ac,V. This also applies to a group of four anchors where the distance of the pair of anchors positioned closest to the edge is applicable (see fi gure 10c). I. e. both pairs of anchors perpendicular to the edge as well as groups of four anchors, are designed under the assumption that the shear load is taken by either one or a pair of anchors positioned closest to the edge. Thus consideration is given to the fact that due to the clearance of the hole, not all anchors of a group are loaded equally. In the worst case only the anchor or anchors close to the edge are loaded (see fi gure 8).

Figure 8:Typical concrete edge failure due to anchors loaded unfavourably in the attachment‘s clearance holes (note: the clearance holes diame-ters have been exagerated)

Figure 6: Example for a fi xing subjected to eccentric shear load

Figure 7:Defi nition of the angle αV

Page 75: 2007_tbe_en_Pages-403-500

Design of anchors in accordance with the CC-Method

477Status 03/2006

A

Figure 9: Idealised concrete failure body and surface area of a single anchor close to an edge with large axial and edge spacings for further edges subjected to shear load

A0c,V = 3c1 · 1.5c1

' 4.5 ¾c1 ¾c1~1.5· c1

c1 V

~ 35° ~1.5·c1

~ 3· c1

c1 V

~35°

~ 3· c1

Figure 10: Examples of existing surface areas of the idealised concrete failure body for various positions of anchors under shear load

' 4.5 ¾c1 ¾c1~1,5· c1

1.5 · c1

c1 V

~ 1,5· c1

c1 V

c2 c21.5 · c1Ac,V = (1.5c1 + c2) · 1.5c1

c2 ≤ 1.5c1

c1

Ac,V = (1.5c1 + s +1.5c1) · 1.5c1s ≤ 3c1

sV1.5.c1

1.5.c1

1.5.c1

c1 s < 3 c1

V1.5.c1

1.5.c1

1.5 .c1

Ac,V = (1.5c1 + s + c2) · hh ≤ 1.5c1s ≤ 3c1c2 ≤ 1.5c1

c1 Vh

1.5 · c1

c2s

c1 Vh

1.5 . c1s

c2

.

a)

b)

c)

Page 76: 2007_tbe_en_Pages-403-500

Design of anchors in accordance with the CC-Method

478 Status 03/2006

A

Fixings in narrow and thin structural compo-nents, where c2,max ≦ 1,5c1 (with c2,max = largest edge spacing parallel to the load) and a component thickness h ≦ 1,5c1 (see fi gure 11) equation (9) produces results on the safe side. For increased and realistic results, when calculating the surface areas A0

c,V and Ac,V and in equations (9a), (9b), (9c) and (9d) the edge spacing c1 should be replaced by the larger value of either c2,max /1,5 or h / 1,5.

c) Concrete failure on the opposing side of the load application (pryout failure)

VRk,cp = k · NRk,c (10)

Where:

NRk,c = characteristic load bearing capacity for concrete failure in accordance with equation (5)

k = see tables in Annex BWith eccentric shear loads, when calculating Ψeci,N in accordance with equation (5b) the eccentricity of the shear load in relation to the centre of gravity of the anchors loaded

to shear is taken. Additionally all anchors of the group are considered regardless of wether they are subjected to tensile load or not.

d) Required proofs

The required proofs are given in table 2.

Where:

VSd = Design action of the acting shear load for single anchors

VhSd = Design action of the acting shear

load of the anchor subjected to the maximum load

VgSd = Design action of all anchors within

a group subjected to shear load

7. Combined tension and shear load

For combined tension and shear load in addi-tion to the proofs according to section 5 and 6, one of the following interaction equations must be statisfi ed (see fi gure 12). Equation (11a) is only valid if steel failure is decisive for both, tension as well as shear load. The equations (11) and (11b) are valid for any mode of failure.

(NSd/NRd) + (VSd/VRd) ≦ 1.2 (11)

(NSd/NRd)2 + (VSd/VRd)2 ≦ 1.0 (11a)

(NSd/NRd)1.5 + (VSd/VRd)1.5 ≦ 1.0 (11b)

Single anchors Groups of anchors

Steel failure VSd ≦ VRk,s / γMs VhSd ≦ VRk,s / γMs

Concrete cone failure VSd ≦ VRk,c / γMc VgSd ≦ VRk,c / γMc

Concrete failure on the opposing side of the load application (pryout failure)

VSd ≦ VRk,cp / γMc VgSd ≦ VRk,cp / γMc

Table 2: Reqiured proofs for shear loads

c1 V

c2,1 ≤ 1.5c1c2,2 ≤ 1.5c1h ≤ 1.5c1

h

c2,1

c2,2

Figure 11:

Page 77: 2007_tbe_en_Pages-403-500

Design of anchors in accordance with the CC-Method

479Status 03/2006

A

For the ratios NSd / NRd and VSd / VRd the least value for the diff erent modes of failure must be used.Figure 12:

Interaction diagram for combined tension and shear load

VSd / VRd

NSd / NRd

1.0

0.2

0.2 1.0

equation (11a)

equation (11b)

equation (11)

8. Additional requirements to substanti-ate the concrete component‘s capa-city

The local transmission of the anchor loads to the concrete is checked according to CC-method. The transmission of the anchor loads to the supports of the concrete member should be given special consideration.

A) Shear resistance of the concrete member

In order to ensure that the shear resistance of the concrete member is adequate, the following proof is required. The shear forces VSd,a induced in the concrete member by anchor loads must not exceed the value in accordance with equation (12).

VSd,a = 0.4 ∙ VRd1 (12)

VRd1 is calculated in accordance with /9/, equation (6.4-8). When calculating the value VSd,a the anchor shall be assumed as a point load, with a width of load application equal to the distance between the outermost anchors of a group plus 2 times the anchorage depth.

The conditions in accordance with equation (12) can be disregarded if one of the following requirements is statisfi ed:

▯ The shear force acting on the member due to the design actions including those of the anchors does not exceed 0.8 VRd1.

▯ The tensile force of an anchor respectively the total sum of the tensile forces of an anchor group due to the characteristic load, is less than 30 kN, the spacing a between the outer-most anchors of adjacent groups, or between the outermost anchors of a group and single anchors or between single anchors, statisfi es the following equations (13a) or (13b). NSk is the tensile load of a single anchor subjected to the characteristic load and Ng

Sk is the sum of the tensile loads of a group of anchors subjec-ted to the characteristic load.

a ≧ 200 ∙ √NSk (Single anchors) (13a)

a ≧ 200 ∙ √NgSk (Group of anchors) (13b)

▯ The anchor loads are taken up by a hanger reinforcement, which encloses the tension reinforcement and is anchored at the opposite side of the concrete member. Its distance from an individual anchor or the outermost anchors of a group should be smaler than hef.

If NSk or N0Sk exceeds 60 kN, then a suitable

hanger reinforcement must be provided.

Note: The provisions given above are deduced for concrete members without shear reinforce-ment. They are conservative for members with shear reinforcement.

B) Resistance to splitting forces

The splitting forces caused by anchors should be considered in the design of the concrete member. This may be neglected if one of the following conditions exist:

▯ The load transfer area is in the compres-

Page 78: 2007_tbe_en_Pages-403-500

Design of anchors in accordance with the CC-Method

480 Status 03/2006

A

sion zone of the concrete member.

▯ Under the characteristic actions, the ten-sile force of single anchors or the total sum of the tensile force of an anchor group must not exceed 10 kN.

▯ Subjected to the characteristic actions the tensile force of a single anchor or the total sum of the tensile force of a group of anchors, is less than or equal to 30 kN. In addition for anchorages in slabs and walls, a concentrated reinforcement in both directions is present in the region of the anchor. The area of the trans-verse reinforcement should be at least 60 % of the longitudinal reinforcement required for the actions due to anchor loads.

References

/1/ Eligehausen, R.: Bemessung von Befesti-gungen - Zukünftiges Konzept. (Design of Fas-tenings with Steel Anchors - Future Concept). Betonwerk + FertigteilTechnik, 1988, Heft 5, S. 88-100 (in German and English).

/2/ Eligehausen, R.: Bemessung von Befesti-gungen in Beton mit Teilsicherheitsbeiwerten (Design of Fixings in Concrete Based on Par-tial Safety Factors). Bauingenieur 65 (1990), S. 295-305 (in German)

/3/ Fuchs, W., Breen, J., Eligehausen, R.: Concrete Capacity Design (CCD) Approach for Fastening to Concrete. ACI-Structural Journal, Vol. 92 (1995), No. 6, p. 794-802.

/4/ Eligehausen, R., Mallèe, R.: Befesti-gunstechnik im Beton- und Mauerwerkbau (Fastenings to Concrete and Masonry). Verlag Ernst & Sohn, 2000 (in German)

/5/ Deutsches Institut für Bautechnik, Berlin: Bemessungsverfahren für Dübel zur Veranke-rung im Beton (Design Concept for Anchors in Concrete). Edition June 1993 (in German)

/6/ European Organisation for Technical Approvals (EOTA) (1994): Guideline for Euro-pean Technical Approval of Anchors (Metal Anchors) for Use in Concrete. Final Draft, Sept. 1994, Part 1: Anchors in General. Part 2: TorqueControlled Expansion Anchors. Part 3: Undercut Anchors. Annex A: Details of Tests. Annex B: Tests for Admissible Service Condi-tions, Detailed Information. Annex C: Design Method for Anchorages

/7/ Comité Euro-International du Béton: Design of Fastenings in Concrete, Draft CEB Guide - Part 1-3. Bulletin d‘Information 226, Lausanne, 1995

/8/ Eurocode No. 2: Design of Concrete Structures, Part 1: General Rules and Rules for Building. Final Draft, December 1988.

/9/ DIN V ENV 1992 Teil1-1, Eurocode 2, Planung von Stahlbeton- und Spannbeton-tragwerken (Design of Reinforced Concrete- and Prestressed Concrete Buildings), Edition June 1992 (in German).

Page 79: 2007_tbe_en_Pages-403-500

481Status 03/2006

B

Characteristic anchor values for the design in accordance with the CC-Method

Table 1: Anchor bolt FAZ ........................................................... 484

Table 2: Bolt FBN (6 - 10) ........................................................... 485

Table 3: Bolt FBN (12 - 20) ........................................................ 486

Table 4: EXA Express-anchor .................................................... 487

Table 5: Zykon anchor FZA ........................................................ 488

Table 6: Zykon anchor FZA-D ................................................... 489

Table 7: Zykon anchor FZA-I ..................................................... 490

Table 8: Zykon hammerset anchor FZEA ............................... 491

Table 9: High performance anchor FH / FHA ........................ 492

Table 10: Heavy-duty anchor TA M ............................................ 493

Table 11: Highbond anchor FHB II (M8 - M 12) ...................... 494

Table 12: Highbond anchor FHB II (M16 - M24) ..................... 495

Table 13: Resin anchor R (Eurobond) ........................................ 496

Table 14: Injection mortar FIS V / FIS VS ................................ 497

Table 15: Injection mortar FIS EM ............................................. 498

Table 16: UKA 3 Chemical anchor (M 8 - M 16) ..................... 499

Table 17: UKA 3 Chemical anchor (M 20 - M 30) .................. 500

Table 18: UPM 44 Chemical mortar .......................................... 501

Table 19: Long-shaft fi xing SXS ................................................ 502

Table 1: Zykon anchor FZA

Anchor typeFZA 10x40

M 6

FZA 12x40 M 8

FZA 14x40 M 10

FZA 12x50 M 8

FZA 14x60 M 10

FZA 18x80 M 12

FZA 22x100

M 16

FZA 22x125

M 16

gvz A4 C gvz A4 C gvz A4 C gzv A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C

minimum thickness of concrete member

minimum thickness hmin[mm] 100 100 100 100 120 160 200 250

minimum spacings and edge distances in non-cracked and cracked concrete

minimum spacing smin[mm] 40 40 70 50 60 80 100 125

minimum edge distances cmin[mm] 35 40 70 45 55 70 100 125

tension load - steel failure

loadNRk,s

[kN] 16.1 14.1 29.3 25.6 46.4 40.6 29.3 25.6 46.4 40.6 67.4 59.0 126.0 110.0 126.0 110.0

safety factor γMs[-] 1.50 1.87 1.50 1.50 1.87 1.50 1.50 1.87 1.50 1.50 1.87 1.50 1.50 1.87 1.50 1.50 1.87 1.50 1.50 1.87 1.50 1.50 1.87 1.50

tension load - pull-out/pull-through failure

load in non-cracked concrete NRk,p[kN] 14.0 14.0 14.0 19.6 25.8 39.7 55.4 77.5

load in cracked concrete NRk,p[kN] 9.1 9.1 9.1 12.7 16.7 25.8 36.0 50.3

concrete factor C 12/15 ψc[-]

0.77

C 16/20 ψc[-]

0.89

C 20/25 ψc[-]

1.00

C 25/30 ψc[-]

1.10

C 30/37 ψc[-]

1.22

C 40/50 ψc[-]

1.41

C 45/55 ψc[-]

1.48

C 50/60 ψc[-]

1.55

safety factor γMp[-]

1.50

tension load - concrete cone failure and splitting

eff . anchorage depth hef[mm] 40 40 40 50 60 80 100 125

spacing concrete cone scr,N[mm] 120 120 120 150 180 240 300 380

edge distance concrete cone ccr,N[mm] 60 60 60 75 90 120 150 190

spacing splitting scr,sp[mm] 120 120 120 150 180 240 300 380

edge distance splitting ccr,sp[mm] 60 60 60 75 90 120 150 190

non-cracked concrete factor ψucr,N[-]

1.54

safety factor γMc[-]

1.50

shear load - steel failure without lever arm

loadVRk,s

[kN] 8.0 7.0 14.7 12.8 23.0 20.3 14.7 12.8 23.2 20.3 33.8 29.5 62.8 55.0 62.8 55.0

safety factor γMs[-] 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25

shear load - steel failure with lever arm (bending)

bendingM0

Rk,s[Nm] 12.2 10.7 30.0 26.2 59.8 52.3 30.0 26.2 59.8 52.3 105 91.6 266 232 266 232

safety factor γMs[-] 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25

shear load - concrete pryout-failure

factork [-]

1.3

2.0

safety factor γMcp[-]

1.50

shear load - concrete edge failure

eff . length lf[mm] 40 40 40 50 60 80 100 125

eff . diameter dnom[mm] 10 12 14 12 14 18 22 22

safety factor γMc[-]

1.50

Characteristic anchor values for the design in accordance

with the CC-Method

Page 80: 2007_tbe_en_Pages-403-500

Characteristic anchor values for the design in accordance with the CC-Method

482 Status 03/2006

B

Table 1: Anchor bolt FAZAnchor type FAZ II 8 FAZ 8 FAZ II 10 FAZ 10 FAZ II 12 FAZ 12 FAZ II 16 FAZ 16 FAZ 20 FAZ 24

gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 gvz A4

minimum thickness of concrete member

minimum thickness hmin [mm] 100 120 140 170 200 250

minimum spacings and edge distances in non-cracked concrete

minimum spacing smin [mm] 40 50 40 55 50 65 60 75 95 100 120 125

for required edge distances for c [mm] 50 50 60 70 70 100 95 120 200 200 200 250

minimum edge distances cmin [mm 40 50 45 55 55 65 65 85 130 200 150 250

for required spacing for s [mm 100 50 80 120 110 150 150 165 245 100 270 125

minimum spacings and edge distances in cracked concrete

minimum spacing smin [mm] 35 40 40 55 45 65 60 75 95 100 120 125

for required edge distances for c [mm] 50 50 55 70 70 75 95 100 160 200 165 250

minimum edge distances cmin [mm] 40 45 45 55 55 65 65 65 100 200 120 250

for required spacing for s [mm] 70 60 80 90 110 100 150 175 220 100 220 125

tension load - steel failure

load NRk,s [kN] 16.0 17.0 16.0 27.0 27.0 25.0 41.5 39.0 37.0 66.0 73.0 74.0 95.0 100.0 128.0 166.0

safety factor γMs [-] 1.50 1.48 1.40 1.50 1.48 1.40 1.50 1.48 1.40 1.50 1.66 1.40 1.50 1.51 1.40 1.87

tension load - pull-out/pull-through failure

load in non-cracked concrete NRk,p [kN] 10.8 12.5 17.7 22.0 26.6 28.0 43.5 40.0 43.0 51.0 65.0 71.0

load in cracked concrete NRk,p [kN] 9.0 8.7 14.0 14.3 20.0 20.9 21.1 28.2 28.2 34.0 36.0 50.3 50.0

concrete factor C 12/15 ψc [-] 0.77

C 16/20 ψc [-] 0.89

C 20/25 ψc [-] 1.00

C 25/30 ψc [-] 1.10

C 30/37 ψc [-] 1.22

C 40/50 ψc [-] 1.41

C 45/55 ψc [-] 1.48

C 50/60 ψc [-] 1.55

safety factor γMp [-] 1.50

tension load - concrete cone failure and splitting

eff . anchorage depth hef [mm] 45 60 70 85 100 125

spacing concrete cone scr,N [mm] 140 180 210 260 300 380

edge distance concrete cone ccr,N [mm] 70 90 105 130 150 190

spacing splitting scr,sp [mm] 140 160 180 220 210 250 260 310 300 360 380 450

edge distance splitting ccr,sp [mm] 70 80 90 110 105 125 130 155 150 180 190 225

non-cracked concrete factor ψucr,N [-] 1.54

safety factor γMc [-] 1.50

shear load - steel failure without lever arm

load VRk,s [kN] 12.0 11.0 13.0 20.0 18.0 20.0 29.5 26.0 30.0 55.0 45.0 55.0 52.0 77.0 86.0 123.0

VRk,s [kN] 17.51) 11.01) 13.01) 28.01) 18.01) 20.01) 41.01) 26.01) 30.01) 71.51) 45.01) 55.01) 52.01) 77.01) 86.01) 123.01)

safety factor γMs [-] 1.25 1.25 1.50 1.25 1.25 1.50 1.25 1.25 1.25 1.25 1.25 1.50 1.25 1.26 1.50 1.56

shear load - steel failure with lever arm (bending)

bending M0Rk,s [Nm] 26.0 23.0 26.0 58.0 47.0 52.0 92.0 82.0 92.0 233 191 233 389 409 606 786

safety factor γMs [-] 1.25 1.25 1.50 1.25 1.25 1.50 1.25 1.25 1.50 1.25 1.25 1.50 1.25 1.26 1.50 1.56

shear load - concrete pryout-failure

factor k [-] 2.0 2.0 1.0 2.2 2.0 2.4 2.0 2.8 2.0

safety factor γMcp [-] 1.50

shear load - concrete edge failure

eff . length lf [mm] 45 60 70 85 100 125

eff . diameter dnom [mm] 8 10 12 16 20 24

safety factor γMc [-] 1.501) These values are valid if the shank of the cone bolt is located in the shear joint at the concrete surface. Simplifying this can be supposed for a thickness of the fi xture ≧ 15 mm (size

M8), ≧ 20 mm (sizes M10 and M12) and respectively ≧ 25 mm (size M16) as well as a nominal useful length (tfi x,nom) of the used anchor type not exceeding 50 mm. In general the relevant kind of failure (thread or shank) has to be defi ned by the designing engineer.

Page 81: 2007_tbe_en_Pages-403-500

Characteristic anchor values for the design in accordance with the CC-Method

483Status 03/2006

B

Table 2: Bolt FBN (6-10)Anchor type FBN 6 FBN 8

hef = 35 mm *FBN 8

hef = 48 mmFBN 10

hef = 42 mmFBN 10

hef = 50 mmA4 gvz fvz A4 gvz fvz A4 gzv fvz A4 gvz fvz A4

minimum thickness of concrete member

minimum thickness hmin [mm] 100 100 100 100 100

minimum spacings and edge distances in non-cracked concrete

minimum spacing smin [mm] 40 35 50 50 45 50 55 60

minimum edge distances cmin [mm 35 35 45 50 35 55 60 65 55

tension load - steel failure

load NRk,s [kN] 10.0 14.0 17.0 14.0 17.0 23.0 27.0 23.0 27.0

safety factor γMs [-] 1.61 1.48 1.58 1.48 1.58 1.48 1.58 1.48 1.58

tension load - pull-out/pull-through failure

load in non-cracked concrete NRk,p [kN] 9.0 8.5 7.0 8.1 12.0 10.0 12.0 13.0 11.0 12.9 16.0 14.0 16.3

concrete factor C 12/15 ψc [-] 0.77

C 16/20 ψc [-] 0.89

C 20/25 ψc [-] 1.00

C 25/30 ψc [-] 1.07 1.10 1.07 1.10 1.07 1.10 1.10

C 30/37 ψc [-] 1.17 1.22 1.17 1.22 1.17 1.22 1.22

C 40/50 ψc [-] 1.32 1.41 1.32 1.41 1.32 1.41 1.41

C 45/55 ψc [-] 1.37 1.48 1.37 1.48 1.37 1.48 1.48

C 50/60 ψc [-] 1.42 1.55 1.42 1.55 1.42 1.55 1.55

safety factor γMp [-] 1.80 1.80 1.50 1.80 1.80 1.50 1.80 1.80 1.50 1.80 1.80 1.50 1.80

tension load - concrete cone failure and splitting

eff . anchorage depth hef [mm] 40 35 48 42 50

spacing concrete cone scr,N [mm] 120 106 144 126 150

edge distance concrete cone ccr,N [mm] 60 53 72 63 75

spacing splitting scr,sp [mm] 160 140 176 192 210 168 210 250 200 300

edge distance splitting ccr,sp [mm] 80 70 88 96 105 84 105 125 100 150

concrete factor C 12/15 ψc [-] 0.77

C 16/20 ψc [-] 0.89

C 20/25 ψc [-] 1.00

C 25/30 ψc [-] 1.07 1.10 1.07 1.10 1.07 1.10 1.10

C 30/37 ψc [-] 1.17 1.22 1.17 1.22 1.17 1.22 1.22

C 40/50 ψc [-] 1.32 1.41 1.32 1.41 1.32 1.41 1.41

C 45/55 ψc [-] 1.37 1.48 1.37 1.48 1.37 1.48 1.48

C 50/60 ψc [-] 1.42 1.55 1.42 1.55 1.42 1.55 1.55

non-cracked concrete factor ψucr,N [-] 1.40

safety factor γMc [-] 1.80 1.80 1.50 1.80 1.80 1.50 1.80 1.80 1.50 1.80 1.80 1.50 1.80

shear load - steel failure without lever arm

load VRk,s [kN] 7.5 11.0 12.6 11.0 12.6 17.0 20.0 17.0 20.0

safety factor γMs [-] 1.50

shear load - steel failure with lever arm (bending)

bending M0Rk,s [Nm] 11.0 22.0 26.0 22.0 26.0 45.0 52.0 45.0 52.0

safety factor γMs [-] 1.50

shear load - concrete pryout-failure

factor k [-] 1.0

safety factor γMcp [-] 1.50

shear load - concrete edge failure

eff . length lf [mm] 40 35 48 42 50

eff . diameter dnom [mm] 6 8 8 10 10

safety factor γMc [-] 1.50

* Use restricted to anchoring of structural components which are statically indeterminate.

Page 82: 2007_tbe_en_Pages-403-500

Characteristic anchor values for the design in accordance with the CC-Method

484 Status 03/2006

B

Table 3: Bolt FBN (12-20)Anchor type FBN 12

hef = 50 mmFBN 12

hef = 70 mmFBN 16

hef = 64 mmFBN 16

hef = 84 mmFBN 20

gvz fvz A4 gvz fvz A4 gvz fvz A4 gvz fvz A4 gvz

minimum thickness of concrete member

minimum thickness hmin [mm] 100 140 130 170 200

minimum spacings and edge distances in non-cracked concrete

minimum spacing smin [mm] 100 65 75 80 140 90 90 170

minimum edge distances cmin [mm 100 70 90 75 100 80 105 80 150

tension load - steel failure

load NRk,s [kN] 33.0 40.0 33.0 40.0 55.0 69.0 55.0 69.0 101.0

safety factor γMs [-] 1.40 1.62 1.40 1.62 1.57 1.66 1.57 1.66 1.57

tension load - pull-out/pull-through failure

load in non-cracked concrete NRk,p [kN] 17.8 15.0 17.8 25.0 23.0 25.0 25.0 21.0 25.3 35.0 32.0 36.7 48.0

concrete factor C 12/15 ψc [-] 0.77

C 16/20 ψc [-] 0.89

C 20/25 ψc [-] 1.00

C 25/30 ψc [-] 1.10 1.10 1.10 1.10 1.10

C 30/37 ψc [-] 1.22 1.22 1.22 1.22 1.22

C 40/50 ψc [-] 1.41 1.41 1.41 1.41 1.41

C 45/55 ψc [-] 1.48 1.48 1.48 1.48 1.48

C 50/60 ψc [-] 1.55 1.55 1.55 1.55 1.55

safety factor γMp [-] 1.50 1.50 1.50 1.80 1.50 1.80 1.50

tension load - concrete cone failure and splitting

eff . anchorage depth hef [mm] 50 70 64 84 100

spacing concrete cone scr,N [mm] 150 210 192 252 300

edge distance concrete cone ccr,N [mm] 75 105 96 126 150

spacing splitting scr,sp [mm] 300 200 250 350 280 320 384 256 420 504 420 500

edge distance splitting ccr,sp [mm] 150 100 125 175 140 160 192 128 210 252 210 250

concrete factor C 12/15 ψc [-] 0.77

C 16/20 ψc [-] 0.89

C 20/25 ψc [-] 1.00

C 25/30 ψc [-] 1.10 1.10 1.10 1.05 1.10 1.10

C 30/37 ψc [-] 1.22 1.22 1.22 1.12 1.22 1.22

C 40/50 ψc [-] 1.41 1.41 1.41 1.23 1.41 1.41

C 45/55 ψc [-] 1.48 1.48 1.48 1.27 1.48 1.48

C 50/60 ψc [-] 1.55 1.55 1.55 1.30 1.55 1.55

non-cracked concrete factor ψucr,N [-] 1.40

safety factor γMc [-] 1.50 1.50 1.50 1.80 1.50 1.80 1.50

shear load - steel failure without lever arm

load VRk,s [kN] 27.0 26.3 27.0 26.3 40.0 47.1 40.0 47.1 67.0

safety factor γMs [-] 1.50 1.26 1.50 1.26 1.50 1.31

shear load - steel failure with lever arm (bending)

bending M0Rk,s [Nm] 85.0 82.0 85.0 82.0 176 200 176 200 357

safety factor γMs [-] 1.50 1.26 1.50 1.26 1.50 1.31

shear load - concrete pryout-failure

factor k [-] 1.0 2.0

safety factor γMcp [-] 1.50

shear load - concrete edge failure

eff . length lf [mm] 50 70 64 84 100

eff . diameter dnom [mm] 12 12 16 16 20

safety factor γMc [-] 1.50

* Use restricted to anchoring of structural components which are statically indeterminate.

Page 83: 2007_tbe_en_Pages-403-500

Characteristic anchor values for the design in accordance with the CC-Method

485Status 03/2006

B

Table 4: EXA Express-anchorAnchor type EXA 8 EXA 10 EXA 12 EXA 16 EXA 20

gvz gvz gvz gzv gvz

minimum thickness of concrete member

minimum thickness hmin [mm] 100 100 135 170 205

minimum spacings and edge distances in non-cracked concrete

minimum spacing smin [mm] 45 50 75 85 105

minimum edge distances cmin [mm 40 65 90 90 100

tension load - steel failure

load NRk,s [kN] 23.0 35.0 48.0 62.0 108.0

safety factor γMs [-] 1.48 1.44 1.40 1.57 1.57

tension load - pull-out/pull-through failure

load in non-cracked concrete NRk,p [kN] 11.2 17.7 27.0 39.5 52.7

concrete factor C 12/15 ψc [-] 0.77

C 16/20 ψc [-] 0.89

C 20/25 ψc [-] 1.00

C 25/30 ψc [-] 1.10

C 30/37 ψc [-] 1.22

C 40/50 ψc [-] 1.41

C 45/55 ψc [-] 1.48

C 50/60 ψc [-] 1.55

safety factor γMp [-] 1.80 1.50

tension load - concrete cone failure and splitting

eff . anchorage depth hef [mm] 47 49 67 85 103

spacing concrete cone scr,N [mm] 142 148 202 256 310

edge distance concrete cone ccr,N [mm] 71 74 101 128 155

spacing splitting scr,sp [mm] 280 340 430 430 520

edge distance splitting ccr,sp [mm] 140 170 215 215 260

non-cracked concrete factor ψucr,N [-] 1.40

safety factor γMc [-] 1.80 1.50

shear load - steel failure without lever arm

load VRk,s [kN] 13.0 19.0 23.0 51.0 75.0

safety factor γMs [-] 1.50 1.31

shear load - steel failure with lever arm (bending)

bending M0Rk,s [Nm] 27.0 50.0 85.0 183.0 357.0

safety factor γMs [-] 1.50 1.31

shear load - concrete pryout-failure

factor k [-] 1.0 2.0

safety factor γMcp [-] 1.50

shear load - concrete edge failure

eff . length lf [mm] 47 49 67 85 103

eff . diameter dnom [mm] 8 10 12 16 20

safety factor γMc [-] 1.50

Page 84: 2007_tbe_en_Pages-403-500

Characteristic anchor values for the design in accordance with the CC-Method

486 Status 03/2006

B

Table 5: Zykon anchor FZAAnchor type FZA 10x40

M 6FZA 12x40

M 8FZA 14x40

M 10FZA 12x50

M 8FZA 14x60

M 10FZA 18x80

M 12FZA 22x100

M 16FZA 22x125

M 16gvz A4 C gvz A4 C gvz A4 C gzv A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C

minimum thickness of concrete member

minimum thickness hmin [mm] 100 100 100 100 120 160 200 250

minimum spacings and edge distances in non-cracked and cracked concrete

minimum spacing smin [mm] 40 40 70 50 60 80 100 125

minimum edge distances cmin [mm] 35 40 70 45 55 70 100 125

tension load - steel failure

load NRk,s [kN] 16.1 14.1 29.3 25.6 46.4 40.6 29.3 25.6 46.4 40.6 67.4 59.0 126.0 110.0 126.0 110.0

safety factor γMs [-] 1.50 1.87 1.50 1.50 1.87 1.50 1.50 1.87 1.50 1.50 1.87 1.50 1.50 1.87 1.50 1.50 1.87 1.50 1.50 1.87 1.50 1.50 1.87 1.50

tension load - pull-out/pull-through failure

load in non-cracked concrete NRk,p [kN] 14.0 14.0 14.0 19.6 25.8 39.7 55.4 77.5

load in cracked concrete NRk,p [kN] 9.1 9.1 9.1 12.7 16.7 25.8 36.0 50.3

concrete factor C 12/15 ψc [-] 0.77

C 16/20 ψc [-] 0.89

C 20/25 ψc [-] 1.00

C 25/30 ψc [-] 1.10

C 30/37 ψc [-] 1.22

C 40/50 ψc [-] 1.41

C 45/55 ψc [-] 1.48

C 50/60 ψc [-] 1.55

safety factor γMp [-] 1.50

tension load - concrete cone failure and splitting

eff . anchorage depth hef [mm] 40 40 40 50 60 80 100 125

spacing concrete cone scr,N [mm] 120 120 120 150 180 240 300 380

edge distance concrete cone ccr,N [mm] 60 60 60 75 90 120 150 190

spacing splitting scr,sp [mm] 120 120 120 150 180 240 300 380

edge distance splitting ccr,sp [mm] 60 60 60 75 90 120 150 190

non-cracked concrete factor ψucr,N [-] 1.54

safety factor γMc [-] 1.50

shear load - steel failure without lever arm

load VRk,s [kN] 8.0 7.0 14.7 12.8 23.0 20.3 14.7 12.8 23.2 20.3 33.8 29.5 62.8 55.0 62.8 55.0

safety factor γMs [-] 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25

shear load - steel failure with lever arm (bending)

bending M0Rk,s [Nm] 12.2 10.7 30.0 26.2 59.8 52.3 30.0 26.2 59.8 52.3 105 91.6 266 232 266 232

safety factor γMs [-] 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25

shear load - concrete pryout-failure

factor k [-] 1.3 2.0

safety factor γMcp [-] 1.50

shear load - concrete edge failure

eff . length lf [mm] 40 40 40 50 60 80 100 125

eff . diameter dnom [mm] 10 12 14 12 14 18 22 22

safety factor γMc [-] 1.50

Page 85: 2007_tbe_en_Pages-403-500

Characteristic anchor values for the design in accordance with the CC-Method

487Status 03/2006

B

Table 6: Zykon anchor FZA-DAnchor type FZA 12x50

M 8 DFZA 12x60

M 8 DFZA 12x80

M 8 DFZA 14x80

M 10 DFZA 14x100

M 10 DFZA 18x100

M 12 DFZA 18x130

M 12 DFZA 22x125

M 16 Dgvz A4 C gvz A4 C gvz A4 C gzv A4 C gvz A4 gvz A4 C gvz A4 C gvz A4

minimum thickness of concrete member

minimum thickness hmin [mm] 100 100 100 120 120 160 160 200

minimum spacings and edge distances in non-cracked and cracked concrete

minimum spacing smin [mm] 40 50 50 60 60 80 80 100

minimum edge distances cmin [mm] 35 45 45 55 55 70 70 100

tension load - steel failure

load NRk,s [kN] 29.3 25.6 29.3 25.6 29.3 25.6 46.4 40.6 46.4 40.6 67.4 59.0 67.4 59.0 126.0 110.0

safety factor γMs [-] 1.50 1.87 1.50 1.50 1.87 1.50 1.50 1.87 1.50 1.50 1.87 1.50 1.50 1.87 1.50 1.87 1.50 1.50 1.87 1.50 1.50 1.87

tension load - pull-out/pull-through failure

load in non-cracked concrete NRk,p [kN] 14.0 19.6 19.6 25.8 25.8 39.7 39.7 55.4

load in cracked concrete NRk,p [kN] 9.1 12.7 12.7 16.7 16.7 25.8 25.8 36.0

concrete factor C 12/15 ψc [-] 0.77

C 16/20 ψc [-] 0.89

C 20/25 ψc [-] 1.00

C 25/30 ψc [-] 1.10

C 30/37 ψc [-] 1.22

C 40/50 ψc [-] 1.41

C 45/55 ψc [-] 1.48

C 50/60 ψc [-] 1.55

safety factor γMp [-] 1.50

tension load - concrete cone failure and splitting

eff . anchorage depth hef [mm] 40 50 50 60 60 80 80 100

spacing concrete cone scr,N [mm] 120 150 150 180 180 240 240 300

edge distance concrete cone ccr,N [mm] 60 75 75 90 90 120 120 150

spacing splitting scr,sp [mm] 120 150 150 180 180 240 240 300

edge distance splitting ccr,sp [mm] 60 75 75 90 90 120 120 150

non-cracked concrete factor ψucr,N [-] 1.54

safety factor γMc [-] 1.50

shear load - steel failure without lever arm

load VRk,s [kN] 21.3 17.8 21.3 17.8 21.3 17.8 29.8 25.4 29.8 25.4 46.3 38.7 46.3 38.7 75.3 64.1

safety factor γMs [-] 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56

shear load - steel failure with lever arm (bending)

bending M0Rk,s [Nm] 92.4 61.4 92.4 61.4 92.4 61.4 150 100 150 100 306 203 306 203 581 390

safety factor γMs [-] 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56

shear load - concrete pryout-failure

factor k [-] 1.3 2.0

safety factor γMcp [-] 1.50

shear load - concrete edge failure

eff . length lf [mm] 40 50 50 60 60 80 80 100

eff . diameter dnom [mm] 12 12 12 14 14 18 18 22

safety factor γMc [-] 1.50

Page 86: 2007_tbe_en_Pages-403-500

Characteristic anchor values for the design in accordance with the CC-Method

488 Status 03/2006

B

Table 7: Zykon anchor FZA-IAnchor type FZA 12x40 M 6 I FZA 12x50 M 6 I FZA 14x60 M 8 I FZA 18x80 M 10 I FZA 22x100 M 12 I FZA 22x125 M 12 I

gvz 1) A4 2) A4 2) gvz 1) A4 2) gvz 1) A4 2) gvz 1) A4 gvz 1) A4 2)

minimum thickness of concrete member

minimum thickness hmin [mm] 100 100 120 160 200 250

minimum spacings and edge distances in non-cracked and cracked concrete

minimum spacing smin [mm] 40 50 60 80 100 125

minimum edge distances cmin [mm] 35 45 55 70 100 125

tension load - steel failure

load NRk,s [kN] 17.2 13.5 13.5 22.9 17.9 26.9 22.7 63.0 53.1 63.0 53.1

safety factor γMs [-] 1.75 1.80 1.80 1.75 1.80 2.00 1.80 2.00 1.80 2.00 1.80

tension load - pull-out/pull-through failure

load in non-cracked concrete NRk,p [kN] 14.0 19.6 25.8 39.7 55.4 77.5

load in cracked concrete NRk,p [kN] 9.1 12.7 16.7 25.8 36.0 50.3

concrete factor C 12/15 ψc [-] 0.77

C 16/20 ψc [-] 0.89

C 20/25 ψc [-] 1.00

C 25/30 ψc [-] 1.10

C 30/37 ψc [-] 1.22

C 40/50 ψc [-] 1.41

C 45/55 ψc [-] 1.48

C 50/60 ψc [-] 1.55

safety factor γMp [-] 1.50

tension load - concrete cone failure and splitting

eff . anchorage depth hef [mm] 40 50 60 80 100 125

spacing concrete cone scr,N [mm] 120 150 180 240 300 380

edge distance concrete cone ccr,N [mm] 60 75 90 120 150 190

spacing splitting scr,sp [mm] 120 150 180 240 300 380

edge distance splitting ccr,sp [mm] 60 75 90 120 150 190

non-cracked concrete factor ψucr,N [-] 1.54

safety factor γMc [-] 1.50

shear load - steel failure without lever arm

load VRk,s [kN] 8.6 6.7 6.7 11.4 9.0 13.4 11.3 31.5 26.6 31.5 26.6

safety factor γMs [-] 1.50 1.50 1.50 1.70 1.50 1.70 1.50 1.70 1.50

shear load - steel failure with lever arm (bending)

bending M0Rk,s [Nm] 12.2 10.7 10.7 30.0 26.2 59.8 52.3 105 91.6 105 91.6

safety factor γMs [-] 1.50 1.50 1.50 1.70 1.50 1.70 1.50 1.70 1.50

shear load - concrete pryout-failure

factor k [-] 1.3 2.0

safety factor γMcp [-] 1.50

shear load - concrete edge failure

eff . length lf [mm] 40 50 60 80 100 125

eff . diameter dnom [mm] 12 12 14 18 22 22

safety factor γMc [-] 1.50

1) The values apply to screws with a strength classification 8.82) The values apply to screws with a strength classification A4 - 70

Page 87: 2007_tbe_en_Pages-403-500

Characteristic anchor values for the design in accordance with the CC-Method

489Status 03/2006

B

Table 8: Zykon hammerset anchor FZEAAnchor type FZEA 10x40 M 8 FZEA 12x40 M 10 FZEA 14x40 M 12

gvz 1) A4 2) gvz 1) A4 2) gvz 1) A4 2)

minimum thickness of concrete member

minimum thickness hmin [mm] 100 100 100

minimum spacings and edge distances in non-cracked and cracked concrete

minimum spacing smin [mm] 40 40 40

minimum edge distances cmin [mm] 40 40 40

tension load - steel failure

load NRk,s [kN] 18.0 17.4 21.5 22.7 26.2 27.7

safety factor γMs [-] 1.53 1.83 1.50 1.83 1.50 1.83

tension load - pull-out/pull-through failure

load in non-cracked concrete NRk,p [kN] 14.0 14.0 14.0

load in cracked concrete NRk,p [kN] 9.1 9.1 9.1

concrete factor C 12/15 ψc [-] 0.77

C 16/20 ψc [-] 0.89

C 20/25 ψc [-] 1.00

C 25/30 ψc [-] 1.10

C 30/37 ψc [-] 1.22

C 40/50 ψc [-] 1.41

C 45/55 ψc [-] 1.48

C 50/60 ψc [-] 1.55

safety factor γMp [-] 1.50

tension load - concrete cone failure and splitting

eff . anchorage depth hef [mm] 40 40 40

spacing concrete cone scr,N [mm] 120 120 120

edge distance concrete cone ccr,N [mm] 60 60 60

spacing splitting scr,sp [mm] 120 120 120

edge distance splitting ccr,sp [mm] 60 60 60

non-cracked concrete factor ψucr,N [-] 1.54

safety factor γMc [-] 1.50

shear load - steel failure without lever arm

load VRk,s [kN] 9.0 8.7 10.7 11.4 13.1 13.9

safety factor γMs [-] 1.27 1.52 1.24 1.52 1.24 1.52

shear load - steel failure with lever arm (bending)

bending M0Rk,s [Nm] 30.0 21.1 59.8 42.1 92.1 73.7

safety factor γMs [-] 1.27 1.52 1.24 1.52 1.24 1.52

shear load - concrete pryout-failure

factor k [-] 1.0

safety factor γMcp [-] 1.50

shear load - concrete edge failure

eff . length lf [mm] 40 40 40

eff . diameter dnom [mm] 10 12 14

safety factor γMc [-] 1.50

1) The values apply to screws with a strength classification 8.82) The values apply to screws with a strength classification A4 - 70

Page 88: 2007_tbe_en_Pages-403-500

Characteristic anchor values for the design in accordance with the CC-Method

490 Status 03/2006

B

Table 9: High performance anchor FH / FHAAnchor type FH 10 FH 12 FH 15 FH 18x80 FH 18x100 FH 24 FHA 28 FHA 32

gvz A4 gvz A4 gvz A4 gzv gvz A4 gvz gvz A4 gvz A4

minimum thickness of concrete member

minimum thickness hmin [mm] 100 130 140 160 200 250 250 300

minimum spacings and edge distances in non-cracked concrete

minimum spacing smin [mm] 50 60 70 80 80 125 125 170

for required edge distances for c [mm] 100 120 190 240 200 125 250 340

minimum edge distances cmin [mm 50 60 80 80 80 125 250 340

for required spacing for s [mm 100 100 180 240 240 125 125 170

minimum spacings and edge distances in cracked concrete

minimum spacing smin [mm] 50 - 60 - 70 - 80 80 - 125 - -

for required edge distances for c [mm] 100 - 120 - 190 -- 240 200 - 125 - -

minimum edge distances cmin [mm 50 - 60 - 80 - 80 80 - 125 - -

for required spacing for s [mm 100 - 100 - 180 - 240 240 - 125 - -

tension load - steel failure

load NRk,s [kN] 16.0 14.1 29.0 25.6 46.0 40.6 67.0 67.0 59.0 125.0 196.0 171.5 282.4 247.1

safety factor γMs [-] 1.50 1.87 1.50 1.87 1.50 1.87 1.50 1.50 1.87 1.50 1.50 1.87 1.50 1.87

tension load - pull-out/pull-through failure

load in non-cracked concrete NRk,p [kN] 14.3 17.4 27.0 38.1 38.1 77.0 77.5 95.7

load in cracked concrete NRk,p [kN] 8.0 - 14.6 - 19.0 - 25.8 30.0 - 50.0 - -

concrete factor C 12/15 ψc [-] 0.77

C 16/20 ψc [-] 0.89

C 20/25 ψc [-] 1.00

C 25/30 ψc [-] 1.10

C 30/37 ψc [-] 1.22

C 40/50 ψc [-] 1.41

C 45/55 ψc [-] 1.48

C 50/60 ψc [-] 1.55

safety factor γMp [-] 1.50 1.80

tension load - concrete cone failure and splitting

eff . anchorage depth hef [mm] 50 60 70 80 100 125 125 170

spacing concrete cone scr,N [mm] 150 180 210 240 300 380 380 510

edge distance concrete cone ccr,N [mm] 75 90 105 120 150 190 190 255

spacing splitting scr,sp [mm] 250 300 350 400 500 626 750 1020

edge distance splitting ccr,sp [mm] 125 150 175 200 250 313 375 510

non-cracked concrete factor ψucr,N [-] 1.54

safety factor γMc [-] 1.50 1.80

shear load - steel failure without lever arm

load VRk,s [kN] 13.5 16.5 23.8 24.5 38.0 40.0 56.0 56.0 59.0 117.0 142.0 132.0 192.0 175.0

safety factor γMs [-] 1.25 2.20 1.25 2.20 1.25 2.20 1.25 1.25 2.20 1.25 1.25 2.40 1.25 2.40

shear load - steel failure with lever arm (bending)

bending M0Rk,s [Nm] 12.2 10.7 30.0 26.2 59.8 52.3 105 105 91.7 266 519 454 898 785

safety factor γMs [-] 1.25 1.56 1.25 1.56 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.56

shear load - concrete pryout-failure

factor k [-] 1.0 2.0

safety factor γMcp [-] 1.50

shear load - concrete edge failure

eff . length lf [mm] 15 15 19 23 43 53 60 100

eff . diameter dnom [mm] 10 12 15 18 18 24 28 32

safety factor γMc [-] 1.50

Page 89: 2007_tbe_en_Pages-403-500

Characteristic anchor values for the design in accordance with the CC-Method

491Status 03/2006

B

Table 10: Heavy-duty anchor TA MAnchor type TA M 6 TA M 8 TA M 10 TA M 12

gvz 1) gvz 1) gvz 1) gvz 1)

minimum thickness of concrete member

minimum thickness hmin [mm] 100 100 110 140

minimum spacings and edge distances in non-cracked concrete

minimum spacing smin [mm] 80 90 110 160

minimum edge distances cmin [mm] 50 60 70 120

tension load - steel failure

load NRk,s [kN] 16.1 29.3 46.4 67.4

safety factor γMs [-] 1.50

tension load - pull-out/pull-through failure

load in non-cracked concrete NRk,p [kN] 8.9 13.6 20.0 27.0

concrete factor C 12/15 ψc [-] 0.77

C 16/20 ψc [-] 0.89

C 20/25 ψc [-] 1.00

C 25/30 ψc [-] 1.10

C 30/37 ψc [-] 1.22

C 40/50 ψc [-] 1.41

C 45/55 ψc [-] 1.48

C 50/60 ψc [-] 1.55

safety factor γMp [-] 1.50

tension load - concrete cone failure and splitting

eff . anchorage depth hef [mm] 40 45 55 70

spacing concrete cone scr,N [mm] 120 136 166 210

edge distance concrete cone ccr,N [mm] 60 68 83 105

spacing splitting scr,sp [mm] 120 180 330 420

edge distance splitting ccr,sp [mm] 60 90 165 210

non-cracked concrete factor ψucr,N [-] 1.40

safety factor γMc [-] 1.50

shear load - steel failure without lever arm

load VRk,s [kN] 5.8 11.7 19.2 29.8

safety factor γMs [-] 1.25

shear load - steel failure with lever arm (bending)

bending M0Rk,s [Nm] 12.0 30.0 60.0 105

safety factor γMs [-] 1.25

shear load - concrete pryout-failure

factor k [-] 1.1 1.8 2.0

safety factor γMcp [-] 1.50

shear load - concrete edge failure

eff . length lf [mm] 40 45 55 70

eff . diameter dnom [mm] 10 12 15 18

safety factor γMc [-] 1.50

1) The values apply to screws with a strength classification 8.8

Page 90: 2007_tbe_en_Pages-403-500

Characteristic anchor values for the design in accordance with the CC-Method

492 Status 03/2006

B

Table 11: Highbond anchor FHB II (M8 - M12)Anchor type FHB II 8x60 FHB II 10x60 FHB II 10x95 FHB II 12x75 FHB II 12x120

gvz A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C

minimum thickness of concrete member

minimum thickness hmin [mm] 100 100 140 120 170

minimum spacings and edge distances in non-cracked and cracked concrete

minimum spacing smin [mm] 40 40 40 40 50

minimum edge distances cmin [mm 40 40 40 40 50

tension load - steel failure

load NRk,s [kN] 21.9 21.9 34.4 34.4 49.8

safety factor γMs [-] 1.50

tension load - pull-out/pull-through failure

load in non-cracked concrete NRk,p [kN] not decisive

load in cracked concrete NRk,p [kN] not decisive

concrete factor C 12/15 ψc [-] 0.77

C 16/20 ψc [-] 0.89

C 20/25 ψc [-] 1.00

C 25/30 ψc [-] 1.10

C 30/37 ψc [-] 1.22

C 40/50 ψc [-] 1.41

C 45/55 ψc [-] 1.48

C 50/60 ψc [-] 1.55

safety factor γMp [-] -

tension load - concrete cone failure and splitting

eff . anchorage depth hef [mm] 60 60 95 75 120

spacing concrete cone scr,N [mm] 180 180 285 225 360

edge distance concrete cone ccr,N [mm] 90 90 143 113 180

spacing splitting scr,sp [mm] 300 300 470 300 600

edge distance splitting ccr,sp [mm] 150 150 235 150 300

non-cracked concrete factor ψucr,N [-] 1.40

safety factor γMc [-] 1.50

shear load - steel failure without lever arm

load VRk,s [kN] 13.2 14.6 18.8 23.2 20.8 23.2 27.3 33.7 30.3 33.7

safety factor γMs [-]

shear load - steel failure with lever arm (bending)

bending M0Rk,s [Nm] 30.0 60.0 60.0 105.0 105.0

safety factor γMs [-]

shear load - concrete pryout-failure

factor k [-] 2.0

safety factor γMcp [-] 1.50

shear load - concrete edge failure

eff . length lf [mm] 60 60 95 75 112

eff . diameter dnom [mm] 10 10 12 12 14

safety factor γMc [-] 1.50

Page 91: 2007_tbe_en_Pages-403-500

Characteristic anchor values for the design in accordance with the CC-Method

493Status 03/2006

B

Table 12: Highbond anchor FHB II (M16 - M24)Anchor type FHB II 16x95 FHB II 16x160 FHB II 20x210 FHB II 24x170

gvz A4 C gvz A4 C gvz A4 C gvz A4 C

minimum thickness of concrete member

minimum thickness hmin [mm] 150 220 280 240

minimum spacings and edge distances in non-cracked and cracked concrete

minimum spacing smin [mm] 50 70 90 80

minimum edge distances cmin [mm 50 70 90 80

tension load - steel failure

load NRk,s [kN] 61.6 96.6 137.6 128.5

safety factor γMs [-] 1.50

tension load - pull-out/pull-through failure

load in non-cracked concrete NRk,p [kN] not decisive

load in cracked concrete NRk,p [kN] not decisive

concrete factor C 12/15 ψc [-] 0.77

C 16/20 ψc [-] 0.89

C 20/25 ψc [-] 1.00

C 25/30 ψc [-] 1.10

C 30/37 ψc [-] 1.22

C 40/50 ψc [-] 1.41

C 45/55 ψc [-] 1.48

C 50/60 ψc [-] 1.55

safety factor γMp [-] -

tension load - concrete cone failure and splitting

eff . anchorage depth hef [mm] 95 160 210 170

spacing concrete cone scr,N [mm] 285 480 630 510

edge distance concrete cone ccr,N [mm] 143 240 315 255

spacing splitting scr,sp [mm] 340 580 630 510

edge distance splitting ccr,sp [mm] 170 290 315 255

non-cracked concrete factor ψucr,N [-] 1.40

safety factor γMc [-] 1.50

shear load - steel failure without lever arm

load VRk,s [kN] 50.8 62.7 56.3 62.7 87.9 97.9 114.2 124.5 141.0

safety factor γMs [-] 1.25

shear load - steel failure with lever arm (bending)

bending M0Rk,s [Nm] 266.0 266.0 519.0 896.0

safety factor γMs [-] 1.25

shear load - concrete pryout-failure

factor k [-] 2.00

safety factor γMcp [-] 1.50

shear load - concrete edge failure

eff . length lf [mm] 95 144 200 170

eff . diameter dnom [mm] 16 18 25 25

safety factor γMc [-] 1.50

Page 92: 2007_tbe_en_Pages-403-500

Characteristic anchor values for the design in accordance with the CC-Method

494 Status 03/2006

B

Table 13: Resin anchor R (Eurobond)Anchor type R M 8

RG M 8R M 10

RG M 10R M 12

RG M 12R M 16

RG M 16R M 20

RG M 20R M 24

RG M 24R M 27

RG M 27R M 30

RG M 30gvz A4 C gvz A4 C gvz A4 C gzv A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C

minimum thickness of concrete member

minimum thickness hmin [mm] 130 140 160 175 220 260 300 330

minimum spacings and edge distances in non-cracked and cracked concrete

minimum spacing smin [mm] 40 45 55 65 85 105 125 140

minimum edge distances cmin [mm] 40 45 55 65 85 105 125 140

tension load - steel failure

load NRk,s [kN] 19.0 25.6 30.2 40.6 43.8 59.0 81.6 109.9 127.4 171.5 183.6 247.1 238.7 321.3 291.7 392.7

safety factor γMs [-] 1.49 1.87 1.50 1.49 1.87 1.50 1.49 1.87 1.50 1.49 1.87 1.50 1.49 1.87 1.50 1.49 1.87 1.50 1.49 1.87 1.50 1.49 1.87 1.50

tension load - pull-out/pull-through failure

load in non-cracked concrete NRk,p [kN]

safety factor γMp [-]

tension load - concrete cone failure and splitting

load in non-cracked concrete N0Rk,c [kN] 15.0 21.1 31.0 47.0 79.9 118.4 156.4 153.3

spacing concrete cone scr,N [mm] 160 180 220 250 340 420 500 560

edge distance concrete cone ccr,N [mm] 80 90 110 125 170 210 250 280

spacing splitting scr,sp [mm] 240 270 330 380 510 630 750 840

edge distance splitting ccr,sp [mm] 120 135 165 190 255 315 375 420

concrete factor C 12/15 ψc [-] 0.70

C 16/20 ψc [-] 0.85

C 20/25 ψc [-] 1.00

C 25/30 ψc [-] 1.03 1.01 1.04

C 30/37 ψc [-] 1.07 1.03 1.10

C 40/50 ψc [-] 1.14 1.07 1.21

C 45/55 ψc [-] 1.17 1.09 1.26

C 50/60 ψc [-] 1.20 1.10 1.30

non-cracked concrete factor ψucr,N [-] 1.40

safety factor γMc [-] 1.80

shear load - steel failure without lever arm

load VRk,s [kN] 9.5 12.8 15.1 20.3 21.9 29.5 40.8 55.0 63.7 85.8 91.8 123.6 119.3 160.7 145.9 196.4

safety factor γMs [-] 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25

shear load - steel failure with lever arm (bending)

bending M0Rk,s [Nm] 19.5 26.2 38.9 52.3 68.1 91.7 173 233 338 454 584 786 866 1165 1170 1574

safety factor γMs [-] 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25

shear load - concrete pryout-failure

factor k [-] 2.0

safety factor γMcp [-] 1.50

shear load - concrete edge failure

eff . length lf [mm] 80 90 110 125 170 210 250 280

eff . diameter dnom [mm] 10 12 14 18 25 28 32 35

safety factor γMc [-] 1.50

Pull-out/pull-through failure is not decisive!

Page 93: 2007_tbe_en_Pages-403-500

Characteristic anchor values for the design in accordance with the CC-Method

495Status 03/2006

B

Table 14: Injection mortar FIS V / FIS VSAnchor type FIS V

FIS A M 6FIS V

RG M 8FIS V

RG M 10FIS V

RG M 12FIS V

RG M 16FIS V

RG M 20FIS V

RG M 24FIS V

RG M 30gvz A4 C gvz A4 C gvz A4 C gzv A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C

minimum thickness of concrete member

minimum thickness hmin [mm] 100 110 120 140 165 220 270 350

minimum spacings and edge distances in non-cracked and cracked concrete

minimum spacing smin [mm] 40 40 45 55 65 85 105 140

minimum edge distances cmin [mm] 40 40 45 55 65 85 105 140

tension load - steel failure

load NRk,s [kN] 10.5 14.1 19.0 25.6 30.2 40.6 43.8 59.0 81.6 109.9 127.4 171.5 183.6 247.1 291.7 392.7

safety factor γMs [-] 1.49 1.87 1.50 1.49 1.87 1.50 1.49 1.87 1.50 1.49 1.87 1.50 1.49 1.87 1.50 1.49 1.87 1.50 1.49 1.87 1.50 1.49 1.87 1.50

tension load - pull-out/pull-through failure

load in non-cracked concrete NRk,p [kN]

safety factor γMp [-]

tension load - concrete cone failure and splitting

load in non-cracked concrete N0Rk,c [kN] 7.3 12.9 18.1 26.6 40.4 54.9 81.4 101.8

spacing concrete cone scr,N [mm] 120 160 180 220 250 340 420 560

edge distance concrete cone ccr,N [mm] 60 80 90 110 125 170 210 280

spacing splitting scr,sp [mm] 120 220 240 330 420 420 520 560

edge distance splitting ccr,sp [mm] 60 110 120 165 210 210 260 280

concrete factor C 12/15 ψc [-] 0.70

C 16/20 ψc [-] 0.85

C 20/25 ψc [-] 1.00

C 25/30 ψc [-] 1.01 1.02

C 30/37 ψc [-] 1.03 1.06

C 40/50 ψc [-] 1.06 1.12

C 45/55 ψc [-] 1.07 1.15

C 50/60 ψc [-] 1.08 1.17

non-cracked concrete factor ψucr,N [-] 1.40

safety factor γMc [-] 1.80

shear load - steel failure without lever arm

load VRk,s [kN] 5.2 7.0 9.5 12.8 15.1 20.3 21.9 29.5 40.8 55.0 63.7 85.8 91.8 123.6 145.9 196.4

safety factor γMs [-] 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25

shear load - steel failure with lever arm (bending)

bending M0Rk,s [Nm] 7.9 10.7 19.5 26.2 38.9 52.3 68.1 91.7 173 233 338 454 584 786 1170 1574

safety factor γMs [-] 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25

shear load - concrete pryout-failure

factor k [-] 2.0

safety factor γMcp [-] 1.50

shear load - concrete edge failure

eff . length lf [mm] 60 80 90 110 125 170 210 280

eff . diameter dnom [mm] 8 10 12 14 18 24 28 35

safety factor γMc [-] 1.50

Pull-out/pull-through failure is not decisive!

Page 94: 2007_tbe_en_Pages-403-500

Characteristic anchor values for the design in accordance with the CC-Method

496 Status 03/2006

B

Table 15: Injection mortar FIS EMAnchor type FIS EM

RG M 8FIS EM

RG M 10FIS EM

RG M 12FIS EM

RG M 16FIS EM

RG M 20FIS EM

RG M 24FIS EM

RG M 30gvz A4 C gvz A4 C gzv A4 C gvz A4 C gvz A4 C gvz A4 C gvz A4 C

minimum thickness of concrete member

minimum thickness hmin [mm] 110 120 140 165 220 270 350

minimum spacings and edge distances in non-cracked and cracked concrete

minimum spacing smin [mm] 40 45 55 65 85 105 140

minimum edge distances cmin [mm] 40 45 55 65 85 105 140

tension load - steel failure

load NRk,s [kN] 19.0 25.6 30.2 40.6 43.8 59.0 81.6 109.9 127.4 171.5 183.6 247.1 291.7 392.7

safety factor γMs [-] 1.49 1.87 1.50 1.49 1.87 1.50 1.49 1.87 1.50 1.49 1.87 1.50 1.49 1.87 1.50 1.49 1.87 150 1.49 1.87 1.50

tension load - pull-out/pull-through failure

load in non-cracked concrete NRk,p [kN]

safety factor γMp [-]

tension load - concrete cone failure and splitting

load in non-cracked concrete N0Rk,c [kN] 15.1 21.2 31.1 47.1 80.1 118.7 197.9

spacing concrete cone scr,N [mm] 160 180 220 250 340 420 560

edge distance concrete cone ccr,N [mm] 80 90 110 125 170 210 280

spacing splitting scr,sp [mm] 240 270 330 380 510 630 840

edge distance splitting ccr,sp [mm] 120 135 165 190 255 315 420

concrete factor C 12/15 ψc [-] 0.70

C 16/20 ψc [-] 0.85

C 20/25 ψc [-] 1.00

C 25/30 ψc [-] 1.04

C 30/37 ψc [-] 1.10

C 40/50 ψc [-] 1.21

C 45/55 ψc [-] 1.26

C 50/60 ψc [-] 1.30

non-cracked concrete factor ψucr,N [-] 1.40

safety factor γMc [-] 1.80

shear load - steel failure without lever arm

load VRk,s [kN] 9.5 12.8 15.1 20.3 21.9 29.5 40.8 55.0 63.7 85.8 91.8 123.6 145.9 196.4

safety factor γMs [-] 1.25 1.56 1.25 1.25 156 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25

shear load - steel failure with lever arm (bending)

bending M0Rk,s [Nm] 19.5 26.2 38.9 52.3 88.1 91.7 173 233 338 454 584 786 1170 1574

safety factor γMs [-] 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25

shear load - concrete pryout-failure

factor k [-] 2.0

safety factor γMcp [-] 1.50

shear load - concrete edge failure

eff . length lf [mm] 80 90 110 125 170 210 280

eff . diameter dnom [mm] 10 12 14 18 24 28 35

safety factor γMc [-] 1.50

Pull-out/pull-through failure is not decisive!

Page 95: 2007_tbe_en_Pages-403-500

Characteristic anchor values for the design in accordance with the CC-Method

497Status 03/2006

B

Table 16: UKA 3 chemical anchor (M8 - M16)Anchor type UKA 3 M 8

ASTA M 8UKA 3 M 10ASTA M 10

UKA 3 M 12ASTA M 12

UKA 3 M 14ASTA M 14

UKA 3 M 16ASTA M 16

gvzfvz A4 S

gvzfvz A4 S

gvzfvz A4 S gvz A4

gvzfvz A4 S

minimum thickness of concrete member

minimum thickness hmin [mm] 130 140 160 170 175

minimum spacings and edge distances in non-cracked and cracked concrete

minimum spacing smin [mm] 40 45 55 60 65

minimum edge distances cmin [mm] 40 45 55 60 65

tension load - steel failure

load NRk,s [kN] 19.0 25.6 30.2 40.6 43.8 59.0 59.8 80.5 81.6 109.9

safety factor γMs [-] 1.49 1.87 1.50 1.49 1.87 1.50 1.49 1.87 1.50 1.49 1.87 1.49 1.87 1.50

tension load - pull-out/pull-through failure

load in non-cracked concrete NRk,p [kN]

safety factor γMp [-]

tension load - concrete cone failure and splitting

load in non-cracked concrete N0Rk,c [kN] 15.0 21.1 31.0 39.5 47.0

spacing concrete cone scr,N [mm] 160 180 220 240 250

edge distance concrete cone ccr,N [mm] 80 90 110 120 125

spacing splitting scr,sp [mm] 240 270 330 360 380

edge distance splitting ccr,sp [mm] 120 135 165 180 190

concrete factor C 12/15 ψc [-] 0.70

C 16/20 ψc [-] 0.85

C 20/25 ψc [-] 1.00

C 25/30 ψc [-] 1.03 1.01 1.04

C 30/37 ψc [-] 1.07 1.03 1.10

C 40/50 ψc [-] 1.14 1.07 1.21

C 45/55 ψc [-] 1.17 1.09 1.26

C 50/60 ψc [-] 1.20 1.10 1.30

non-cracked concrete factor ψucr,N [-] 1.40

safety factor γMc [-] 1.80

shear load - steel failure without lever arm

load VRk,s [kN] 9.5 12.8 15.1 20.3 21.9 29.5 29.9 40.3 40.8 55.0

safety factor γMs [-] 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.56 1.25

shear load - steel failure with lever arm (bending)

bending M0Rk,s [Nm] 19.5 26.2 38.9 52.3 68.1 91.7 108.6 146.2 173 233

safety factor γMs [-] 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.56 1.25

shear load - concrete pryout-failure

factor k [-] 2.0

safety factor γMcp [-] 1.50

shear load - concrete edge failure

eff . length lf [mm] 80 90 110 120 125

eff . diameter dnom [mm] 10 12 14 16 18

safety factor γMc [-] 1.50

Pull-out/pull-through failure is not decisive!

Page 96: 2007_tbe_en_Pages-403-500

Characteristic anchor values for the design in accordance with the CC-Method

498 Status 03/2006

B

Table 17: UKA 3 chemical anchor (M20 - M30)Anchor type UKA 3 M 20

ASTA M 20UKA 3 M 22ASTA M 22

UKA 3 M 24ASTA M 24

UKA 3 M 27ASTA M 27

UKA 3 M 30ASTA M 30

gvzfvz A4 S gvz A4 gvz A4 S gvz A4 S gvz A4 S

minimum thickness of concrete member

minimum thickness hmin [mm] 220 240 260 300 330

minimum spacings and edge distances in non-cracked and cracked concrete

minimum spacing smin [mm] 85 95 105 125 140

minimum edge distances cmin [mm] 85 95 105 125 140

tension load - steel failure

load NRk,s [kN] 127.4 171.5 157.6 212.1 183.6 247.1 238.7 321.3 291.7 392.7

safety factor γMs [-] 1.49 1.87 1.50 1.49 1.87 1.49 1.87 1.50 1.49 1.87 1.50 1.49 1.87 1.50

tension load - pull-out/pull-through failure

load in non-cracked concrete NRk,p [kN]

safety factor γMp [-]

tension load - concrete cone failure and splitting

load in non-cracked concrete N0Rk,c [kN] 79.9 98.2 118.4 156.4 153.3

spacing concrete cone scr,N [mm] 340 380 420 500 560

edge distance concrete cone ccr,N [mm] 170 190 210 250 280

spacing splitting scr,sp [mm] 510 570 630 750 840

edge distance splitting ccr,sp [mm] 255 285 315 375 420

concrete factor C 12/15 ψc [-] 0.70

C 16/20 ψc [-] 0.85

C 20/25 ψc [-] 1.00

C 25/30 ψc [-] 1.04

C 30/37 ψc [-] 1.10

C 40/50 ψc [-] 1.21

C 45/55 ψc [-] 1.26

C 50/60 ψc [-] 1.30

non-cracked concrete factor ψucr,N [-] 1.40

safety factor γMc [-] 1.80

shear load - steel failure without lever arm

load VRk,s [kN] 63.7 85.8 78.8 106.1 91.8 123.6 119.3 160.7 145.9 196.4

safety factor γMs [-] 1.25 1.56 1.25 1.25 1.56 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25

shear load - steel failure with lever arm (bending)

bending M0Rk,s [Nm] 338 454 464 625 584 786 866 1165 1170 1574

safety factor γMs [-] 1.25 1.56 1.25 1.25 1.56 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25

shear load - concrete pryout-failure

factor k [-] 2.0

safety factor γMcp [-] 1.50

shear load - concrete edge failure

eff . length lf [mm] 170 190 210 250 280

eff . diameter dnom [mm] 25 30 28 32 35

safety factor γMc [-] 1.50

Pull-out/pull-through failure is not decisive!

Page 97: 2007_tbe_en_Pages-403-500

Characteristic anchor values for the design in accordance with the CC-Method

499Status 03/2006

B

Table 18: UPM 44 Chemical mortarAnchor type UPM 44

ASTA M 8UPM 44

ASTA M 10UPM 44

ASTA M 12UPM 44

ASTA M 16UPM 44

ASTA M 20UPM 44

ASTA M 24UPM 44

ASTA M 30gvzfvz A4 S

gvzfvz A4 S

gvzfvz A4 S

gvzfvz A4 S

gvzfvz A4 S gvz A4 S gvz A4 S

minimum thickness of concrete member

minimum thickness hmin [mm] 110 120 140 165 220 270 350

minimum spacings and edge distances in non-cracked and cracked concrete

minimum spacing smin [mm] 40 45 55 65 85 105 140

minimum edge distances cmin [mm] 40 45 55 65 85 105 140

tension load-steel failureload NRk,s [kN] 19.0 25.6 30.2 40.6 43.8 59.0 81.6 109.9 127.4 171.5 183.6 247.1 291.7 392.7

safety factor γMs [-] 1.49 1.87 1.50 1.49 1.87 1.50 1.49 1.87 1.50 1.49 1.87 1.50 1.49 1.87 1.50 1.49 1.87 1.50 1.49 1.87 1.50

tension load - pull-out/pull-through failure

load in non-cracked concrete NRk,p [kN]

safety factor γMp [-]

tension load - concrete cone failure and splitting

load in non-cracked concrete N0Rk,c [kN] 12.9 18.1 26.6 40.4 54.9 81.4 101.8

spacing concrete cone scr,N [mm] 160 180 220 250 340 420 560

edge distance concrete cone ccr,N [mm] 80 90 110 125 170 210 280

spacing splitting scr,sp [mm] 220 240 330 420 420 520 560

edge distance splitting ccr,sp [mm] 110 120 165 210 210 260 280

concrete factor C 12/15 ψc [-] 0.70

C 16/20 ψc [-] 0.85

C 20/25 ψc [-] 1.00

C 25/30 ψc [-] 1.01 1.02

C 30/37 ψc [-] 1.03 1.06

C 40/50 ψc [-] 1.06 1.12

C 45/55 ψc [-] 1.07 1.15

C 50/60 ψc [-] 1.08 1.17

non-cracked concrete factor ψucr,N [-] 1.40

safety factor γMc [-] 1.80

shear load - steel failure without lever arm

load VRk,s [kN] 9.5 12.8 15.1 20.3 21.9 29.5 40.8 55.0 63.7 85.8 91.8 123.6 145.9 196.4

safety factor γMs [-] 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25

shear load - steel failure with lever arm (bending)

bending M0Rk,s [Nm] 19.5 26.2 38.9 52.3 68.1 91.7 173 233 338 454 584 786 1170 1574

safety factor γMs [-] 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25 1.25 1.56 1.25

shear load - concrete pryout-failure

factor k [-] 2.0

safety factor γMcp [-] 1.50

shear load - concrete edge failure

eff . length lf [mm] 80 90 110 125 170 210 280

eff . diameter dnom [mm] 10 12 14 18 24 28 35

safety factor γMc [-] 1.50

Pull-out/pull-through failure is not decisive!

Page 98: 2007_tbe_en_Pages-403-500

Characteristic anchor values for the design in accordance with the CC-Method

500 Status 03/2006

B

Table 19: Long-shaft fi xing SXSAnchor type SXS 10 SXS 10 SXS 10

gvz fvz A4

temperature rangeshort term/long term [°C] 30/50 50/80 30/50 50/80 30/50 50/80minimum thickness of concrete member

minimum thickness hmin [mm] 100

minimum spacings and edge distances in non-cracked concrete

minimum spacing smin [mm] 55

minimum edge distances cmin [mm] 60

minimum spacings and edge distances in cracked concrete

minimum spacing smin [mm] 55 - 55

minimum edge distances cmin [mm] 50 - 50

tension load - steel failure

load NRk,s [kN] 16.1 8.1 15.6

safety factor γMs [-] 1.50 1.50 1.50

tension load - pull-out/pull-through failure

load in non-cracked concrete NRk,p [kN] 6.0 4.0 3.0 2.0 6.0 4.0

load in cracked concrete NRk,p [kN] 5.0 3.0 - - 5.0 3.0

concrete factor C 12/15 ψc [-] -

C 16/20 ψc [-] -

C 20/25 ψc [-] 1.00

C 25/30 ψc [-] 1.00

C 30/37 ψc [-] 1.00

C 40/50 ψc [-] 1.00

C 45/55 ψc [-] 1.00

C 50/60 ψc [-] 1.00

safety factor γMp [-] 1.80

tension load - concrete cone failure and splitting

eff . anchorage depth hef [mm] 35 22 35

spacing concrete cone scr,N [mm] 105

edge distance concrete cone ccr,N [mm] 53

spacing splitting scr,sp [mm] 200

edge distance splitting ccr,sp [mm] 100

non-cracked concrete factor ψucr,N [-] 1.40

safety factor γMc [-] 1.80

shear load - steel failure without lever arm

load VRk,s [kN] 12.9 6.5 12.5

safety factor γMs [-] 1.25 1.25 1.25

shear load - steel failure with lever arm (bending)

bending M0Rk,s [Nm] 28,6 14.3 27.7

safety factor γMs [-] 1.25 1.25 1.25

shear load - pull-out

load in non-cracked concrete VRk,p [kN] 9.0 7.5 4.5 3.8 9.0 7.5

load in non-cracked concrete VRk,p [kN] 9.0 7.5 - - 9.0 7.5

safety factor γMp [-] 1.80

shear load - concrete pryout-failure

factor k [-] 2.00

safety factor γMcp [-] 1.50

shear load - concrete edge failure

eff . length lf [mm] 50

eff . diameter dnom [mm] 10

safety factor γMc [-] 1.50