20 :損傷度shibahara/osakafu-content/...Nugget diameter:(5) 3 𝑡, 4 𝑡, 5𝑡 Plate...

1
Study on fracture mode of spot weld joint using continuum damage mechanics model Background, Objectives of this study Proposal of analysis method Apply to the analysis of cross tension test on spot weld Influence of nugget diameter on fracture mode Influence of plate thickness on fracture mode Conclusions In this study, a simplified ductile fracture evaluation method based on continuum damage mechanics was proposed. And the proposed method was applied to cross tension test on spot weld joints to investigate fracture modes. The following results were obtained. 2) It is found that size of nugget diameter affect fracture mode, in the case of small nugget diameter, fracture mode is interface fracture, and in the case of large nugget diameter, fracture mode is plug fracture. 3) Through the comparison of the fracture behavior, it was found that crack propagates into the nugget due to large stress triaxiality in the case of interface fracture. On the other hand, crack propagates along the outer periphery of the weld nugget due to the large equivalent plastic strain in case of plug fracture. 1) It was shown that the fracture mode of the cross tension test on spot welding can be predicted by using the proposed method. Strength of spot weld joint may decrease on high tensile steel depending on the fracture mode Problems of spot welding joint Fracture mode of spot weld joint Interface fracture Proposal of analysis method to simulate ductile fracture Prediction of the fracture mode of the spot weld joints Prediction of fracture mode is important to investigate the mechanism of changing fracture mode Strength of jointLow Σ Σ Stress triaxiality Equivalent plastic strain Crack Crack Crack Ductile fracture is predicted by performing elastic-plastic analysis Zoomed view of welded partPlate thicknesst Follow : JIS Z3137 Analysis model Nugget diameter: 3 , 4 , 5 Plate thickness: 1.2mm, 1.4mm, 1.6mm 2.2mm, 2.4mm, 2.6mm, 3.0mm 150mm 50mm Nugget diameter Progress of damage Stage () Stage () Stage () () Submicron voids generation () Micro voids formation () Ductile cracking Simplified crack propagation analysis method = Σ Σ 3 Interface fracture0.00 0.05 0.10 0.15 0.20 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Equivalent plastic strain Stress triaxiality A B B A Factors of difference of fracture mode 5 Plug fracture0.00 0.05 0.10 0.15 0.20 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Equivalent plastic strain Stress triaxiality C D Plug fracture Large stress triaxiality Interface fracture Osaka Prefecture University Kazuki IKUSHIMA Takahiro YANO Ryohei NATSUME Masakazu SHIBAHARA Osaka University Mitsuru OHATA High Plug fracture Interface + Plug fracture Plate thickness Plate thickness Analysis model and result Nugget diameter : d Zoomed view of welded part( = 3 , 4 , 5 ) 3 Interface fracture 5 Plug fracture Result of experiment Reference: SADASUE Teruki, TANIGUCHI Koichi, MORIKAGE Yasushi, IGI Satoshi, IKEDA Rinsei and ENDO Shigeru : Numerical study on fracture behavior of resistance spot welding for high strength steel sheets, Welding Society, Vol92, pp.166-167. 1.6mm 1.6mm =3 =5 These results are in agreement with result of the past experiment Interface fracture C D Plug fracture Interface fracture Stress triaxiality dependent ductility Stress triaxiality dependent ductility Large equivalent plastic strainPlug fracture Zoomed view of welded part7.56mm Plate thickness : t Plate thickness : t Plate thickness : t = 1.2mm, 1.4mm, 1.6mm, 2.2mm, 2.4mm, 2.6mm, 3.0mm Analysis model and result Ductile cracking Micro voids formation Submicron voids generation Applied strain Damage fraction Crack initiation On propagation Interface fracture Distribution of equivalent plastic strainDistribution of equivalent plastic strain = 1.2 = 1.6mm = 2.6 Crack initiation On propagation Plug fracture Stress triaxiality dependent ductility Determination of element fracture Set up analysis model Add external force Elastic-plastic analysis = Σ Σ Deactivate element = Finish NO YES YES Analysis flow Fracture is evaluated from only stress triaxiality and equivalent plastic strain Spot welding jointDamage model based on the observed damage process Change of fracture mode due to nugget diameter can be predicted Objectives Load-displacement curve in several plates thickness 0 2000 4000 6000 8000 10000 12000 14000 0.0 5.0 10.0 15.0 20.0 1.2mm (Plug fracture) 1.4mm (Plug fracture) 1.6mm (Plug fracture) 2.2mm (Plug fracture) 2.4mm (Plug fracture) 2.6mm (Interface fracture) 3.0mm (Interface fracture) Force (N) Displacement (mm) Stability region UnStable region Change of fracture mode due to plate thickness can be predicted Plate thickness : thin Plug fracture, Plate thickness : thick Interface fracture Reference : M.Ohata, T.Fukahori, F.Minami: Damage Model for Predicting the Effect of Steel Properties on Ductile Crack Growth Resistance, International Journal of Damage Mechanics, Vol. 19(2010), pp.441-459 Crack initiation On propagation Plug fracture Crack initiation On propagation Plug fracture Crack initiation On propagation Interface fracture

Transcript of 20 :損傷度shibahara/osakafu-content/...Nugget diameter:(5) 3 𝑡, 4 𝑡, 5𝑡 Plate...

Page 1: 20 :損傷度shibahara/osakafu-content/...Nugget diameter:(5) 3 𝑡, 4 𝑡, 5𝑡 Plate thickness: 1.2mm, 1.4mm, 1.6mm 2.2mm, 2.4mm, 2.6mm, 3.0mm 150mm 50mm Nugget diameter 2500

Study on fracture mode of spot weld joint using continuum damage mechanics model

Background, Objectives of this study Proposal of analysis method

Apply to the analysis of cross tension test on spot weld

Influence of nugget diameter on fracture mode

Influence of plate thickness on fracture mode

Conclusions In this study, a simplified ductile fracture evaluation method based on continuum damage mechanics was proposed. And the proposed method was applied to cross tension test on spot weld joints to investigate fracture modes. The following results were obtained.

2) It is found that size of nugget diameter affect fracture mode, in the case of small nugget diameter, fracture mode is interface fracture, and in the case of large nugget diameter, fracture mode is plug fracture.

3) Through the comparison of the fracture behavior, it was found that crack propagates into the nugget due to large stress triaxiality in the case of interface fracture. On the other hand, crack propagates along the outer periphery of the weld nugget due to the large equivalent plastic strain in case of plug fracture.

1) It was shown that the fracture mode of the cross tension test on spot welding can be predicted by using the proposed method.

自動車に使用される鋼材

2017年以降1.2GPa以上の

超ハイテン採用比率…約25%

1.2GPa 780~980MPa+HS 440~590MPa

軟鋼

日産自動車HPより

◎車体の軽量化(約15%)

◎衝突安全性の確保

◎低コストで製造

主にスポット溶接で接合 (自動車の組み立てにおける接合の9割)

◎安価(1打点1円以下)

◎工程時間が短い

◎ひずみが少ない

◎軽量化につながる

【板強度と継手強度の関係】

板強度(MPa)

400 700 500 600 0

手強

度(k

N)

10

20

日産自動車HPより

参考文献

薄鋼板及びアルミニウム合金版の抵抗スポット溶接(産報出版)

Strength of spot weld joint may decrease on high tensile steel depending on the fracture mode

Problems of spot welding joint

問題点

鋼材の種類により破断モードが変化 (高張力鋼板のスポット溶接継手の強度が向上しない)

Fracture mode of spot weld joint

溶融部方向に進展

Interface fracture

・Proposal of analysis method to simulate ductile fracture ・Prediction of the fracture mode of the spot weld joints

Prediction of fracture mode is important to investigate the mechanism of changing fracture mode

Strength of joint:Low

Σ𝑚

Σ

Stress triaxiality Eq

uiv

alen

t p

last

ic s

trai

n 𝜀 𝑝

Crack

Crack

Crack

提案手法で用いた ポテンシャル

𝜑 =Σ

𝜎

2

− 1 = 0

ミーゼスの塑性ポテンシャル

Ductile fracture is predicted by performing elastic-plastic analysis

【Zoomed view of welded part】

Plate thickness:t

※Follow : JIS Z3137

Analysis model

Nugget diameter:

3 𝑡, 4 𝑡, 5 𝑡 Plate thickness: 1.2mm, 1.4mm, 1.6mm 2.2mm, 2.4mm, 2.6mm, 3.0mm

150mm

50mm

Nugget diameter

2500

3000

3500

4000

4500

0.0 2.0 4.0 6.0 8.0 10

界面破断プラグ破断

十字

引張

強度

(N)

ナゲット径 (mm)

ナゲット径と強度の関係(解析結果)

界面破断

プラグ破断 4 𝑡以上

⇒施工基準

界面破断⇒強度:小 プラグ破断⇒強度:大

スポット溶接部の硬さ分布の変化 ナゲット部 熱影響部 1530℃以上 ナゲット

熱影響部 800℃(変態点)以上1530℃以下 参考文献「溶接技術第62巻第3号」(産報出版)

Progress of damage

Stage (Ⅰ) Stage (Ⅱ) Stage (Ⅲ)

(Ⅰ) Submicron voids generation

(Ⅱ) Micro voids formation

(Ⅲ) Ductile cracking

:損傷度

:体積ひずみ増分の塑性成分

(1)(大畑ら)

参考文献

大畑充,深堀拓也,南二三吉;損傷挙動に基づく延性き裂発生・進展特性を支配する鋼材機械的特性の解明-延性き裂進展シミュレーション手法の構築-,鉄と鋼,Vol.94,8008,No2

for

for

D*:有効損傷度

Σm:損傷を含む単位要素内の平均垂直応力

:材料定数

(2)

損傷を表す項φ:損傷ポテンシャル

既往の損傷ポテンシャル

体積ひずみ増分の塑性成分dEmと相当塑性ひずみ増分

p(3)

(4)

(1), (2), (3)式より

D<Dcのとき であるため、(5)式を得る

(5)

き裂進展解析の簡易手法(提案手法)

(5)式を以下のように書きなおす

Simplified crack propagation analysis method

Determination of element fracture

Set up analysis model

Add external force

Elastic-plastic analysis

𝐸𝑝 = 𝐴𝑒𝑥𝑝 𝐵Σ𝑚

Σ

Deactivate element

𝐹 = 𝐹𝑡𝑜𝑡𝑎𝑙

Finish

NO

YES

YES

Analysis flow

𝜀 𝑝 = 𝐴𝑒𝑥𝑝 𝐵Σ𝑚

Σ

ナゲット

接合後⇒十字引張試験

Case1

Case2 界面破断

プラグ破断

ナゲット径と十字引張強度の関係

参考文献 貞末照輝 他: 高張力鋼のスポット溶接

継手の破壊に関する数値的検討:

溶接学会全国大会講演概要Vol.92,

pp166-167

(実験結果)

Case1

Case

3

ナゲット径(mm)

十字

引張

強さ

(K

N)

3 𝑡(Interface fracture)

0.00

0.05

0.10

0.15

0.20

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Equ

ival

ent

pla

stic

str

ain

Stress triaxiality

A

B

B

A

Factors of difference of fracture mode

5 𝑡(Plug fracture)

0.00

0.05

0.10

0.15

0.20

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Equ

ival

ent

pla

stic

str

ain

Stress triaxiality

C

D

Plug fracture

Large stress triaxiality ⇒ Interface fracture

2

1.6

1.2

0.8

0.4

0

-0.4

-0.8

-1.2

-2

-1.6

応力

多軸度

界面破断

2.5 𝑡 3 𝑡

界面破断

4 𝑡

界面破断

5 𝑡

プラグ破断

6 𝑡

プラグ破断 板厚

ナゲット径

ナゲット径:大⇒プラグ破断

ナゲット径:小⇒界面破断

5 𝑡

6 𝑡

(プラグ破断)

(プラグ破断)

2.5 𝑡

3 𝑡

4 𝑡

(界面破断)

(界面破断)

(界面破断)

スポット溶接部の硬さ分布の変化

1530℃以上 ナゲット ・・・

熱影響部 ・・・ 800℃(変態点)以上1530℃以下 熱影響部

ナゲット部

参考文献「溶接技術第62巻第3号」(産報出版)

スポット溶接部の硬さ分布の変化

3000

3500

4000

4500

150 200 250 300 350 400 450

プラグ破断界面破断

十字

引張

強度

(N)

ビッカース硬さ(Hv)

硬さ:350Hv

界面破断

硬さ:330Hv

界面破断

硬さ:290Hv

界面破断

硬さ:250Hv

プラグ破断

硬さ:190Hv

プラグ破断

硬さと強度の関係(解析結果)

※寸法はJIS Z3137に従う

板厚:1.6mm

0.001mm/step

-0.001mm/step

x

z y

50mm

150mm

ナゲット径:2 𝑡mm 軟化領域幅:1.3mm

軟化部が存在する場合プラグ破断を示す⇒強度の増加

スポット溶接部の硬さ分布

軟化部:小

軟化部:大

軟化部の存在⇒強度増加 熱影響部で軟化

ナゲット 熱影響部 母材

硬さと強度の関係

硬さを考慮した

解析が必要

解析モデル 【断面図】 熱影響部

2 𝒕 1.3mm 1.3mm

1.6mm

【硬さ分布】

0

100

200

300

400

500

600

0.0 0.5 1.0 1.5 2.0 2.5 3.0

350Hv330Hv290Hv250Hv190Hv

ビッ

カー

ス硬

さ(H

v)

ナゲット中心からの距離(mm)

ビッカーズ硬さ

(Hv)

ナゲット中心からの距離(mm)

Osaka Prefecture University Kazuki IKUSHIMA ○ Takahiro YANO

Ryohei NATSUME Masakazu SHIBAHARA

Osaka University Mitsuru OHATA

High

Plug fracture Interface + Plug fracture

Plate thickness

Plate thickness

Analysis model and result

Nugget diameter : d

【Zoomed view of welded part】

( 𝑑 = 3 𝑡, 4 𝑡, 5 𝑡 )

3 𝑡 Interface fracture

5 𝑡 Plug fracture

Result of experiment

Reference: SADASUE Teruki, TANIGUCHI Koichi, MORIKAGE Yasushi, IGI Satoshi, IKEDA Rinsei and ENDO Shigeru : Numerical study on fracture behavior of resistance spot welding for high strength steel sheets, Welding Society, Vol92, pp.166-167.

1.6mm

1.6mm

𝑑 = 3 𝑡 𝑑 = 5 𝑡

These results are in agreement with result of the past experiment

Interface fracture

C

D Plug fracture

Interface fracture

Stress triaxiality dependent ductility

Stress triaxiality dependent ductility

Large equivalent plastic strain⇒Plug fracture

【Zoomed view of welded part】

7.56mm

Plate thickness : t

Plate thickness : t

Plate thickness : t 𝑡 = 1.2mm, 1.4mm, 1.6mm, 2.2mm, 2.4mm, 2.6mm, 3.0mm

Analysis model and result

Ductile cracking Micro voids

formation

Submicron voids generation

Applied strain 𝜀

Dam

age

frac

tio

n

Crack initiation

On propagation

Interface fracture

【Distribution of equivalent plastic strain】

【Distribution of equivalent plastic strain】 𝑡 = 1.2𝑚𝑚 𝑡 = 1.6mm 𝑡 = 2.6𝑚𝑚

Crack initiation

On propagation

Plug fracture

Stress triaxiality dependent ductility

Determination of element fracture

Set up analysis model

Add external force

Elastic-plastic analysis

𝐸 𝑝 = 𝐴𝑒𝑥𝑝 𝐵Σ𝑚

Σ

Deactivate element

𝐹 = 𝐹𝑡𝑜𝑡𝑎𝑙

Finish

NO

YES

YES

Analysis flow

Fracture is evaluated from only stress triaxiality and equivalent plastic strain

<Spot welding joint>

Damage model based on the observed damage process

Change of fracture mode due to nugget diameter can be predicted

Effect of plate thickness on fracture mode can be investigated

Objectives

Load-displacement curve in several plates thickness

0

2000

4000

6000

8000

10000

12000

14000

0.0 5.0 10.0 15.0 20.0

1.2mm (Plug fracture)1.4mm (Plug fracture)1.6mm (Plug fracture)2.2mm (Plug fracture)2.4mm (Plug fracture)2.6mm (Interface fracture)3.0mm (Interface fracture)

Forc

e (N

)

Displacement (mm)

Stability

region

UnStable

region

Change of fracture mode due to plate thickness can be predicted

Plate thickness : thin ⇒ Plug fracture, Plate thickness : thick ⇒ Interface fracture

Reference : M.Ohata, T.Fukahori, F.Minami: Damage Model for Predicting the Effect of Steel Properties on Ductile Crack Growth Resistance,

International Journal of Damage Mechanics, Vol. 19(2010), pp.441-459

Crack initiation

On propagation

Plug fracture

Crack initiation

On propagation

Plug fracture

Crack initiation

On propagation

Interface fracture