2. X‐ray planar radiography and CT (1) - GISTbiophotonics.gist.ac.kr/Course...

19
2017-03-12 1 2. X‐ray planar radiography and CT (1) Lecture 1, 2 Medical Imaging Systems Jae Gwan Kim [email protected] , X 2220 Department of BioMedical Science and Engineering Gwangju Institute of Sciences and Technology Copyright. Most figures/tables/texts in this lecture are from the textbook “Introduction to Medical Imaging: Physics, Engineering and Clinical Applications by Nadine Barrie Smith Andrew Webb 2011” and this material is only for those who take this class and cannot be distributed to anyone without the permission from the lecturer. Contents 1. Introduction 2. X‐ray energy spectrum 3. Interaction of X‐rays with the body 1) Photoelectric attenuation 2) Compton scattering 4. X‐ray linear and mass attenuation coefficient 5. Instrumentation for planar radiography X‐ray tube

Transcript of 2. X‐ray planar radiography and CT (1) - GISTbiophotonics.gist.ac.kr/Course...

2017-03-12

1

2.X‐rayplanarradiographyandCT(1)

Lecture1,2

MedicalImagingSystems

JaeGwan Kim

[email protected] ,X2220

DepartmentofBioMedical ScienceandEngineering

Gwangju InstituteofSciencesandTechnologyCopyright.Mostfigures/tables/textsinthislecturearefromthetextbook“IntroductiontoMedicalImaging:Physics,EngineeringandClinicalApplicationsbyNadineBarrieSmithAndrewWebb2011”andthismaterialisonlyforthosewhotakethisclassandcannotbedistributedtoanyonewithoutthepermissionfromthelecturer.

Contents

1. Introduction

2. X‐rayenergyspectrum

3. InteractionofX‐rayswiththebody

1) Photoelectricattenuation

2) Comptonscattering

4. X‐raylinearandmassattenuationcoefficient

5. Instrumentationforplanarradiography

– X‐raytube

2017-03-12

2

Overview

Black Air

Dark Gray

Fat

Light  Gray

Soft tissues/ Water

White Calcification/bone

Whiter Metal/constrast

Introduction

• X‐rayswerefirstobservedanddocumentedin1895byWilhelmConradRoentgen,aGermanscientistwhofoundthemquitebyaccidentwhenexperimentingwithvacuumtubes

• Aweeklater,hetookanX‐rayphotographofhiswife'shandwhichclearlyrevealedherweddingringandherbones.Thephotographelectrifiedthegeneralpublicandarousedgreatscientificinterestinthenewformofradiation.Roentgencalledit"X"toindicateitwasanunknowntypeofradiation.

2017-03-12

3

Introduction

• X‐rayplanarradiography– Bonefracture– Presenceofmassinlung– Presenceofkidneystones– Diseasesofthegastrointestinaltract

• ThebasisofX‐rayscancomesfromthedifferentialabsorptionofX‐raysbyvarioustissues.(highabsorptionbyboneandcalcifications)

• X‐raysdirectedtowardthepatientsanddetectedbyoppositepaneldetectorwhichisplacedbelowthepatient.

Introduction

• X‐raysaredetectedandconvertedintolight,andthenintovoltagewhichwillbedigitized.

• X‐raysarealsoscatteredastheypassthroughthebody,and‘anti‐scattergrid’canreducethebackgroundsignal

• Specializedapplications– X‐rayfluoroscopy(GItractwithcontrasts)– Digitalmammography(lowerdosethanstandardforhighsofttissuecontrast)

– Digitalsubtractionangiography(vasculatureimaging)

2017-03-12

4

Introduction

Planar radiography setup Anti‐scatter grid Chest X‐ray

Introduction

• Afull3Dimagesfromparticularregionofbodyarerequiredtodiagnosebetter.(Headimagingfortraumalocationandsize) ComputedTomography

• Problem:CTusesmuchhigherradiationdose

2017-03-12

5

X‐raySpectrum

HighEnergyElectronwithMetal

• Twopossibilitieswhenelectronsstrikethemetal

– Bremsstrahlung(brakingradiationinGerman):convertingkineticenergytoelectromagneticradiationduetodeceleration(byprotonsinnucleus)andchangeofmomentum,emitscontinuousenergyspectrumofX‐rayphotons

– Characteristicradiation(=X‐rayfluorescence):incidentelectronejectstheinnerelectron(K,L,M…shell)andoutershellelectrontransitionstotheinnershellandemitsanX‐ray

2017-03-12

6

HighEnergyElectronwithMetal

• TheenergyofX‐raybeam:weightedaverageofallthedifferentenergies,andistypically2/3ofthekVp value.

X‐ray energy 

Relative number of X‐ray 

Characteristic X‐rays

Low energy X‐rays are absorbed by X‐ray housing itself

PeriodicTable

http://en.wikipedia.org/wiki/Periodic_table

2017-03-12

7

HighEnergyElectronwithMetal

• Fortungsten,bindingenergiesoftheK,L,andMshellsare69.5,10.2~12.1,and1.9~2.8keV,respectively.

• ForMolybdenum,theyare20,2.5~2.8,and0.4~0.5keV,respectively.

Depends on the metal, therefore, it is characteristic

Refer to http://www.webelements.com/for the binding energy values

InteractionofX‐rayswiththebody

• ToacquirehighSNRandCNRimages,

– SufficientX‐rayspassthroughthebodyforhighSNR

– X‐rayabsorptionshouldbesufficientlydifferentamongtissuesforhighCNR

– BackgroundX‐raysscatteredfromunknownanglesneedtoberemoved

• TwomajormechanismsthatX‐rayinteractswithtissue

– PhotoelectricinteractionwithdifferentX‐rayattenuation

– Comptonscattering:X‐raysarebeingdeflectedfromitsoriginaltrajectory contributestorandombackgroundsignal

– Othermechanismsincludingcoherentscatteringareminorandnotconsideredforclinicalradiography

2017-03-12

8

InteractionofX‐rayswiththebody

• Photoelectriceffect(Hertzeffect,light emitselectroninamaterial)– TissueabsorbsX‐rays,providesthecontrastinX‐rayimages1. ElectronsatK‐ orL‐shellareemittedfrommatterafterabsorbing

energyfromX‐ray2. Electronsfromahigherenergylevelfillsthe‘hole’withtheemission

ofa‘characteristic’X‐raywhichisveryweak3. ThenetresultisthattheincidentX‐rayiscompletelyabsorbedand

doesnotreachthedetector

Electron binding energyCarbon(Z=6) 1s: 284.2eV,  Nitrogen(Z=7) 1s: 409.9eV, 2s: 37.3eVOxygen(Z=8) 1s: 543.1eV, 2s: 41.6eV Calcium(Z=20) 1s: 4038.5eV, 2s: 438.4eV, 3s: 44.3eV

InteractionofX‐rayswiththebody

• Photoelectriceffect(Hertzeffect,light emitselectroninamaterial)– TissueabsorbsX‐rays,providesthecontrastinX‐rayimages

(photoelectron: energy is the difference between incident X-ray and binding energy of electron)

(1) (2) (3)

This characteristic X-ray energy is difference between binding energy of two electron, ~keV, and absorbed after travelling ~1mm in tissue

2017-03-12

9

InteractionofX‐rayswiththebody

• Photoelectriceffect– Theprobabilityofphotoelectricinteraction(Ppe)is

• E:incidentX‐rayenergy• Zeff:theeffectiveatomicnumberofthetissue(tissue~7.4,lipid~6.9,bone

~13.8(duetoCalcium))• ρ:tissuedensity:(tissue:lipid:bone=1:0.9:1.85)• AsincidentX‐rayenergyincreases,thecontrastdecreases.

InteractionofX‐rayswiththebody

• Comptonscattering– InteractionbetweenanincidentX‐rayandalooselyboundelectroninanoutershellofanatomintissue

– ScatteringthatX‐rayorGammarayphotoninteractinmatter

– Inelasticscattering:energytransferstoejectedelectronandtherestenergycanbefoundinscatteredX‐ray

2017-03-12

10

InteractionofX‐rayswiththebody

• StandardComptonequation

– 1

– λistheinitialwavelength,λ'isthewavelengthafterscattering,h isthePlanckconstant,mo istherestmassoftheelectron,c isthespeedoflight,and isthescatteringangle. (assumption:eachX‐rayphotoninteractedwithonlyoneelectron)

λ

λ'

InteractionofX‐rayswiththebody

• Relevantlossinenergyis

∆ , ,

Therefore,theenergyofthescatteredX‐rayis

,,

1 , 1

2017-03-12

11

InteractionofX‐rayswiththebody

• Fromthisgraph,wecanseethatevenwith90degreescatteringangle,thescatteredX‐rayenergyreducesalittle.

• Andthus,mostofscatteredX‐raywillpassthroughthebody.• TheComptonscatteringprobabilityis

– Independentofatomicnumber– Proportionaltothetissueelectrondensity– WeaklydependentontheincidentX‐rayenergy

• LowX‐rayenergy:photoelectriceffectdominates

• HighX‐rayenergy:Comptonscatteringcontributesmore

X‐rayattenuationintissue

•– N:numberofX‐raystransmitted– No:incidentX‐rays– μ:tissuelinearattenuationcoefficient– x:tissuethickness

• Massattenuationcoefficient(μ/ρ)ismeasuredinunitsofcm2g‐1.

1⁄

g⁄

water

2017-03-12

12

• Atlowenergy,thereisabigdifferencebetweenboneandothers.

• However,thedifferencedecreasesasX‐rayenergyincreases.

• K‐edge:atanenergyjusthigherthantheK‐shellbindingenergyofacertainatom(calciumforbone=4keV),photoelectricinteractionincreasesgreatlybyafactorof5to8.

• Halfvaluelayer(HVL):

– ThetissuethicknessthatreducestheintensityofX‐raytothehalf

– HVL=(ln 2)/μ

– Ex)HVLformuscle:3.9cm,bone:2.3cmat100keVWith30keV(digitalmammography),muscleis1.8cmandboneis0.4cm.At100keV,3.9/2.3=1.69,andat30keV,1.8/0.4=4.5morecontrast

X‐rayattenuationintissue

LightMatterInteractions

• Lowenergyphenomena(afeweV~1MeV)

– Photoelectriceffect

• Midenergyphenomena(511keV)

– Thomsonscattering(elastic,when ≪ )

– Comptonscattering(inelastic)

• Highenergyphenomena(>1.022MeV)

– Pairproduction:thecreationofanelementaryparticleanditsantiparticle,normallyfromaphoton(oranotherneutralboson),ex)electronandpositron,muon andanti‐muon,tauandanti‐tau

2017-03-12

13

LightMatterInteractions

• DominatingtissueinteractionprocessdependingonX‐rayenergy

http://epswww.unm.edu/xrd/xrdclass/02‐Rad‐Safety.pdf

X‐RAYGENERATION

2017-03-12

14

X‐raytube

• Highenergyofelectronshitthesurfaceofametaltarget

• X‐rayproductionsteps

1) Anegativelychargedcathode:asmallhelixofthintungstenwire,~2200oCelectronsstarttoleave(thermionicemission)

• Anegativelycharged‘focusingcup’focuselectronbeamsfromcathodetoanode

Cathode:negativechargeflowsin

Anode:positivechargeflowsin

X‐raytube

• X‐rayproductionsteps

2) Anodeisapositivelychargedmetaltargetand25~140kVisappliedbetweencathodeandanode(acceleratingvoltage,kVp)

• Tubecurrent(no.ofelectronstravelingbetweenthecathodeandanode)is50~300mA(1mA=6.24x1015 electrons/s)

• Therefore,tubevoltage(kVp),tubecurrent(mA),andexposureduration(s)areparametersthatusercanselect

3) StrikingelectronsproduceX‐rayfromanodeandanodeshouldbeabletostandthehightemperature

2017-03-12

15

X‐raytube

• HigheratomicnumberofthemetalproduceX‐raymoreefficiently.

• Themostcommonmetalistungsten,atomicnumber74andmeltingpointis3370oC.

• Evenforthetungsten,only~1%ofelectronenergyconvertstoX‐ray andtherestgoesawayfortheheat.

• Tungstentargetisabout0.7mmthicknessandrotatesat~3000rpmtoreducethelocalheating.

• Inpractice,atungsten‐rhenium(Re)(2‐10%)alloyisusedforextrastability

• Forthedigitalmammography,molybdenumisusedasananodeinsteadoftungstensinceituseslowenergyX‐ray.

X‐raytube

vacuum

(cooling,electric isolation)

J. Anthony Seibert, JNMT, 32 (3) 139‐147, 2004

2017-03-12

16

X‐raytube

• X‐raygeneratorandx‐raytubecomponentsareillustrated.– Thex‐raygeneratorprovidesoperatorcontroloftheradiographictechniques,includingtubevoltage(kVp,kilovoltspeak),tubecurrent(mA),andexposureduration,anddeliverspowertothex‐raytube.

– Thex‐raytubeprovidestheenvironment(evacuatedx‐raytubeinsertandhigh‐voltagecablesockets),sourceofelectrons(cathode),sourceofx‐rays(anode),inductionmotortorotatetheanode(rotor/stator),transformeroilandexpansionbellowstoprovideelectricalandheatbuild‐upprotection,andthetubehousingtosupporttheinsertandprovideprotectionfromleakageradiation.

J. Anthony Seibert, JNMT, 32 (3) 139‐147, 2004

X‐raytube

http://www.waybuilder.net/sweethaven/MedTech/Dental/DentalRad/lessonMain.asp?iNum=fra0102

http://www.dentalxraywebsite.com/category/dental‐x‐ray‐tube/

Toshiba X‐ray Tube History 1915‐2005

2017-03-12

17

X‐raytube

• ManyX‐raytubeshavetwocathodefilamentsofdifferentlength

– alongone:highercurrent/lowerresolution

– ashortone:lowercurrent/higherresolution

Focusing cup

X‐raytube

• Anodeisbeveledatananglebetween8and17o (normally12‐15o)

• Thesmallerangle(θ) producesthesmallerfocalsize(f)

f =Fsin θ• frangesfrom0.3mmfordigitalmammographyandtobetween0.6and1.2mmforplanarX‐rayandCT

• BevelanglealsoaffectsthecoverageareaCoverage=2(source‐patientdistant)xtan θ(eg. 2(1m)*tan15o=0.53m)

2017-03-12

18

X‐raytube

• Heeleffect:X‐raybeamismoreintenseatthe‘cathode‐end’thanatthe‘anode‐end’

• ItisfromtheabsorptionofX‐raytothetargetitself.(moreX‐rayabsorptionattheanodeside)

• Therefore,signalintensityatcathodesideishigherthananodesideinplanarradiographyandcanbecorrectedbyimageprocessingalgorithms.

• However,inpracticeitdoesnotaffectthediagnosticqualityoftheimagessignificantly.

X‐raytube

• 3parameterstocontrol1. Acceleratingvoltage(kVp)

• ~25kVfordigitalmammographyand~140kVforboneandchestX‐ray

2. Tubecurrent(mA)• 50~400mAforplanarX‐ray• ~1000mAforCT

3. Exposuretime(sec)

• Powerrating:themaximumpowerdissipatedinanexposuretimeof0.1s

– Ex)10kWpowerrating:kVp of125kVwith1Atubecurrentfor~78ms

– X‐raytubeoutputismainlylimitedbyanodeheating

2017-03-12

19

Practice

• Ifthethicknessofthechestis20cm,whatpercentageofX‐raysaretransmittedthroughthechestatanincidentX‐rayenergyof70keVassumingHVLvaluesof3.5and1.8cmformuscleandbone,respectively,andthebonethicknesstobe4cmandthetissuethickness16cm?

Answer) Forthemuscle,μ =(ln 2)/3.5≈0.2cm‐1. For16cmoftissue:N/No =exp(‐0.2*16)=0.04. Forthebone,μ =(ln 2)/1.8≈0.4cm‐1. For4cmofbone:N/No =exp(‐0.4*4)=0.2. Therefore,theoverallpercentageis

100X(0.2X0.04)=0.8%