1st Tranche Slides

download 1st Tranche Slides

of 93

Transcript of 1st Tranche Slides

  • 8/2/2019 1st Tranche Slides

    1/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Outline of the III Module of the course

    Modal propagation and transmission properties of dielectricwaveguides (Dielectric slab, Optical Fiber)

    Optical transmitters, receivers and main optical devices:

    fundamentals and principal characteristics.

    Engineering and design aspects of present optical transmissionsystems.

    (Course notes: http://elearning.ing.unibo.it/)

    https://campus.cib.unibo.it/https://campus.cib.unibo.it/
  • 8/2/2019 1st Tranche Slides

    2/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Application scenarios of optical fiber links

    mono-modefiber

    fiber/copper

    mono-modefiber

    multi-modefiber

    multi-modefiber

    IP network

    CentralOffice

    Access Networks

    In-Building Networks

    Core Network

  • 8/2/2019 1st Tranche Slides

    3/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Basic Fiber Optic Communication System

    DirectlyModulated

    Transmitter(Based on LED

    or LASER)

    Input

    ElectricalSignal(DigitalOrAnalog)

    OpticalFibre

    Direct DetectionReceiver

    (Based on PIN orAPD)

    OutputElectricalSignal(DigitalOrAnalog)

  • 8/2/2019 1st Tranche Slides

    4/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Ex.: Optical Fibre Submarine systems

    Up to 9000 kmof total length

    National,Transoceanicand

    Intercontinentallinks

    Very highcapacity,high qualityrequred.

  • 8/2/2019 1st Tranche Slides

    5/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Ex.: Optical Fibre Access Network

    Typical distances1 20 km

    MetropolitanAreaNetwork (MAN),Fiber to the home

    (FTTH),Fiber to the Curb(FTTC)

    Highcapacity,high quality

    requred.

  • 8/2/2019 1st Tranche Slides

    6/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Radio coverage of:

    Crowded sites

    Non-LOS Areas

    (Line Of Sight)

    Unit (RAU)IndoorRAU

    Radio BaseStation (RBS)

    Outdoor Remote Antenna

    OpticalFiber

    Ex.: Fiber Distributed Antenna Systems

  • 8/2/2019 1st Tranche Slides

    7/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Advantages of Fiber Optic Transmission

    High Bandwidth (

    High Bit Rate )

    Low Attenuation

    Short Dimensions

    No interference

  • 8/2/2019 1st Tranche Slides

    8/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Band utilized in optical communications

    SonarServo-

    mechanisms

    Radio

    Radar

    Infrared

    Visible Light

    Ultraviolet

    X RaysGamma

    Rays

    Cellular

    Telephones

    TV

    1 Mm 1 km 1 m 1 mm 1 nm1 mm

    1 kHz 1 MHz 1 GHz 1 THz 1015 Hz 1018 Hz(f)

    (l)

    Frequency Band utilized in Optical Communications

  • 8/2/2019 1st Tranche Slides

    9/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Band expressed as Dfor DlFrom ITU-T Recommendation G-692.

    Nominal Frequencies in C band (1528-1561 nm):

    81 carriers separated by Df=50 GHz starting from 196.1 THzIn terms ofl the range goes from 1528.77 nm to 1560.61 nm

    The interval Dl is not constant. It goes from 0.389 nm to 0.405 nm

    196.1 THz196.05 THz

    192.1 THz

    1528.77 nm 1560.61 nm

  • 8/2/2019 1st Tranche Slides

    10/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Review on dB,dBm, dB(Hz), etc.

    Attenuation : P1/P2

    Attenuation|Logarithmic units = 10 log10(P1/P2) (dB)

    Gain/Loss: P2/P1

    Gain/Loss|Logarithmic units = 10 log10(P2/P1) (dB)etc.

    P1 P2Adimensional quantities dB:

    Note : AttenuationFIBER=10aL/10

    AttenuationFIBER|Logarithmic units =aL (dB) [a]=[dB/km]

    Power Level|Logarithmic units : dB(W), dB(mW) [or dBm], etcBandwidth|Logarithmic units : dB (Hz)

    Temperature|Logarithmic units : dB (K)

    etc.

    Non-Adimensional quantities (W, Hz ) dB(W), dB(Hz)

  • 8/2/2019 1st Tranche Slides

    11/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    The Optical Transmission Channel

    Electromagnetic Fundamentals to be recalled:

    Plane waves propagation in homogeneous media

    Continuity Conditions / Reflection Coefficients of the

    electromagnetic field

    Dielectric slab: analythical resolution

    From the dielectric slab to the optical fiber

    Transmission characteristics

    Attenuation

    Dispersion

    Non linearities (not treated here)

  • 8/2/2019 1st Tranche Slides

    12/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    The Dielectric Slab: Description

    x

    z

    (n2)

    (n1)

    0...

    y

    y

    (x=d)

    (x=-d) (n2)

    Waveguide invariant

    in the y and z directions.

    Central layer

    of refraction index n1 and

    of thickness 2d

    Two external Layersof refraction indexes n2 < n1,

    infinitely extended in the

    +x andx directions.

    The field is invariant in the y direction

    The field propagates in the z directionzjzj (x)eH(x)eE(x,z)(x,z) ,H,E

  • 8/2/2019 1st Tranche Slides

    13/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Procedure followed to find Slab guided modes

    1. Resolution ofMaxwells Equations in the three regions

    Plane Wave solutions in the three regions2. Imposition of

    continuity conditions of at the interfaces through either:

    Coefficients GTEand GTM+ consistency condition

    on the equiphase planes

    Achievement of the Characteristic Equation (TE/TM, even/odd)

    3. Resolution of the Characteristic Equation

    Modes propagation constant

    Modes amplitude behavior

    Creation and Resolution of a

    Homogeneous linear System

    yyzzHEHE ,,,

  • 8/2/2019 1st Tranche Slides

    14/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Plane Wave solutions in the three materials: TE case

    x

    z

    y

    zjx

    yy eeEzx 222 ),(E

    Upper layer:evanescent plane wave

    zjxjk

    y

    zjxjk

    yy

    eeE

    eeEzx

    x

    x

    1

    1

    1

    11 ),(

    E

    Central layer:

    uniform plane waves

    zjx

    yy eeEzx 2'2'2 ),(E

    Lower layer:

    evanescent plane wave

    1xk

    1xk

    ib1

    rb1

    22jk

    x

    2'2jk

    x

    2

    02

    22

    '2

    2

    2

    2

    2

    22

    0

    2)(;'2,2,1,)( knkkiknk xxixi where:

    In each one of the three layers, we have zxy zxy HHHEE ,

  • 8/2/2019 1st Tranche Slides

    15/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Reflection Coefficients at the interfaces: TE case

    x

    z

    y

    G

    1

    21

    1

    1

    2

    21

    21

    21

    21

    21

    21

    1

    1

    coscos

    coscos

    x

    x

    x

    kjtg

    x

    x

    xx

    xx

    ti

    ti

    djky

    djk

    y

    TE

    e

    jk

    jk

    kk

    kk

    nn

    nn

    eE

    eE

    22 jkx

    2'2jk

    x

    ( )

    ( )

    G 121

    1

    1 2

    1

    1... x

    x

    x

    kjtg

    djk

    y

    djk

    y

    TE eeE

    eE

  • 8/2/2019 1st Tranche Slides

    16/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    x

    z

    y

    The triangular points belongingto the same equi-phase plane must be

    separated in phaseby an integer multiple of 2p.

    The same for the square points.

    Considering e. g. points A and C, itmust be:

    A

    'C

    '

    B''

    B

    ''C

    TE

    CBjn

    TEABjn

    Ay

    mj

    AyCy

    e

    eE

    eEE

    G

    G

    '''01

    '

    01

    ''

    1

    2

    11

    p

    Consistency Condition on Equiphase planes: TE case

  • 8/2/2019 1st Tranche Slides

    17/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    It must then be:

    p

    jm

    kjtg

    djn

    kjtg

    djn

    e

    e

    e

    e

    e

    x

    i

    x

    ii

    2

    2

    cos

    2

    2

    2coscos

    2

    1

    21

    01

    1

    21

    01

    x

    z

    y

    A

    'C

    '

    B''

    B

    ''C

    i

    dCB

    cos

    2'''

    i

    i

    dAB

    2cos

    cos

    2'

    +d

    -d

    )( 'CBspan ''

    )( 'ABspan

    TEG

    TEG

    Consistency Condition on Equiphase planes: TE case

  • 8/2/2019 1st Tranche Slides

    18/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Characteristic Equation: TE case

    2244

    244cos

    24)2cos1(cos

    2

    112

    1

    21

    1

    1

    21

    01

    1

    21

    01

    22cos

    2

    22coscos

    2

    1

    21

    011

    21

    01

    pp

    p

    p

    p

    mdktgdkdmk

    tgdk

    mk

    tgdn

    mk

    tgd

    n

    eeeee

    xx

    x

    x

    x

    i

    x

    i

    i

    jmkjtgd

    jnkjtgd

    jnxix

    ii

    ( )

    ( ) oddmdkdkd

    evenmdktgdkd

    xx

    xx

    ,

    ,

    112

    112

    cot

    We obtain then:

  • 8/2/2019 1st Tranche Slides

    19/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    u

    w

    p/2 p 3p/2

    Curve

    where v is the

    Normalized Frequency:

    2

    2

    2

    10

    2

    2

    2

    1 )()(

    nnd

    ddkv x

    Odd Modes

    ( )( ) )(cot)cot()()()()(

    112

    112

    modesoddeven modes

    uuwdkdkdutguwdktgdkd

    xx

    xx

    21

    22 )( dkvd x

    Resolution of the Characteristic Equation: TE case

    From the characteristic equation we have:

    Moreover, it must be: ( ) ( ) ( ) 22222212

    0

    2

    2

    2

    1 )( vwunndddkx Even Modes

  • 8/2/2019 1st Tranche Slides

    20/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Exploiting the relations:

    We can solve numerically

    the equation (e.g. TE case withm=0):

    For w~0 it is ~n20. For w it is~n10 .

    2

    02

    2

    2

    22

    011

    )()(

    )()(

    dndd

    ddndkx

    ])()([)()()()( 220122

    012

    022 ddntgddndnd

    w

    1001 nn mw

    2002 nn mw

    (w)

    ...

    Dispersion curves (w): TE case

    m=0(TE0)

    m=1(TE1)

  • 8/2/2019 1st Tranche Slides

    21/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    The following relations areexpoited:

    The plot is more readable

    The curves can be referred to waveguides different from each other

    Only one TE mode propagates when it is 0

  • 8/2/2019 1st Tranche Slides

    22/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Behavior of |Ey|for the modes TEm (m even, m=2k)

    x

    z

    y

    G

    11

    2222

    2

    2

    1

    1

    11

    1

    21

    1

    yy

    djkkdkj

    kjtg

    djk

    y

    yTE

    EE

    ee

    e

    eEE

    xx

    x

    x

    p

    Considering for example the upper interface, we have from the characteristic equation:

    In the central layer the field Ey is given by:

    ) ( ) zjxyzjxjkxjkyy exkEeeeEzx xx 1111 cos),( 11E

  • 8/2/2019 1st Tranche Slides

    23/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Behavior of |Ey|for the modes TEm (m even)

    x

    z

    d-d

    |Ey1|Ex. mode TE0

    x

    z

    d-d

    |Ey1|Ex. mode TE2

    ( ) ( )xkEexkEzx xyzj

    xyy 11111 coscos),(

    EIn the central layerthe expression is given by

    222

    0 11ppp

    xkdk xx

    2

    3

    2

    3

    2

    311

    pppp xkdk xx

  • 8/2/2019 1st Tranche Slides

    24/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Behavior of |Ey|for the modes TEm (m odd, m=2k+1)

    x

    z

    y

    G

    11

    22)12(2

    2

    2

    1

    1

    11

    1

    21

    1

    yy

    jdjkkdkj

    kjtg

    djk

    y

    yTE

    EE

    eee

    e

    eEE

    xx

    x

    x

    pp

    Considering for example the upper interface, we have from the characteristic equation:

    In the central layer the field Ey is given by:

    ) ( ) zjxyzjxjkxjkyy exkEeeeEzx xx 1111 sin),( 11E

  • 8/2/2019 1st Tranche Slides

    25/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Behavior of |Ey|for the modes TEm (m odd)

    x

    z

    d

    -d

    |Ey1|Ex. mode TE1

    x

    z

    d-d

    |Ey1|Ex. mode TE3

    ( ) ( )xkEexkEzx xyzj

    xyy 11111 sinsin),(

    EIn the central layerthe expression is given by

    pppp

    xkdk xx 112

    pppp 2222

    3 11 xkdk xx

    In general |Ey|of mode TEm assumesm times the `0` value for dxd

  • 8/2/2019 1st Tranche Slides

    26/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Plane Wave solutions in the three materials: TM case

    x

    z

    y

    zjx

    yy eeHzx 222 ),(H

    Upper layer:evanescent plane wave

    zjxjk

    y

    zjxjk

    yy

    eeH

    eeHzx

    x

    x

    1

    1

    1

    11 ),(

    H

    Central layer:uniform plane waves

    zjx

    yy eeHzx 2'2'2 ),(H

    Lower layer:

    evanescent plane wave

    1xk

    1xk

    ib1

    rb1

    22jk

    x

    2'2jk

    x

    2

    02

    22

    '2

    2

    2

    2

    2

    22

    0

    2)(;'2,2,1,)( knkkiknk xxixi where:

    In each one of the three layers, we have zxy zxy EEEHH ,

  • 8/2/2019 1st Tranche Slides

    27/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Plane Wave solutions in the three materials: TM case

    x

    z

    y

    zjxyy eeHzx

    2

    22 ),(H

    Upper layer:evanescent plane wave

    zjxjk

    y

    zjxjk

    yy

    eeH

    eeHzx

    x

    x

    1

    1

    1

    11 ),(

    H

    Central layer:uniform plane waves

    zjx

    yy eeHzx 2'2'2 ),(H

    Lower layer:evanescent plane wave

    1xk

    1xk

    ib1

    rb1

    22jk

    x

    2'2 jkx

    2

    02

    22

    '2

    2

    2

    2

    2

    22

    0

    2)(;'2,2,1,)( knkkiknk xxixi

    where:

  • 8/2/2019 1st Tranche Slides

    28/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Reflection Coefficients at the interfaces: TM case

    x

    z

    y

    22jk

    x

    2'2jk

    x

    ( )

    ( )( )

    G 12

    12

    21

    1

    1

    /2

    1

    1... x

    x

    x

    knnjtg

    djk

    y

    djk

    y

    TM eeH

    eH

    ( )( )

    ( )( )

    ( )

    G

    12

    12

    21

    1

    1

    /2

    21

    2

    12

    21

    2

    12

    21

    2

    12

    21

    2

    12

    12

    12

    1

    1

    /

    /

    /

    /

    coscos

    coscos

    x

    x

    x

    knnjtg

    x

    x

    xx

    xx

    ti

    ti

    djky

    djk

    y

    TM

    e

    jknn

    jknn

    kknn

    kknn

    nn

    nn

    eH

    eH

  • 8/2/2019 1st Tranche Slides

    29/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    x

    z

    y

    The triangular points belongingto the same equi-phase plane must be

    separated in phaseby an integer multiple of 2p.

    The same for the square points.

    Considering e. g. points A and C, itmust be:

    A

    'C

    '

    B''

    B

    ''C

    TM

    CBjn

    TMABjn

    Ay

    mj

    AyCy

    e

    eH

    eHH

    G

    G

    '''01

    '

    01

    ''

    1

    2

    11

    p

    Consistency Condition on Equiphase planes: TM case

  • 8/2/2019 1st Tranche Slides

    30/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    It must then be:

    p

    jm

    knnjtg

    djn

    knnjtg

    djn

    e

    e

    e

    e

    e

    x

    i

    x

    ii

    2

    )/(2

    cos

    2

    )/(2

    2coscos

    2

    1

    2

    12

    21

    01

    12

    12

    21

    01

    x

    zy

    A

    'C

    '

    B''

    B

    ''C

    i

    dCB

    cos

    2'''

    i

    i

    dAB

    2cos

    cos

    2'

    +d

    -d

    )

    (

    'CB

    span

    ''

    )

    ('AB

    span

    TMG

    TMG

    Consistency Condition on Equiphase planes: TM case

  • 8/2/2019 1st Tranche Slides

    31/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Characteristic Equation: TM case

    22

    )/(44

    2)/(

    44cos

    24)2cos1(cos

    2

    11

    2

    1

    22

    1

    2

    12

    21

    1

    1

    2

    12

    2101

    1

    21

    01

    2

    2

    cos

    222cos

    cos

    2

    1

    2101

    1

    2101

    pp

    p

    p

    p

    mdktgdkn

    ndm

    knntgdk

    mknn

    tgdn

    mk

    tgd

    n

    eeeee

    xx

    x

    x

    x

    i

    x

    i

    i

    jmk

    jtgd

    jn

    k

    jtgd

    jn

    xix

    i

    i

    ( )

    ( ) oddmdkdknnd

    evenmdktgdknnd

    xx

    xx

    ,

    ,

    11

    2

    122

    11

    2

    122

    cot)/(

    )/(

    We obtain then:

  • 8/2/2019 1st Tranche Slides

    32/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    u

    w

    p/2 p 3p/2

    ( ) ( )( ) ( ) )(cot)/(),(cot

    )()/(),(2

    12

    2

    12

    oddoddeveneven

    TMuunnwTEuuwTMutgunnwTEutguw

    Resolution of TE and TM Characteristic Equations

    From the characteristic equation we have:

    Moreover, it must be:

    TE0

    TM0

    TM1TE1TM2TE2

    TM3

    TE3

    The graphic solution gives thevalues of

    dwdkux 21

    ,

    22 uvw

    of the guided modes for a given valueof the normalized frequency:

    2

    2

    2

    1

    2

    2

    2

    10 )/( nndcnndv w

  • 8/2/2019 1st Tranche Slides

    33/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Exploiting again the relations:

    We can solve numericallythe equation to find (w)(e.g. TMcase withm=0):

    and add the TMdispersion curves to the TE ones

    2

    02

    2

    2

    22011

    )()(

    )()(

    dndd

    ddndkx

    ( ) ])()([)()(/)()(

    22

    01

    22

    01

    2

    12

    2

    02

    2

    ddntgddnnndnd

    w

    10

    01

    n

    n

    mw

    20

    02

    n

    n

    mw

    ...

    Dispersion curves (w): TE and TM case

    (TE0)

    (TE1)

    (TM0)

    (TM1)

  • 8/2/2019 1st Tranche Slides

    34/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    The following relations areexpoited:

    The plot is more readableThe curves can be referred to waveguides different from each other

    Only one TE and one TMmode propagate when it is 0

  • 8/2/2019 1st Tranche Slides

    35/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Behavior of |Hy|for the modes TMm (m even, m=2k)

    x

    z

    y

    G

    11

    2222

    )/(2

    2

    1

    1

    11

    12

    12

    21

    1

    yy

    djkkdkj

    knnjtg

    djk

    y

    yTM

    HH

    ee

    e

    eHH

    xx

    x

    x

    p

    Considering for example the upper interface, we have from the characteristic equation:

    In the central layer the field Hy is given by:

    ) ( ) zjxyzjxjkxjkyy exkHeeeHzx xx 1111 cos),( 11H

  • 8/2/2019 1st Tranche Slides

    36/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Behavior of |Hy|for the modes TMm (m even)

    x

    z

    d-d

    |Hy1|Ex. mode TM0

    x

    z

    d-d

    |Hy1|Ex. mode TM2

    ( ) ( )xkHexkHzx xyzj

    xyy 11111 coscos),(

    HIn the central layerthe expression is given by

    222

    0 11ppp

    xkdk xx

    2

    3

    2

    3

    2

    311

    pppp xkdk xx

    B h i f | | f h d TM ( dd 2k )

  • 8/2/2019 1st Tranche Slides

    37/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Behavior of |Hy|for the modes TMm (m odd, m=2k+1)

    x

    z

    y

    G

    11

    22)12(2

    )/(2

    2

    1

    1

    11

    12

    12

    21

    1

    yy

    jdjkkdkj

    knnjtg

    djk

    y

    yTM

    HH

    eee

    e

    eHH

    xx

    x

    x

    pp

    Considering for example the upper interface, we have from the characteristic equation:

    In the central layer the field Hy is given by:

    ) ( ) zjxyzjxjkxjkyy exkHeeeHzx xx 1111 sin),( 11H

    B h i f | | f h d TM ( dd)

  • 8/2/2019 1st Tranche Slides

    38/93

    Dipartimento di ElettronicaInformatica e Sistemistica G. Tartarini Advanced Electromagnetic Transmission Techniques and Devices

    Electromagnetic Technologies for Link Design M

    Behavior of |Hy|for the modes TMm (m odd)

    x

    z

    d

    -d

    |Hy1|Ex. mode TM1

    x

    z

    d-d

    |Hy1|Ex. mode TM3

    ( ) ( )xkHexkHzx xyzj

    xyy 11111 sinsin),(

    HIn the central layerthe expression is given by

    pppp

    xkdk xx 112

    pppp 2222

    3 11 xkdk xx

    In general |Hy|of mode TMm assumesm times the `0` value for dxd

  • 8/2/2019 1st Tranche Slides

    39/93

    Dipartimento di ElettronicaInformatica e Sistemistica G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Guided Modes and Radiation Modes22

    01

    2

    1 )( nkx2

    2

    2

    22

    02

    2

    2 )( nkx

    2

    01 )( n

    2

    02 )( n

    0

    0

    0

    Planewavespropagatingalong z

    Planewavespropagatingalong xin thecentral

    layer

    Plane

    wavespropagatingalong xin theouterlayers

    Planewavesattenuating

    along z

    Planewavesattenuating along xin the outer layers

    GuidedModes

    Radiation

    modespropagatingalong z

    Radiationmodesattenuating

    along z

    The set of guided and radiation modes forms a Complete Set of Solutionsof MaxwellsEquations for the dielectric slab Any field of the slab can be expressed as a linearcombination of these modes

    Th O ti l Fib Cl ifi ti

  • 8/2/2019 1st Tranche Slides

    40/93

    Dipartimento di ElettronicaInformatica e Sistemistica G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    The Optical Fiber: Classification

    SilicaFibres

    PlasticFibres

    Single Mode

    Multimode

    Multimode

    Graded

    Index

    StepIndex

    StepIndex

    Graded

    Index

    StepIndex

    Standard

    DispersionShifted

    P

    ERFORM

    ANCES+

    COSTS

    Long DistanceConnections

    In-Building,Local AreaConnections

    HomeConnections

    S O

  • 8/2/2019 1st Tranche Slides

    41/93

    Dipartimento di ElettronicaInformatica e Sistemistica G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Core: SiO2+ GeO210 mm (Single Mode),50, 62.5 mm (Multi Mode),n1~ 1.443

    Cladding: SiO2125 mm

    n2~ 1.44

    Primary Coating

    400 mm Secondary Coating1 mm

    Silica Optical Fibres

    Plastic Optical Fibers

  • 8/2/2019 1st Tranche Slides

    42/93

    Dipartimento di ElettronicaInformatica e Sistemistica G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Core:Polymethylmethacrylate (PMMA),Perfluorinate (CYTOP), 62.5 mm 980 mmn1~ 1.49

    Cladding): Other Polymericmaterial250 mm 1 mmn

    2~ 1.41

    External coating~2 mm

    Plastic Optical Fibers

    P d t fi d O ti l Fib G id d M d

  • 8/2/2019 1st Tranche Slides

    43/93

    Dipartimento di ElettronicaInformatica e Sistemistica G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    n1>n2

    r

    fn2

    n1

    a1. Resolution ofMaxwells Equations in the three regions

    Solutions in terms of Bessel functions in the three

    regions

    2. Imposition of

    continuity conditions of at the

    interfacer = a

    Homogeneous Linear System to be solved

    Achievement of the Characteristic Equation (TE/TM,

    even/odd)

    3. Resolution of the Characteristic Equation

    Modes propagation constant

    Modes amplitude behavior

    HEHE

    ,,, zz

    )(w

    Procedure to find Optical Fiber Guided Modes

    S l i P d f M ll E ti

  • 8/2/2019 1st Tranche Slides

    44/93

    Dipartimento di ElettronicaInformatica e Sistemistica G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    zj

    zzrr

    zj

    zj

    zzrr

    zj

    eiHiHiHer,z)(r

    eiEiEiEer,z)(r

    ff

    ff

    )(),(,

    )

    (),(,

    H

    E

    H

    E

    Evaluation of Ez, Hz:

    0)(0)(

    22

    0

    2

    220

    2

    ziz

    ziz

    HnH

    EnE

    Evaluation ofEt, Ht:

    )()(

    1

    )

    ()(

    1

    22

    0

    22

    0

    ztzizt

    i

    rrt

    ztzzt

    i

    rrt

    EijHjkn

    iHiH

    HijEjkniEiE

    w

    wm

    H

    E

    r

    fn2

    n1

    (2.1)

    (2.2)

    Solving Procedure of Maxwells Equations

    (i=1 for core

    i=2 for cladding)

    Expressions of HE

  • 8/2/2019 1st Tranche Slides

    45/93

    Dipartimento di ElettronicaInformatica e Sistemistica G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Where:

    Jm ( ) = Bessel Function of First Kind of order m

    Km ( ) = Modified Bessel Function of Second Kind of order m

    Solving (2.1) (2.2) in cyilindrical coordinates yields:

    r< a

    r> a

    r< a

    r> a

    2

    02

    22

    2

    22

    01

    2

    1

    n

    nkt

    Expressions of

    r

    fn2

    n1

    zzHE,

    zj

    m

    zj

    tmz

    zj

    m

    zj

    tm

    z

    emDmDr)(K

    emCmCr)(kJ,z)(r

    emBmBr)(K

    emAmAr)(kJ,z)(r

    f

    f

    )sin()cos()sin()cos(,

    )sin()cos(

    )sin()cos(,

    212

    211

    212

    211

    H

    E

    E i f th Ch t i ti E ti

  • 8/2/2019 1st Tranche Slides

    46/93

    Dipartimento di ElettronicaInformatica e Sistemistica G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Imposing the Continuity Condition the Characteristic Equation is obtained

    Introducing the approximation D = (n12 - n22 ) / (2 n12 )

  • 8/2/2019 1st Tranche Slides

    47/93

    Dipartimento di ElettronicaInformatica e Sistemistica G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Review on Bessel Functions of First Kind

    )(0 xJ

    )(1 xJ

    Zeros of J0(x):2.40485.52018.6537

    Zeros of J1(x):3.83177.015610.1735

    Review on Modified Bessel Functions of Second Kind

  • 8/2/2019 1st Tranche Slides

    48/93

    Dipartimento di ElettronicaInformatica e Sistemistica G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Review on Modified Bessel Functions of Second Kind

    )(0 xK

    )(1 xK

    All Km(x)tend tofor x0 and fallexponentiallyfor increasing x.

    The ratio Km(x)/ Km+1(x)

    tend to 1 for increasing x

    Both ratiosx*Km(x)/ Km+1(x)andx*Km+1(x)/ Km(x)are equal to 0

    for x=0 andtend to x for increasing x

    LP d ith 0 fi di k

  • 8/2/2019 1st Tranche Slides

    49/93

    Dipartimento di ElettronicaInformatica e Sistemistica G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    2 4 6 8 10

    ))((

    ))((

    )( 21

    20

    2

    1

    2

    12

    1

    2

    akvK

    akvK

    akvt

    t

    t

    )(

    )(

    10

    111

    akJ

    akJak

    t

    tt

    LP01 LP02

    LP03

    kt1a

    LPmn modes with m=0: finding kt1

    LP d ith 1 fi di k

  • 8/2/2019 1st Tranche Slides

    50/93

    Dipartimento di ElettronicaInformatica e Sistemistica G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    2 4 6 8 10

    2 2

    0 12 2

    1 2 2

    1 1

    ( ( ) )

    ( ) ( ( ) )

    t

    t

    t

    K v k a

    v k a K v k a

    0 11

    1 1

    ( )

    ( )

    tt

    t

    J k ak a

    J k a

    LP11LP12

    LP13

    kt1a

    LPmn modes with m=1: finding kt1

    O ti l Fib N li d Di i C

  • 8/2/2019 1st Tranche Slides

    51/93

    Dipartimento di ElettronicaInformatica e Sistemistica G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    2

    2

    2

    10 nnav

    2

    2

    2

    0

    2

    1

    2

    0

    2

    2

    2

    0

    2

    nn

    nb

    Optical Fiber: Normalized Dispersion Curves

    Behaviors similar

    to the ones of the

    dielectric slab

    B h i f M d A lit d

  • 8/2/2019 1st Tranche Slides

    52/93

    Dipartimento di ElettronicaInformatica e Sistemistica G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Linearly Polarized modes which are obtained utilizing the condition D

  • 8/2/2019 1st Tranche Slides

    53/93

    Dipartimento di ElettronicaInformatica e Sistemistica G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Modes LP0n are two times degenerate: they can haveEt =Ex orEt =Ey

    x

    y

    LP01LP02

    Modes LPmn are 4 times degenerate:

    They can haveEt =Ex orEt =Ey

    They can have azimuthal dependence cos(mf) or sen(mf)

    LP11

    f

    x

    y

    Degeneration of LP modes

    Attenuation in Optical Fibers

  • 8/2/2019 1st Tranche Slides

    54/93

    Dipartimento di ElettronicaInformatica e Sistemistica G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Attenuation in Optical Fibers

    Source of

    Information

    Fiber Optic

    Cable

    Electrical

    Signal

    Destination

    Optical

    Source

    Optical

    Detector

    Optical

    Receiver

    Attenuation in the Optical Fibers

  • 8/2/2019 1st Tranche Slides

    55/93

    Dipartimento di ElettronicaInformatica e Sistemistica G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Intrinsic absorption

    Extrinsic Absorption

    Linear Diffusion

    Attenuation in the Optical Fibers

    Material: SiO2, SiO2+GeO2, SiO2+F,Atl~0.1 mm: electronic transitionsAt l~9. mm: photon interactionswith material molecular vibrations

    Rayleigh Scattering: a part of the optical power is transferred from the propagationModes to other modes, including radiation modes, at the same frequency.It is due to slight inhomogeneities of the crystal over distances shorter than 1 mm

    (Due to impurities)Interactions with bond vibrations ofOH-ion

    Attenuation in SiO2 Fibers (SMF and MMF)

  • 8/2/2019 1st Tranche Slides

    56/93

    Dipartimento di ElettronicaInformatica e Sistemistica G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Attenuation in SiO2 Fibers (SMF and MMF)

    5

    4

    3

    2

    1

    0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

    a(dB/km)

    l (mm)

    Rayleigh Scattering

    OH- ionAbsorption

    (This peak canbe reduced if

    the fabricationprocedure isimproved)

    Infraredabsorption

    UltravioletAbsorption

    Classical Transmission Windows

  • 8/2/2019 1st Tranche Slides

    57/93

    Dipartimento di ElettronicaInformatica e Sistemistica G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Classical Transmission Windows

    1 2 3

    5

    4

    3

    2

    1

    0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

    a(dB/km)

    l (mm)

    I windowl~ 0.8mm

    II window

    l~ 1.3mm III windowl~ 1.55mm

    ~ 0.2dB/km

    ~ 0.4dB/km

    Recent Definition of new Transmission Windows

  • 8/2/2019 1st Tranche Slides

    58/93

    Dipartimento di ElettronicaInformatica e Sistemistica G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Recent Definition of new Transmission Windows

    I window

    0.8mm

  • 8/2/2019 1st Tranche Slides

    59/93

    Dipartimento di ElettronicaInformatica e Sistemistica G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Attenuation in Plastic Optical Fibers

    500

    400

    300

    200

    100

    0.45 0.5 0.55 0.6 0.65 0.7

    a(dB/km)

    l (mm)

    250

    200

    150

    100

    50

    0.6 0.8 1.0 1.41.2

    a(dB/km)

    l (mm)

    Step-Index PMMA Graded-Index in Perfluorinated Polymer

    Attenuation in Optical Fibres: Conclusions

  • 8/2/2019 1st Tranche Slides

    60/93

    Dipartimento di ElettronicaInformatica e Sistemistica G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    SiO2 Fibre

    Attenuation in Optical Fibres: Conclusions

    Utilizing appropriate optical transmission bands (III window, II window, etc),the attenuation is very low (a< 0.5 dB/km).

    Long-distance links (unrepeateredspans of tens of km) Metropolitan networks

    In-Building networks

    The high attenuation (at present a> 30 dB/km) is one of the limiting factors forPOF links, which at present do not exceed tens or a very few hundreds of meters

    of length.

    Home networks Connections inside cars, trains, ships, etc

    Plastic Fibre

    Coupling Losses AC1 due to Numerical Aperture:1 N i l A t f th Fib

  • 8/2/2019 1st Tranche Slides

    61/93

    Dipartimento di ElettronicaInformatica e Sistemistica G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    1. Numerical Aperture of the Fibre

    ( )2

    2

    2

    1sin nnNA MFFibre

    Incindent rays which remain inside the AcceptanceCone of semi-aperture MF are guided inside thefibre

    SMF : NAFibra~ 0.15MMF : NAFibra~ 0.30PMMF : NAFibra~ 0.50

    Coupling Losses AC1 due to Numerical Aperture:2 N i l A t f th S

  • 8/2/2019 1st Tranche Slides

    62/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    ( )MSSourceNA sin

    2

    101 log10Fibre

    SourceC

    SourceFibre

    NANAA

    NANAIf

    For a fixed NASourcemultimodal fibres have lower values of AC1 withrespect to single mode ones

    2. Numerical Aperture of the Source

    Coupling Losses AC2due to Source Emitting Area:S E i l t Di t

  • 8/2/2019 1st Tranche Slides

    63/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Source Fibre DCoreDSource

    2

    102 log10Fibre

    SourceCSourceCore

    D

    DADDIf

    SMF : DCore~ 10 mmMMF : Dcore~ 50-62.5 mmPMMF : Dcore~ 62.5-980 mm

    For a fixed DSourcemultimodal fibersexhibit lower AC2values with respect tothe single mode ones

    Source Equivalent Diameter

    Definitions referred to a pulse signal

  • 8/2/2019 1st Tranche Slides

    64/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    x(t)

    t

    t

    Rms puse width

    (rms = root mean square)

    Average pulse arrival time

    ( )

    1/ 2

    2

    1 1( ) , ( )

    ( ) ( )

    t tx t dt t t x t dt

    x t dt x t dt

    Definitions referred to a pulse signal

    Dispersion in Optical Fibres

  • 8/2/2019 1st Tranche Slides

    65/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Dispersion in Optical Fibres

    Source of

    Information

    Fiber Optic

    cable

    Electrical

    Signal

    Destination

    Optical

    Source

    Optical

    Detector

    Optical

    Receiver

    Types of Dispersion in Optical Fibres

  • 8/2/2019 1st Tranche Slides

    66/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Types of Dispersion in Optical Fibres

    Exists only in the MMF.

    Each mode of the fiber carries with a different group velocity vgaportion of the modulating signal

    Exists both in SMF and in MMF.

    Each portion of the signal spectrum (wave packet) travels with adifferent vg.

    Exists in SMF, can be neglected in MMF.

    The signal is divided between the two degenerate x-polarized and

    y-polarized LP01 modes. These modes ideally should have thesame vg, but in practice exhibit different vgs.

    IntermodalDispersion

    Chromatic

    Dispersion

    PolarizationModeDispersion

    Dispersion in few words

  • 8/2/2019 1st Tranche Slides

    67/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Dispersion in few words

    The signal and/or its spectrum, exhibit an undesired subdivision in different portionsWhich travel with different group velocities vg. The complete denomination of thephenomenon is:

    Group Velocity Dispersion (GVD)

    Limitations at the Bit Rate of the link in case of digital transmission

    Limitations at the Pass Band of the link in case of analog transmission

    Consequences

    Summarizing:

    Intermodal Dispersion

  • 8/2/2019 1st Tranche Slides

    68/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    p

    u= kt1a

    Normalized frequency v high

    u ~ 2.4048, 3.8317,5.1356,,That is, kt1,mn is independent from v from w

    For modeLP01 it is kt1,01= 2.4048/(a)For modeLP11 it is kt1,11= 3.8317/(a)

    For modeLP21 it is kt1,21= 5.1356/(a)

    2 2

    0 12 2

    12 2

    1 1

    ( ( ) )( )

    ( ( ) )

    t

    t

    t

    K v k av k a

    K v k a

    kt1,01a =2.4048

    kt1,11a = 3.8317

    kt1,21a = 5.1356

    Computation of vg as dw/d

  • 8/2/2019 1st Tranche Slides

    69/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    ( )

    ( ) ( )

    mng

    mnmnmnt

    mnt

    senn

    c

    d

    dv

    senc

    nn

    n

    k

    n

    d

    d

    kn

    w

    m

    mw

    m

    w

    mw

    1

    1

    2

    01

    2

    10

    2

    2

    ,

    2

    10

    2

    ,

    2

    10

    2

    cos11

    n10

    kt1,mn

    n1

    n2

    n2

    mn

    For the fundamental mode it is vg = (c/n1) [1- (p/2a)2/(n1k0)

    2]1/2 ~ c/n1

    For the mode at cut-off it is sen mn =n2/n1vg~ (c n2/n12

    )

    For a span of lengthL the maximum difference between the arrival times is:

    Dt=Ln1/c(n1/n2-1)~Ln1D/c

    p g

    Computation of vg through geometrical optics

  • 8/2/2019 1st Tranche Slides

    70/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    The same result can be obtained through geometrical optics:

    DtAB= n1LiD/cDt= n1 {SLi}D/c=n1LD/c

    Li

    n1

    n2

    c

    A

    B

    p g g g p

    Pulse spreading and Bit rate

  • 8/2/2019 1st Tranche Slides

    71/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Estimation of the transmittable bit rate:

    Dt TB that is Br

  • 8/2/2019 1st Tranche Slides

    72/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    n(r)

    (n2)

    B

    With the optimum value ofa (a ~ 2) it is:

    Dt~(n1LD/c) (D/2)

    B L=BrL~ (Gbit/sec) Km

    a

    n( r )=n1[1-2D(r/a)

    a]1/2 if ra

    A

    Graded Index Multimode Fiber

    Product Band x Distance

  • 8/2/2019 1st Tranche Slides

    73/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Product Band x Distance

    The effect of intermodal dispersion is represented by theProduct Band x Distance(~ Bit Rate x Distance)

    Typical values:

    Plastic Fibres

    Step-Index Graded-Index

    Silica Fibres ~800-1500 MHz Km~tens of MHz Km

    ~200-300 MHz Km~10-20 MHz Km

    Chromatic Dispersion: main causes

  • 8/2/2019 1st Tranche Slides

    74/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Waveguide Dispersion

    The behavior ofis non linear

    with wdue to the presence of the

    two asymptotes=n2k0 and=n1k0

    Material Dispersion

    The fact that n1=n1(w) and n2=n2(w),

    introduces a further cause of non lineardependence ofwith w.

    w

    1001 nkn mw

    2002 nkn mw

    (w)

    ...

    1001 nkn mw

    2002 nkn mw...

    w...

    p

    Effects of Chromatic Dispersion

  • 8/2/2019 1st Tranche Slides

    75/93

    Dipartimento di ElettronicaInformatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and DevicesElectromagnetic Technologies for Link Design M

    Reduction of peak value andincrease of pulse duration

    Limitation to the signal bit-rate

    Digital Modulating Signal Analog Modulating Signal

    Distortion of the signalLimitation of the pass band Numerical evaluation of distortion

    Effects of Chromatic Dispersion

    The harmonic components (WavePackets) which constitute the spectrum of the

    Modulating signal arrive to destination with different delays

    The Cromatic Dispersion is presnt also in the MMF but it can be oftenneglected with respect to intermodal dispersion

    Chromatic Dispersion expressed in

    kmnmpsec

  • 8/2/2019 1st Tranche Slides

    76/93

    Dipartimento di Elettronica

    Informatica e SistemisticaG. Tartarini Advanced Electromagnetic Transmission Techniques and Devices

    Electromagnetic Technologies for Link Design M

    C o at c spe s o e p essed

    D

    kmnm

    psecl

    t

    ll

    d

    d

    d

    vgd

    Dg

    1

    Enlargement of a pulse for one km of fiber length for 1 THz of bandwidth

    of the modulated signal.

    tgt

    g=v

    g-1

    (n

    sec/m)

    4.8784.875

    DDl

    Minimum of tgZero of DDl

    kmnm

    Chromatic Dispersion expressed in

    kmTHzpsec

  • 8/2/2019 1st Tranche Slides

    77/93

    Dipartimento di Elettronica

    Informatica e SistemisticaG. Tartarini Advanced Electromagnetic Transmission Techniques and Devices

    Electromagnetic Technologies for Link Design M

    D

    kmTHz

    psecw

    t

    ww

    d

    d

    d

    vgd

    Dg

    1

    Enlargement of a pulse for one km of fiber length for 1 THz of bandwidth

    of the modulated signal.

    tgt

    g=v

    g-1

    (n

    sec/m)

    4.878

    4.875

    DDw Minimum of tg

    Zero of DDw

    p p kmTHz

    Material Dispersion in an homogeneous medium

  • 8/2/2019 1st Tranche Slides

    78/93

    Dipartimento di Elettronica

    Informatica e SistemisticaG. Tartarini Advanced Electromagnetic Transmission Techniques and Devices

    Electromagnetic Technologies for Link Design M

    Normalized group delay:

    Group velocity: vg=1/tg

    Dispersion:

    ~

    2

    2

    2

    3

    2

    2

    2

    2

    2 2...)2(2

    1

    )2(

    1

    lp

    l

    p

    pw d

    nd

    cdf

    nd

    fdf

    dn

    cdf

    d

    D D

    2

    2

    2

    3

    2

    2

    2

    2

    ...)2(1

    2

    1

    l

    l

    p d

    nd

    cdf

    ndf

    df

    dn

    cdf

    dD f D

    2

    2

    2

    1

    l

    l

    lpl

    d

    nd

    cdf

    d

    d

    dD D

    p g

    df

    dg

    pt

    )2(

    1~

    Behavior of n(l)for pure silica

  • 8/2/2019 1st Tranche Slides

    79/93

    Dipartimento di Elettronica

    Informatica e SistemisticaG. Tartarini Advanced Electromagnetic Transmission Techniques and Devices

    Electromagnetic Technologies for Link Design M

    32

    0

    5

    22

    0

    42

    0

    33

    02

    2

    0100

    )()()(

    )(

    l

    C

    l

    C

    l

    CCCCn

    lll

    lll

    where:

    C0=1.4508554

    C1=-3.1268e-3 mm-2C2=-3.81e-5 mm

    -3

    C3=3.027e-3 mm2

    C4=-7.79e-5 mm4

    C5=1.8e-6 mm6

    l=.035 mm2

    (l0 in mm)

    ( ) p

    Behaviors of and for pure silicalddn/22 / ldnd

  • 8/2/2019 1st Tranche Slides

    80/93

    Dipartimento di Elettronica

    Informatica e SistemisticaG. Tartarini Advanced Electromagnetic Transmission Techniques and Devices

    Electromagnetic Technologies for Link Design M

    p

    For l~1.3 mm it is (Zero Material Dispersion)

    The behaviors are similar for doped silica

    02

    2

    ld

    nd

    Ex. Of Material Dispersion: the RainBow

  • 8/2/2019 1st Tranche Slides

    81/93

    Dipartimento di Elettronica

    Informatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and Devices

    Electromagnetic Technologies for Link Design M

    p

    b

    180-2(90-2b+a)=4b-2aa

    b

    b

    b

    a

    (180-4b)/2=

    =90-2b

    Sun at horizon horizontal raysRays all possible angles -90

  • 8/2/2019 1st Tranche Slides

    82/93

    Dipartimento di Elettronica

    Informatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and Devices

    Electromagnetic Technologies for Link Design M

    0 20 40 60 80 1000

    10

    20

    30

    40

    50

    Values of a around 60 degrees reflection angles very close to each other Intensity maximum.

    50 55 60 65 737

    38

    39

    40

    41

    42

    43

    Angle a (degrees)

    Angle4b-2a(degrees)

    The angle of the maximum varies with l: Red: 42.3 degrees, Violet: 40.4 degrees

    Standard Fibres ITU-T G.652 e G.653

  • 8/2/2019 1st Tranche Slides

    83/93

    Dipartimento di Elettronica

    Informatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and Devices

    Electromagnetic Technologies for Link Design M

    G.652 : Standard Single Mode Fiber

    Most used type of SMF Dispersion is zero for l~ 1.3mm

    G.653 : Dispersion Shifted Fiber

    More expensive, less used Dispersion is zero for l~ 1.55mm(III wndow C Band)

    Chromatic Dispersion: Wave Packet

  • 8/2/2019 1st Tranche Slides

    84/93

    Dipartimento di Elettronica

    Informatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and Devices

    Electromagnetic Technologies for Link Design M

    ( )

    ( )

    D

    DD

    ft

    ft

    fE

    ttx

    p

    p

    w

    sin

    cos)0,(

    0

    0

    D

    D

    D

    Ld

    dtf

    Ld

    dtf

    fE

    LtLtx

    0

    0

    0

    sin

    cos),(

    0

    0

    w

    w

    w

    w

    p

    w

    p

    w

    )0,(tx

    t

    ),( Ltx

    t

    ( ) LfjLfH exp),(

    fD

    f

    0f0f

    2/0

    E

    )0,()0,( fXfX

    LfLfXArg )(),(

    f

    0f

    0f

    f

    0f0f

    2/0E

    ),( LfX( )F( )1-F

    Chromatic Dispersion: Finite Bandwidth Signals

  • 8/2/2019 1st Tranche Slides

    85/93

    Dipartimento di Elettronica

    Informatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and Devices

    Electromagnetic Technologies for Link Design M

    ( ) LfjLfH

    exp

    ),(

    )0,(tx

    t

    t0 ),( Ltx...

    t0 +Dt

    t

    )0,()0,( fXfX

    0f0f f

    Lf

    LfXArg)(

    ),(

    ),( LfX0f

    0f

    f

    f

    ( )F( )

    1-

    F

    Chromatic Dispersion: Gaussian Pulse for z=0

  • 8/2/2019 1st Tranche Slides

    86/93

    Dipartimento di Elettronica

    Informatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and Devices

    Electromagnetic Technologies for Link Design M

    ( )tfeEtx Tt

    02

    0 2cos)0,(2

    0

    2

    p

    T0= rms pulse width

    t

    )0,(tx

    0E

    088.0 ET0

    Chromatic Dispersion: Gaussian Pulse for z>0

  • 8/2/2019 1st Tranche Slides

    87/93

    Dipartimento di Elettronica

    Informatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and Devices

    Electromagnetic Technologies for Link Design M

    )2cos(

    )2(

    1),(

    00

    ))2(

    1(2

    )2

    1(

    2

    2

    2

    2

    0

    0

    0

    2

    2

    2

    20

    2

    ztfe

    zdf

    d

    jT

    TAtzA

    zdf

    djT

    zdf

    dt

    p

    p

    p

    p

    t

    ),( tzA

    t

    X(f,0)Multiplication by

    )( fHfibre

    ( )tfeE

    tx

    T

    t

    0

    2

    0

    2cos

    )0,(

    20

    2

    p

    t

    ),0( tA

    X(f,z)

    ( )F

    ( )1-F

    Chromatic Dispersion: rms pulse width for z>0

  • 8/2/2019 1st Tranche Slides

    88/93

    Dipartimento di Elettronica

    Informatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and Devices

    Electromagnetic Technologies for Link Design M

    0

    1

    T

    f DOptical source with low linewidth ( ):

    2

    2

    2

    2

    0

    2

    0)

    )2(

    11()( z

    df

    d

    TTzT

    p

    Optical source with linewidth not to be neglected ( ):

    2

    2

    2

    2

    2

    2

    2

    0

    2

    0)

    2

    1()

    )2(

    11()( z

    df

    dfz

    df

    d

    TTzT

    p

    pD

    0

    1

    Tf D

    22

    2

    2

    2

    0

    2

    0)

    2

    1()

    )2(

    11()( z

    df

    d

    d

    dz

    df

    d

    TTzT

    lpl

    pD

    p p

    Influence of dispersion on the Bit Rate

  • 8/2/2019 1st Tranche Slides

    89/93

    Dipartimento di Elettronica

    Informatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and Devices

    Electromagnetic Technologies for Link Design M

    p

    Rule usually adopted :

    5

    )( BITt

    zT

    )(

    2.0

    zT

    Br

    Optical source with low linewidth ( ):

    2

    0

    2

    0)

    1()( zDT

    TzT wD

    Optical source with linewidth not to be neglected ( ):

    0

    1

    Tf D

    0

    1

    Tf D

    zDzdf

    d

    d

    dzT ll

    lpl

    DDD

    2

    1~)(

    zD

    Brll DD

    2.0

    Minimum value for zDT wD0zD

    Br

    wD2

    2.0

    Chromatic Dispersion: Counter measures

  • 8/2/2019 1st Tranche Slides

    90/93

    Dipartimento di Elettronica

    Informatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and Devices

    Electromagnetic Technologies for Link Design M

    Use of Dispersion CompensatingFibers (DCF)

    Use of Gratings(Ex. Fiber Bragg Gratings FBG)

    Use of Soliton Propagation(exploiting the nonlinearities of the fiber)

    (SMF +D) (DCF -D)

    (SMF +D) (SMF +D)

    (FBGD)

    t t

    Dispersion compensating Fibers

  • 8/2/2019 1st Tranche Slides

    91/93

    Dipartimento di Elettronica

    Informatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and Devices

    Electromagnetic Technologies for Link Design M

    Through a relatively high doping ofGeO2 it is possible to abtain anegative value ofD [ps/(nm km)]

    L1(es G652)

    L2

  • 8/2/2019 1st Tranche Slides

    92/93

    Dipartimento di Elettronica

    Informatica e Sistemistica

    G. Tartarini Advanced Electromagnetic Transmission Techniques and Devices

    Electromagnetic Technologies for Link Design M

    Each channel needs a slightly different compensation

    DG652

    l(mm)

    1.3 1.55

    l(mm)

    Spettro

    WDM

    In the band B it is:

    DG652 B

    ~ D(l0) + (dD/dl) (ll

    0)

    It must then be:

    DDCF B = -(L1/L2) DG652 B

    =-(L1/L2) D(l0) -(L1/L2) (dD/dl) (ll0)

    B

    l0 l1DDCF

    l(mm)

    Pulse Enlargement per unit bandwidth

  • 8/2/2019 1st Tranche Slides

    93/93

    It is represented the quantity

    (ps/nm)

    z

    z

    L1 L2 L1 L2 L1

    Channel 1 WDM

    Channel i WDM

    Channel N WDM

    Ideal Case

    Real Case

    z

    dD0

    )(

    z

    dD0

    )(

    z

    dD0

    )(