1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of...

32
1 Propeller and Variability IGR J18245-2452 - C. Ferrigno EWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR J18245-2452 Carlo Ferrigno University of Geneva Marina Romanova Cornell University 1

Transcript of 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of...

Page 1: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Numerical simulations of propeller accretion regime

and the variability ofIGR J18245-2452

Carlo FerrignoUniversity of GenevaMarina Romanova Cornell University

1

Page 2: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

2Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

General view

• Matter of the disk is stopped by the magnetic pressure• Accretion and outflows depend on amount of matter accretion

rate• Diffusivity at the disk-magnetosphere boundary

2

Page 3: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

3Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Terminology

• Corotation radius: radius at which the magnetic field rotates at the local Keplerian speed

• Alfven radius: distance from a non- rotating star where the free-fall of a quasi-spherical accretion flow is stopped.

• Magnetospheric radius: radius at which magnetic pressure overcomes the ram pressure and flow is trapped by magnetic field in discs rm = f rco f~0.4

3

Page 4: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

4Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Propeller accretion

• Inner disk rotates faster than magnetosphere and plasma is funnelled to the surface by B-field

4

Accretion Propeller• Magnetos

phere rotates faster than accretion flow and matter can be centrifugally ejected.

Page 5: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

5Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Theory

• Study of the effective Alfven radius, which flickers in and out the corotation radius

• Matter and angular momentum flow due to coupling of magnetic field and plasma

• Transitions from propeller to accretion may be stochastic or chaotic in nature, with triggering due to small variations in the accretion flow or in the magnetic field configuration.

5

Illarionov & Sunyaev (1975); Lovelace, Romanova and Bisnovatyi-Kogan (1999)

Illarionov & Sunyaev (1975); Lovelace, Romanova and Bisnovatyi-Kogan (1999)

Page 6: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

6Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

The MHD problem

• Reference frame corotating with the star• Solving for 8 variables: B field (3), plasma speed (3), density,

energy density

6

No shocks

Ideal

γ=5/3 Adiabatic

Stress tensor

e.g., Utsyugova (2006)e.g., Utsyugova (2006)

Viscosity

Diffusivity

Page 7: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

7Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Scalable simulations

• Adimensional variables. • Scalable to objects with small magnetosphere

7

Page 8: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

8Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Set-up of propeller simulations

• Gudonov type MHD code: 2.5D simulations of propeller

• Laminar α- disks. Spherical coordinates, 2.5D – also top-bottom symmetry– αv=0.1-0.3, αd=0.1

• Turbulent MRI-driven disks. Cylindrical coordinates– Viscosity is determined by MRI. – Diffusivity is free parameter

8

Utsyugova et al. (2006)

Utsyugova et al. (2006)

Lii et al. (2014)Lii et al. (2014)

Page 9: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

9Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Accretion excursus

• α-disk model. 3-D simulations to study the Reyleigh-Taylor instabilities.

• Heavy matter pervades the light medium across magnetic field line and produces accretion tongues (low viscosity 0.02)

• Reduction of significance of coherent pulsations9

Romanova et al. (2008) Kuulkarni & Romanova (2008) Spruit et al. (1995); Lubow & Spruit (1993); Kaisig, Tajima,

Lovelace (1992)

Romanova et al. (2008) Kuulkarni & Romanova (2008) Spruit et al. (1995); Lubow & Spruit (1993); Kaisig, Tajima,

Lovelace (1992)

geff = g – Ω2r

Page 10: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

10Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Stable/Unstable accretion

• High accretion rate, unstable accretion.

• Inclination stabilizes.

10

Blinova et al. (2013)Blinova et al. (2013)

3D-slice-movie-short.mov

Page 11: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

11Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Dependencies

• Hollow column or crescent shape

• Dependency on accretion rate is less steep than standard theory (1/5 < 2/7)

11

Kuulkarni & Romanova (2013)

Kuulkarni & Romanova (2013)

Page 12: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

12Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Propeller

• Conical winds dominate the outwards mass outflow• Strong magnetic tower produces a more collimated Pointing

dominated jet.• Accretion continues on episodic fashion

12

rm > rco

Page 13: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

13Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Slow and fast rotators

• Outflows are present in both cases together with accretion in funnels.

• In propeller, there is a fast axial jet, which does not form in conical wind only regime

13

Slow rotator Fast rotatorpropeller

Romanova et al. (2005)Romanova et al. (2005)

Page 14: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

15Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Cyclic accretion

• Matter accumulates and then is accreted in cyclic fashion• Contemporary ejections of material

15

Lii et al. (2014)Lii et al. (2014)

Page 15: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

16Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Episodic accretion cycle

• Observed sporadically in outburst of AMSP, but at different time scale and duty cycle

• Lower diffusivity may reconcile the observations.

16

SAX J1808, Patruno et al. 2009;

NGC 6440 X-2 Patruno & D’Angelo 2013

D’Angelo & Spruit 2010;

SAX J1808, Patruno et al. 2009;

NGC 6440 X-2 Patruno & D’Angelo 2013

D’Angelo & Spruit 2010;

Page 16: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

17Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Strong propeller outflow

• one-sided outflow half-opening angle: ~20-40°, with continued collimation further out

• time averaged ejection efficiency: 50-90% depending on Ω*

17

• Always a fraction is accreted

Page 17: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

18Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Dependencies

• Strong .......................... Weak

18

rm/rco=2.5 rm/rco=1.5 rm/rco=1.1

• Diffusivity quenches bursts of accretion because of diffusive penetration through the boundary.

Lii et al. (2014)Lii et al. (2014)

Page 18: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

20Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

IGR J18245/M 28I

• In the globular cluster M 28: it is at 5.5 kpc.

• In 2013: one bright accretion driven outburst. Coherent pulsation. Strong spectral and timing variability.

• Intermediate accretion events: X-ray & optical brightening. Mode switch variability.

• Faint radio pulsar with irregularly eclipses due to outflows.

20

Papitto+ (2013)Papitto+ (2013)

Page 19: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

21Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

IGR J18245/M 28I in accretion phase

• Only a few days after the last X-ray detection !21

Papitto+ (2013)Papitto+ (2013)

Page 20: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

22Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

XMM-Newton light curve

• Very interesting variability, unique among AMSP.

• Episodes of enhanced hardness at low flux

• No orbital dependency.

22

Hard 3.5-10 keVSoft 0.5-3.5 keV

Ferrigno + (2014)Ferrigno + (2014)

time Bins >= 200 s

Page 21: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

23Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Two branches

• Blue: higher flux, limited Hardness variation• Magenta: lower flux, swings of hardness, what are they?

23

time Bins >= 200 s

Page 22: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

24Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Always pulsed

24

Page 23: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

26Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Light curve - Blue state

26

• Strong second-scale variability.

• red points are bins of 200 s

Page 24: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

27Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Wavelets

• Try to understand if there are particular time scales in the variability of this source.

• Try to check when they appear, if they appear.• Use a wavelet power spectrum:

– continuous wavelet transform – Morlet wavelet with index 6 investigating time scales from 2dt for 8

octaves

27

Page 25: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

28Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Wavelet investigation

• Stripe with period at ~20 s.

28

20 s

Page 26: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

29Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Zoomed wavelet

• There seems to be a typical time scale around 20 s

• Short peaks are highlighted, but do not represent a true periodicity.

• Wavelet are sensitive to shot noise !

29

Page 27: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

30Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

A faster variability

30

sec. scale~2 s scale

Page 28: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

31Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

MHD modelling

• Semi-periodic Flaring αd=0.1

• Not what we observe in IGR J18245

31

ms

Page 29: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

32Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Wavelet

• A clear periodicity is detected at ~60 s and peaks are highlighted by shorter term power.

32

ms

Page 30: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

33Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Higher diffusivity

• αd=0.1• With

higher viscosity flaring is less regular

• It is what we observe in IGR J18245

33

ms

Page 31: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

34Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Wavelet 2

• No clear periodicity.

• Short-time variability at strong peaks

• Longer term variability at ~250 s (windowing problems).

• Irregular.

34

ms

Page 32: 1Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015 Numerical simulations of propeller accretion regime and the variability of IGR.

35Propeller and Variability IGR J18245-2452 - C. FerrignoEWASS 26.06.2015

Conclusions

• Numerical simulations are a unique tool to study accreting system behavior in terms of realistic physical conditions for various scales of objects

• MRI simulations evidence that in propeller regime both accretion and outflows are present both in weak and strong propeller. Strong propeller (rm/rco~2-3), Mwind>Mstar ; weak propeller (rm/rco~1), Mstar>Mwind

• High magnetic diffusivity plays an important role in smoothing spikes. Observed variability might provide a mean to narrow down the parameter space.

• Wavelet is a powerful tool to investigate the intermittent quasi-periodic signal in light curve. Work in progress to identify possible quasi periodic behavior.

• IGR J18245 has a pronounced variability never observed in aMSP: peculiar of transitional pulsars?

35